簡易檢索 / 詳目顯示

研究生: 陳翊珠
Chen, Yi-Chu
論文名稱: 以木鱉果樹葉萃取物合成奈米粒子進行抗微生物與抗氧化活性分析之研究
Study on Antimicrobial and Antioxidant Activities by Synthesizing Nanoparticles Use Momordica cochinchinensis Spreng Leaf Extract
指導教授: 徐志宏
Shyu, Douglas J. H.
學位類別: 碩士
Master
系所名稱: 農學院 - 生物科技系
Department of Biological Science and Technology
畢業學年度: 108
語文別: 中文
論文頁數: 117
中文關鍵詞: 木鱉果奈米粒子抗微生物抗氧化
外文關鍵詞: Momordica cochinchinensis,, Nanoparticles,, Antimicrobial, Antioxidant
DOI URL: http://doi.org/10.6346/NPUST202000279
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 摘要 I
    Abstract II
    謝誌 III
    目錄 IV
    圖目錄 VII
    表目錄 X
    第一章 緒論 1
    1.1 前言 1
    1.2 研究動機 1
    第二章 文獻回顧 3
    2.1 奈米技術 3
    2.2 奈米粒子 3
    2.3 綠色奈米技術合成奈米粒子及應用 4
    2.3.1 銀(Ag) 5
    2.3.2 鐵(Fe) 5
    2.3.3 金(Au) 6
    2.3.4 銅(Cu) 6
    2.3.5 二氧化鈦(TiO 2) 6
    2.3.6 氧化鋅(ZnO) 6
    2.3.7 其他金屬 7
    2.4 木鱉果 7
    2.5 革蘭氏陽性菌(Gram Positive bacteria) 8
    2.5.1 肺炎鏈球菌(Streptococcus pneumoniae) 9
    2.5.2 無乳鏈球菌(Streptococcus agalactiae) 9
    2.5.3 腐生鏈球菌(Staphylococcus saprophyticus) 9
    2.5.4 表皮葡萄球菌(Staphylococcus epidermidis) 10
    2.6 革蘭氏陰性菌(Gram-negative bacteria) 10
    2.6.1沙門氏菌(Salmonella sp.) 11
    2.6.2克雷伯氏肺炎菌(Klebsiella pneumoniae) 11
    2.6.3志賀氏菌(Shigella sp.) 11
    2.6.4大腸桿菌(Escherichia coli) 11
    2.7 分枝桿菌(Mycobacterium) 12
    2.7.1 膿腫分枝桿菌(Mycobacterium abscessus) 12
    2.7.2 大眾分枝桿菌(Mycobacterium massiliense) 13
    2.7.3 恥垢分枝桿菌(Mycobacterium smegmatis) 13
    2.8 真菌(Fungus) 13
    2.8.1巴西麴菌(Aspergillus brasiliensis) 13
    2.8.2 黃麴菌(Aspergillus flavus) 14
    2.8.3白色念珠菌(Candida albicans) 14
    2.8.4芽枝狀枝孢菌(Cladosporium cladosporioides) 14
    2.8.5綠色木黴菌(Trichoderma virens) 15
    第三章 材料與方法 16
    3.1 實驗架構 16
    3.2 實驗器材 16
    3.3 實驗方法 17
    3.3.1 製備木鱉果葉水萃液 17
    3.3.2 木鱉果葉抗氧化成份分析 18
    3.3.3 促進分枝桿菌生長之條件 18
    3.3.4植物萃取物奈米粒子合成 19
    3.3.5 木鱉果葉奈米銀鋅銅粒子分光分度法檢測光譜 20
    3.3.6 掃描電子顯微鏡(Scanning Electron Microscope, SEM)檢測奈米粒子 20
    3.3.7 穿透式電子顯微鏡(Transmission electron microscope, TEM)檢測奈米粒子 21
    3.3.8 X光繞射分析(X-ray diffraction analysis, XRD)檢測奈米粒子 21
    3.3.9 木鱉果葉奈米粒子抗微生物活性分析 21
    3.3.10 抗氧化活性分析測定 26
    3.3.11 統計分析 28
    第四章 結果與討論 29
    4.1 木鱉果葉抗氧化成份分析 29
    4.1.1 總酚含量分析(Total phenolic content) 29
    4.1.2 總類黃酮含量分析(Total flavonoid content) 29
    4.2 促進分枝桿菌生長之試驗 32
    4.3 木鱉果葉奈米粒子之表徵分析 41
    4.3.1 木鱉果葉奈米粒子之合成顏色變化圖 41
    4.3.2 木鱉果葉奈米粒子之合成光譜 41
    4.3.3 木鱉果葉奈米粒子之SEM、EDS分析 41
    4.3.4 木鱉果葉奈米粒子之TEM分析 50
    4.3.5 木鱉果葉奈米粒子之XRD分析 50
    4.4 木鱉果葉奈米粒子之抗微生物活性分析 57
    4.4.1 木鱉果葉奈米銀粒子抗微生物活性分析 57
    4.4.2 木鱉果葉奈米鋅粒子抗微生物活性分析 64
    4.4.3 木鱉果葉奈米銅粒子抗微生物活性分析 72
    4.4.4 木鱉果葉奈米粒子抗微生物活性分析綜合比較 86
    4.5 奈米粒子之抗氧化活性分析 95
    4.5.1 DPPH自由基清除測定(DPPH scavenging activity) 95
    4.5.2 ABTS自由基清除活性(ABTS radical scavenging ability) 95
    4.5.3螯合亞鐵離子分析(Ferrous ion chelating activity) 103
    4.5.4 還原能力分析(Reducing power ability) 103
    第五章 結論 108
    參考文獻 110
    作者簡介 117

    Abbas, M., Paul, M., & Huttner, A. (2017). New and improved? A review of novel antibiotics for Gram-positive bacteria. Clinical Microbiology and Infection, 23, 697-703.
    Ahmed, S., Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272-284.
    Balamurugan, M., Saravanan, S., & Soga, T. (2014). Synthesis of iron oxide nanoparticles by using Eucalyptus globulus plant extract. e-Journal of Surface Science and Nanotechnology, 12, 363-367.
    Best, C. A., & Best, T. J. (2009). Mycobacterium smegmatis infection of the hand. Hand, 4, 165-166.
    Bengoechea, J. A., & Sa Pessoa, J. (2019). Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiology Reviews, 43, 123-144.
    Chuyen, H. V., Roach, P. D., Golding, J. B., Parks, S. E., & Nguyen, M. H. (2017). Effects of four different drying methods on the carotenoid composition and antioxidant capacity of dried gac peel. Journal of the Science of Food and Agriculture, 97, 1656-1662.
    Chuyen, H. V., Nguyen, M. H., Roach, P. D., Golding, J. B., & Parks, S. E. (2018). Microwave‐assisted extraction and ultrasound‐assisted extraction for recovering carotenoids from gac peel and their effects on antioxidant capacity of the extracts. Food Science and Nutrition, 6, 189-196.
    Devi, R. S., & Gayathri, R. (2014). Green synthesis of zinc oxide nanoparticles by using Hibiscus rosa-sinensis. International Journal of Current Engineering and Technology, 4, 2444-2446.
    Eshghi, M., Vaghari, H., Najian, Y., Najian, M. J., Jafarizadeh-Malmiri, H., & Berenjian, A. (2018). Microwave-assisted green synthesis of silver nanoparticles using Juglans regia leaf extract and evaluation of their physico-chemical and antibacterial properties. Antibiotics, 7, 68.
    Fan, X. H., Zhang, Q. A., Yan, Y. Y., & Tian, C. R. (2017). Physicochemical properties and in-vitro antioxidant capacity of semen Astragali Complanati wine. CyTA-Journal of Food, 15, 81-90.
    Furfaro, L. L., Chang, B. J., & Payne, M. S. (2018). Perinatal Streptococcus agalactiae epidemiology and surveillance targets. Clinical Microbiology Reviews, 31, e00049-18.
    Furfaro, L. L., Chang, B. J., Kahler, C. M., & Payne, M. S. (2019). Genomic characterisation of perinatal Western Australian Streptococcus agalactiae isolates. PLoS One, 14, e0223256.
    Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., Cameotra, S., Bellare, J., Dhavale, D. D., Jabgunde, A., & Chopade, B. A. (2012). Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7, 483.
    Gomes, T. A., Elias, W. P., Scaletsky, I. C., Guth, B. E., Rodrigues, J. F., Piazza, R. M., Ferreira, L. C., & Martinez, M. B. (2016). Diarrheagenic Escherichia coli. Brazilian Journal of Microbiology, 47, 3-30.
    Gopinath, K., Karthika, V., Gowri, S., Senthilkumar, V., Kumaresan, S., & Arumugam, A. (2014). Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract. Journal of Nanostructure in Chemistry, 4, 83.
    Griffin, S., Masood, M. I., Nasim, M. J., Sarfraz, M., Ebokaiwe, A. P., Schäfer, K. H., Keck, C. M., & Jacob, C. (2018). Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 7, 3.
    Hamelian, M., Varmira, K., & Veisi, H. (2018). Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential. Journal of Photochemistry and Photobiology B: Biology, 184, 71-79.
    Harrison, L. M., Balan, K. V., & Babu, U. S. (2013). Dietary fatty acids and immune response to food-borne bacterial infections. Nutrients, 5, 1801-1822.
    Heidari, Z., Salehzadeh, A., Shandiz, S. A. S., & Tajdoost, S. (2018). Anti-cancer and anti-oxidant properties of ethanolic leaf extract of Thymus vulgaris and its bio-functionalized silver nanoparticles. 3 Biotech, 8, 177.
    Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38, 545-560.
    Imai, Y., Meyer, K. J., Iinishi, A., Favre-Godal, Q., Green, R., Manuse, S., Caboni, M., Mori, M., Niles, S., Ghiglieri, M., Honrao, C., Ma, X., Guo, J. J., Makriyannis, A., Linares-Otoya, L., Böhringer, N., Wuisan, Z. G., Kaur, H., Wu, R., Mateus, A., Typas, A., Savitski, M. M., Espinoza, J. L., O'Rourke, A., Nelson, K. E., Hiller, S., Noinaj, N., Schäberle, T. F., D'Onofrio, A., & Lewis, K. (2019). A new antibiotic selectively kills Gram-negative pathogens. Nature, 576, 459-464.
    Jayalakshmi, Y. A. (2014). Green synthesis of copper oxide nanoparticles using aqueous extract of flowers of Cassia alata and particles characterization. International Journal of Nanomaterials and Biostructures, 4, 66-71.
    Karpiński, T. M. (2019). Marine Macrolides with Antibacterial and/or Antifungal Activity. Marine Drugs, 17, 241.
    Kelkawi, A. A., & Bordbar, A. K. (2017). Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity. IET Nanobiotechnol, 11, 370-376.
    Khan, S. A., Noreen, F., Kanwal, S., Iqbal, A., & Hussain, G. (2018). Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Materials Science and Engineering: C, 82, 46-59.
    Khan, S. A., Kanwal, S., Rizwan, K., & Shahid, S. (2018). Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme. Microbial Pathogenesis, 125, 366-384.
    Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908-931.
    Kleinschmidt, S., Huygens, F., Faoagali, J., Rathnayake, I. U., & Hafner, L. M. (2015). Staphylococcus epidermidis as a cause of bacteremia. Future Microbiology, 10, 1859-1879.
    Klich, M. A. (2007). Aspergillus flavus: the major producer of aflatoxin. Molecular Plant Pathology, 8, 713-722.
    Kline, K. A., & Lewis, A. L. (2017). Gram‐positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, 459-502.
    Koh, W. J., Jeon, K., Lee, N. Y., Kim, B. J., Kook, Y. H., Lee, S. H., Park, Y. K., Kim, C. K., Shin, S. J., Huitt, G. A., Daley, C. L., & Kwon, O. J. (2011). Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. American Journal of Respiratory and Critical Care Medicine, 183, 405-410.
    Kubola, J., & Siriamornpun, S. (2011). Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chemistry, 127, 1138-1145.
    Lee, M. R., Sheng, W. H., Hung, C. C., Yu, C. J., Lee, L. N., & Hsueh, P. R. (2015). Mycobacterium abscessus complex infections in humans. Emerging Infectious Diseases, 21, 1638.
    Li, X. Z., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical Microbiology Reviews, 28, 337-418.
    Lopeman, R. C., Harrison, J., Desai, M., & Cox, J. A. (2019). Mycobacterium abscessus: environmental bacterium turned clinical nightmare. Microorganisms, 7, 90.
    Mahdavi, M., Namvar, F., Ahmad, M. B., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18, 5954-5964.
    Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4, 119-128.
    Musher, D. M., Abers, M. S., & Bartlett, J. G. (2017). Evolving understanding of the causes of pneumonia in adults, with special attention to the role of pneumococcus. Clinical Infectious Diseases, 65, 1736-1744.
    Naika, H. R., Lingaraju, K., Manjunath, K., Kumar, D., Nagaraju, G., Suresh, D., & Nagabhushana, H. (2015). Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. Journal of Taibah University for Science, 9, 7-12.
    Nasar, M. Q., Khalil, A. T., Ali, M., Shah, M., Ayaz, M., & Shinwari, Z. K. (2019). Phytochemical analysis, Ephedra Procera CA Mey. Mediated green synthesis of silver nanoparticles, their cytotoxic and antimicrobial potentials. Medicina, 55, 369.
    Nogueira-Lopez, G., Greenwood, D. R., Middleditch, M., Winefield, C., Eaton, C., Steyaert, J. M., & Mendoza-Mendoza, A. (2018). The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defence and scavenging oxidative stress secreted proteins. Frontiers in Plant Science, 9, 409.
    Otunola, G. A., Afolayan, A. J., Ajayi, E. O., & Odeyemi, S. W. (2017). Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens. Pharmacognosy Magazine, 13, S201.
    Pakshir, K., Ravandeh, M., Khodadadi, H., Motamedifar, M., Zomorodian, K., & Alipour, S. (2018). Evaluation of exoenzyme activities, biofilm formation, and co-hemolytic effect in clinical isolates of Candida parapsilosis species complex. Journal of Global Infectious Diseases, 10, 163.
    Phan-Thi, H., & Waché, Y. (2019). Behind the myth of the fruit of heaven, a critical review on gac (Momordica cochinchinensis Spreng.) contribution to nutrition. Current Medicinal Chemistry, 26, 4585-4605.
    Pradhan, A., Seena, S., Pascoal, C., & Cássio, F. (2011). Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microbial Ecology, 62, 58-68.
    Priya, G. S., Kanneganti, A., Kumar, K. A., Rao, K. V., & Bykkam, S. (2014). Biosynthesis of Cerium oxide nanoparticles using Aloe barbadensis miller gel. International Journal of Scientific and Research Publications, 4, 199-224.
    Raj, S., Mali, S. C., & Trivedi, R. (2018). Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemical and Biophysical Research Communications, 503, 2814-2819.
    Rajakumar, G., Rahuman, A. A., Priyamvada, B., Khanna, V. G., Kumar, D. K., & Sujin, P. J. (2012). Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Materials Letters, 68, 115-117.
    Ramesh, P., Rajendran, A., & Meenakshisundaram, M. (2014). Green syntheis of zinc oxide nanoparticles using flower extract cassia auriculata. Journal of NanoScience and NanoTechnology, 2, 41-45.
    Reynolds, J. H., McDonald, G., Alton, H., & Gordon, S. B. (2010). Pneumonia in the immunocompetent patient. The British Journal of Radiology, 83, 998-1009.
    Sanghi, R., & Verma, P. (2009). A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chemical Engineering Journal, 155, 886-891.
    Shah, S., Dasgupta, S., Chakraborty, M., Vadakkekara, R., & Hajoori, M. (2014). Green synthesis of iron nanoparticles using plant extracts. International Journal of Biological and Pharmaceutical Research, 5, 549-552.
    Tang, B., Gong, T., Cui, Y., Wang, L., He, C., Lu, M., Chen, J., Jing, M., Zhang, A., & Li, Y. (2020). Characteristics of oral methicillin-resistant Staphylococcus epidermidis isolated from dental plaque. International Journal of Oral Science, 12, 1-10.
    Teow, S. Y., Wong, M. M. T., Yap, H. Y., Peh, S. C., & Shameli, K. (2018). Bactericidal properties of plants-derived metal and metal oxide nanoparticles (NPs). Molecules, 23, 1366.
    Torres, D. E., Rojas-Martínez, R. I., Zavaleta-Mejia, E., Guevara-Fefer, P., Márquez-Guzmán, G. J., & Perez-Martinez, C. (2017). Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS One, 12, e0170782.
    Varga, J., Kocsube, S., Toth, B., Frisvad, J. C., Perrone, G., Susca, A., Meijer, M., & Samson, R. A. (2007). Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution. International Journal of Systematic and Evolutionary Microbiology, 57, 1925-1932.
    Velayutham, K., Rahuman, A. A., Rajakumar, G., Santhoshkumar, T., Marimuthu, S., Jayaseelan, C., Bagavan, A., Kirthi, A. V., Kamaraj, C., Zahir, A. A., & Elango, G. (2012). Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitology Research, 111, 2329-2337.
    Velusamy, P., Kumar, G. V., Jeyanthi, V., Das, J., & Pachaiappan, R. (2016). Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicological Research, 32, 95-102.
    Wang, L., Wu, Y., Xie, J., Wu, S., & Wu, Z. (2018). Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Materials Science and Engineering: C, 86, 1-8.
    Woodford, N., Turton, J. F., & Livermore, D. M. (2011). Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiology Reviews, 35, 736-755.
    Xu, X. R., Luo, C. H., Cao, B., Xu, R. C., Wang, F., Wei, X. C., Zhang, T., Han, L., & Zhang, D. K. (2019). A potential anti-tumor herb bred in a tropical fruit: insight into the chemical components and pharmacological effects of momordicae semen. Molecules, 24, 3949.

    無法下載圖示 校外公開
    2025/07/28
    QR CODE