簡易檢索 / 詳目顯示

研究生: 柴梅迪
Maytee Chaisalee
論文名稱: 拮抗細菌結合廢棄菇蕈木屑基質對番茄青枯病之生物防治
Antagonistic Bacteria Integrated Spent Mushroom Culture Substrate for Biological Control of Tomato Bacterial Wilt
指導教授: 陳麗鈴
Lih-Ling Chern
梁文進
Wen-Jinn Liang
學位類別: 碩士
Master
系所名稱: 國際學院 - 熱帶農業暨國際合作系
Department of Tropical Agriculture and International Cooperation
畢業學年度: 108
語文別: 英文
論文頁數: 75
中文關鍵詞: 拮抗細菌Bacillus amyloliquefaciens番茄青枯病生物防治綜合防治廢棄菇蕈木屑基質日光熱力滅菌
外文關鍵詞: antagonistic bacteria, Bacillus amyloliquefaciens, tomato bacterial wilt, biological control, integrated management, spent mushroom sawdust, solar sterilization
DOI URL: http://doi.org/10.6346/NPUST202000340
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 番茄是一種很普遍的經濟作物,而番茄青枯病引起植株萎凋死亡,是一重要的病害,其病原細菌爲Ralstonia solanacearum. 本研究的目是要發展一種結合拮抗微生物與耕作管理的綜合生物防治策略以防治番茄青枯病。從校園內,及屏東縣瑪家鄉及高樹鄉採集的土壤樣本中,共分離獲得58株拮抗細菌菌株,且由其中篩出具強拮抗能力的二株菌株,並已鑑定爲Bacillus amyloliquefaciens TR-1及TRS-7。初期將TR-1及TRS-7與一參考菌株Bacillus subtilis PMB03,分別培養於木屑栽培基質混合基質(SCS mixture)及廢棄菇蕈木屑基質混合基質(SMSS mixture),於溫室盆鉢試驗以評估防治青枯病效果,發現TR-1及TRS-7及PMB03菌株培養於SCS及SMSS混合基質都具有防治青枯病的能力。爾後選擇以TRS-7菌株培養於SMSS混合基質再進行多項試驗,結果發現將培養TRS-7的SMSS混合基質填入已接種青枯病菌之盆鉢中,種植番茄苗,再澆灌TRS-7細菌細胞液於盆鉢表面的綜合防治法,都可獲得很好的防治效果。試驗中若使用在苗期預先接種TRS-7番茄苗或及種植前再浸泡TRS-7細菌細胞液有增強防治效果。根據溫室盆鉢試驗結果,將此綜合生物防治方法,於田間進行試驗,在接種青枯病菌的畦表土穴中,填入培養TRS-7之廢棄菇蕈木屑基質混合基質(SMSS mixture),爾後種植番茄苗,再澆灌TRS-7細菌細胞液於苗根土壤表面,也獲得很好的番青枯病防治效果。結合於畦面土表覆蓋透明塑膠布一個月的日光熱能處理,也有強化防治效果。

    Tomato (Lycopersicon esculentum) is one of widespread commercial vegetable crops. Among the pathogens that affect the tomato crop, the soil borne bacterial pathogen, Ralstonia solanacearum, causes wilt disease that makes plant death, significant losses in yield and decreases quality of tomato. The objectives of this study are to develop a strategy by combining antagonistic bacteria with other practical culture methods to control tomato bacterial wilt. In this study, 58 strains of antagonistic bacteria are isolated from soil samples collected from campus of National Pingtung University of Science and Technology, Majia and Gaoshu township in Pingtung. Two of 58 strains are identified as Bacillus amyloliquefaciens TR-1 and TRS-7 that express strong antagonistic effects against R. solanacearum. TR-1, TRS-7 and a reference strain Bacillus subtilis PMB03 are cultivated in spent mushroom sawdust substrate (SMSS) mixture and sawdust culture substrate (SCS) mixture
    respectively, and used to evaluate the control ability to tomato wilt in pot experiments in greenhouse. The result showed that all three strains of TR-1, TRS-7 and PMB03 have good control effect on tomato wilt. TRS-7strain grown in SMSS mixture is used to conduct further experiments, and the results explained that the integrated method of filling TRS-7 SMSS mixture to central well of pot where R. solanacearum has been inoculated, then planting seedling and pouring cell suspension of TRS-7 on pot surface around seedling can express high control efficiency on tomato wilt. Moreover, using seedling pre-treated with TRS-7, or/and dipping seedling root system in cell suspension of TRS-7 before transplanting to replace the non –treated seedling in experiment, can also inhibit tomato wilt well. Based on protocols from pot experiments in greenhouse, the integrated management is also conducted in field experiment to control tomato bacterial wilt. The results shown that this bio-control strategy of utilizing TRS-7 SMSS mixture has also good control effects in field. The solar sterilization treatment by covering transparent polyethylene sheet on plot surface for one month introduced to field experiment for controlling tomato bacterial wilt can also enhance control effects.


    Table of Contents
    摘 要… I
    Abstract III
    Acknowledgements V
    Table of Contents VII
    List of Tables X
    Lists of Figures XII
    1.Introduction 1
    1.1 Objectives 3
    2.Literature review 4
    2.1 Tomato 4
    2.2 Symptoms of Tomato bacterial wilt 4
    2.3 Pathogen of R. solanacearum 5
    2.4 Biological control of tomato bacterial wilt 6
    3.Materials and Methods 8
    3.1 Soil samples collecting 8
    3.2 Culture medium and Culture substrate mixture preparation 8
    3.2.1 Culture medium ingredients 8
    3.2.2 Culture substrate mixtures 9
    3.3 Inoculum preparation 10
    3.4 Isolation and preparation of antagonistic bacteria 10
    3.4.1 Isolation 10
    3.4.2 Screening of the stronger antagonistic ability among isolates against R. solanacearum 10
    3.5 Preparation of antagonistic bacterial cell suspension 11
    3.6 Growth of antagonistic bacteria in SCS and SMSS mixture 11

    3.7 Preparation of SCS and SMSS mixtures with antagonistic bacteria for biological control 12
    3.8 Tomato seedlings preparation 12
    3.9 Evaluation of antagonistic bacteria controlling bacterial wilt caused by R. solanacearum with pot experiments in greenhouse 13
    3.9.1 Control efficiency of three antagonistic bacterial strains grown in SCS mixture and liquid culture 13
    3.9.2 Effect of nursery seedling pre-treated with antagonistic bacteria on bacterial wilt disease 15
    3.9.3 Effect of SCS mixture and SMSS mixture with antagonistic bacteria on controlling tomato bacterial wilt 17
    3.9.4 Effect of TRS-7 SMSS mixture on tomato growth and tomato bacterial wilt control 19
    3.9.5 Effect of the methods of applying antagonistic bacteria Bacillus amyloliquefaciens TRS-7 on control of tomato bacterial wilt 20
    3.9.6 Effects of combining various application methods on control of tomato bacterial wilt 21
    3.10 Field experimental trials for evaluation of antagonistic bacteria 23
    3.10.1 Field soil preparation for first experiment 23
    3.10.2 First field experiment 24
    3.10.3 Second field experiment 27
    3.11 Statistical analysis 29
    4.Results 30
    4.1 Isolation of antagonistic bacteria 30
    4.2 Further screening for antagonistic bacteria against R. solanacearum 30
    4.3 Growth of antagonistic bacteria in SCS mixture and SMSS mixture 32
    4.4 Evaluation of antagonistic bacteria controlling tomato wilt caused by R. solanacearum with pot experiments in greenhouse. 34
    4.4.1 Control efficiency of three antagonistic bacterial strains grown in SCS mixture on tomato wilting disease 34
    4.4.2 Effect of nursery seedling pre-treated with antagonistic bacteria on control of tomato bacterial wilt 37
    4.4.3 Effect of SCS mixture and SMSS mixture with antagonistic bacteria on controlling tomato bacterial wilt 39
    4.4.4 Effect of TRS-7 SMSS mixture on tomato growth and tomato bacterial wilt control 42
    4.4.5 Effect of the methods of applying antagonistic bacteria Bacillus amyloliquefaciens TRS-7 on control of tomato bacterial wilt 45
    4.4.6 Effects of combining various application methods on control of tomato bacterial wilt 46
    4.5 Field experimental trials for evaluating biocontrol efficiency of antagonistic bacteria 49
    4.5.1 First filed experiment 49
    4.5.2 Second filed experiment 52
    5.Discussion 55
    6.Conclusions 59
    7.References 61
    8.Appendix 66
    Abbreviations 74
    Bio-Sketch of Author 75

    Adedeji, K. and M. Aduramigba. 2016. In vitro evaluation of spent mushroom compost on growth of Fusarium oxysporium f. sp. lycopersici. Advances in Plants & Agriculture Research 4: 332-339.
    Aino, M. 2016. Studies on Biological Control of Bacterial Wilt Caused by Ralstonia solanacearum Using Endophytic Bacteria. Journal of General Plant Pathology 82:323-325.
    Cao, Y., H. Pi, P. Chandrangsu, L. Yongtao, Y. Wang, H. Zhou, H. Xiong, J. D. Helmenn and Y. Cai. 2018. Antogonism of Two Plant-Growth Promoting Bacillus velezensis Isolates Against Ralstonia solanacearum and Fusarium oxysporum. Scientific Reports 8:4360.
    Champoiseau, P.G. and T.M. Momol. 2008. Bacterial Wilt of Tomato. Ralstonia solanacearum race3 biovar 2 USDA-NRI project. 1-11.
    Denny, T.P. 2006. Plant Pathogenic Ralstonia Species. In: Plant-Associated Bacteria, Gnanamanickam, S.S. (eds.). Springer Publishing, Dordrecht, Netherlands, 573-644.
    Deruiter and Seminis. 2017. Tomato Field Guide. Retrieved on Oct. 20, 2019, from the World Wide Web: https://seminis-us.com/resources/disease-guides/tomatoes/.
    Food and Agriculture Organization of the United Nations. 2018. FAOSTAT: Crops data. Retrieved on Apr. 30, 2020, from the World Wide Web: http://www.fao.org/faostat/en/#data/QC/visualize.
    French, E.R. 1986. Interaction Between Isolates of Pseudomonas solanacearum its Hosts and the Environment. In: Bacterial wilt disease in Asia and the South Pacific, Persley, G.L. (eds). Proceeding of an International workshop held at PCARD, Los Banos, Philippines.
    Furuya, N., Y. Kushima., K. Tsuchiya, N. Matsuyama and S. Wakimoto. 1991. Protection of Tomato Seedlings by Pre-treatment with Pseudomonas
    glumae from Infection with Pseudomonas solanacearum and Its Mechanisms. Ann. Phytopath. Soc. Japan. 57: 363-370.
    Heimpel, G.E. and N. Mills. 2017. Biological Control Ecology and Applications. Cambridge: Cambridge University Press. 380 pp.
    Kelley, W., G. Boyhan, K. Harrison, P. Sumner, D. Langston, A. Sparks, S. Culpepper, W. Hurst, and E.G. Fonsah. 2017. Commercial Tomato Production Handbook. Bulletin 1312. The University of Georgia. 48 pp.
    Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44: 693-695.
    Kelman, A. 1998. One Hundred and One Years of Research on Bacterial Wilt. In P.H. Prior, C. Allen and J. Elphinstone (eds.), In: Bacterial Wilt Disease: Molecular and Ecological Espects. Springer, Heidelberg, 1-5.
    Ketsakul, S. 2015. Tomato Production Technology. Research report, Department of Agriculture. 128 pages. Retrieved on Apr. 29, 2020, from the World Wide Web: file:///E:/Thesis/Thailand%20tomato.pdf.
    King, S.R., A.R. Davis, W. Liu and A. Levi. 2008. Grafting for Disease Resistance. HortScience. 43: 1673–1676.
    Kongkiattikajorn, J. and S. Thepa. 2007. Increased tomato yields by heat treatment for controlling Ralstonia solanacearum in soil. Proc. Of the 45th Kasetsart University Annual Conference; Kasetsart. Bangkok: Kasetsart University. 450-457.
    Kwak, A. M., K. J. Min, S. Y. Lee and H. W. Kang. 2015. Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato. Mycobiology 43(3): 311-318.
    Lee, J.H., K.S. Jang, Y.H. Choi, J.C. Kim, and G.J. Choi. 2015. Development of an Efficient Screening System for Resistance of Tomato Cultivars to Ralstonia solanacearum. Research Plant Disease. 21(4): 290-296.
    Ling, L., X. Han, X. Li, X. Zhang, H. Wang, L. Zhang, P. Cao, Y. Wu, X. Wang, J. Zhao and W. Xiang. 2020. A Streptomyces sp. NEAU-HV9: Isolation, Identification, and Potential as a Biocontrol Agent Against Ralstonia solanacearum of Tomato Plants. Microorganisms. 8(3):351.
    Montanari, M., M. Ventura and G. Innocenti. 2004. Exploitation of spent mushroom compost in biological control against melon Fusarium wilt disease. Management of plant diseases and arthropod pests by BCAs. IOBC/wprs Bulletin. Vol. 27(8): 247-250.
    Nakaune, M., K. Tsukazawa, H. Uga, E. Asamizu, S. Imanishi, C. Matsukura, and H. Ezura. 2012. Low Sodium Chloride Priming Increases Seedling Vigor and Stress Tolerance to Ralstonia solanacearum in Tomato. Plant Biotechnology. 29: 9-18.
    OECD. 2017. Tomato (Solanum lycopersicum), in Safety Assessment of Transgenic Organisms in the Environment, Volume 7: OECD Consensus Documents, OECD Publishing, Paris.
    Office of Agricultural Economics. 2018. Tomato: Production Area, Harvest Area, Production and Production per Area. Retrieved on Apr. 28, 2020, from the World Wide Web: http://www.oae.go.th/assets/portals/1/fileups/prcaidata/files/1_tomato%2061.pdf
    Oishimaya, S. N. 2017. The World's Leading Producers of Tomatoes. WorldAtlas. Retrieved on Oct. 20, 2019, from the World Wide Web: https://www.worldatlas.com/articles/which-are-the-world-s-leading-tomato-producing-countries.html.
    Rashida, P., A. R. S. Hafiz, M. A. Faqir, S. B. Masood, P. Imran, and A. Sarfraz. 2015. Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims-A Comprehensive Review. Critical Reviews in Food science and Nutrition 55: 919-929.
    Raza, W., N. Ling, L. Yang, Q. Huang and Q. Shen. 2016. Response of Tomato Wilt Pathogen Ralstonia solanacearum to the Volatile Organic Compounds Produced by a Biocontrol Strain Bacillus amyloliquefaciens SQR-9. Scientific Report 6:24856.
    Romaine, C.P and E.J. Holcomb. 2001. Spent mushroom substrate: a novel multifunctional constituent of potting medium for plants. Mushroom News 49: 4-15.
    Shitole, A.V., R.M. Gade, M. S. Bandgar, S. H. Wavare and Y. K. Belkar. 2014. Utilization of spent mushroom substrate as carrier for biocontrol agent and biofertilizer. The Bioscan 9(1): 271-275.
    Singh, D., D. K. Yadav, S. Sinha, and B. K. Upadhyay. 2012. Utilization of Plant Growth Promoting Bacillus subtilis Isolates for the Management of Bacterial Wilt Incidence in Tomato Caused by Ralstonia solanacearum race 1 biovar 3. Indian Phytopathology 65: 18-24.
    Smith, J. J., L. C. Offord, M. Holdrness, and G. S. Saddler. 1995. Genetic Diversity of Burkholderia solanacearum (Synonym Pseudoonas solanacearum) race 3 in Kenya. Applied and Environmental Microbiology 6: 4263-4268.
    Swanson, J.K., J. Yao, J. Tans-Kersten, and C. Allen. 2005. Behavior of Ralstonia solanacearum race 3 biovar 2 during Latent and Active Infection of Geranium. Phytopathology 95: 136–143.
    Tamietti. G., and D. Valentino. 2006. Soil Solarization as an Ecological Method for the Control of Fusarium Wilt of Melon in Italy. Crop Protection 25: 389–397.
    Thaveechai, N., W. Kositratana, V. Phuntumart, C. Leksomboon, and P. Khongplean. 1997. Management of Bacterial Wilt of Tomato. In: AVRDC. Collaborative vegetable research in Southeast Asia; Proceedings of the AVNET-II Final Workshop Bangkok Thailand. 397-407.
    U.S. Department of Agriculture. 2019. Tomatoes, Red, Ripe, Raw, Year-Round Average. Retrieved on May. 3, 2020, from the World Wide Web: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170457/nutrients.
    Villareal, R. 2019. Tomatoes in the Tropics. IADS development-oriented literature series. CRC Press. 174 pp.
    Wang J. F., P. Hanson and J. A. Barnes. 1998. Worldwide Evaluation of an International Set of Resistance Sources to Bacterial Wilt in Tomato. In: P. Prior, C. Allen, and J. Elphinstone. (eds). Bacterial wilt disease: Molecular and ecological aspects. INRA Editions, Paris, France. pp. 269–275.
    Wang, J. F. and C. H. Lin. 2005. Integrated Management of Tomato Bacterial Wilt. The World vegetable center. 12 pp.
    Wei Z., X. Yang., S. Yin., Q. Shen., W. Ran and Y. Xu. 2011. Efficacy of Bacillus-fortified organic fertilizer in controlling bacterial wilt of tomato in the field. Applied Soil Ecology 48: 152-159.
    Young, H. L., W. C. Chang, H. K. Seong, G. Y. Jae, W. C. Seog, S. K. Young and K. H. Jeum. 2012. Chemical Pesticides and Plant Essential oils for Disease Control of Tomato Bacterial Wilt. Plant Pathology Journal 28(1): 32-39.
    Yabuuchi, E., Y. Kosako, I. Yano, H. Hotta and Y. Nishiuchi. 1995. Transfer of Two Burkholderia and an Alcaligenes Species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith, 1896) comb. Nov. and Ralstonia eutropha (Davis, 1969) comb. Nov. Microbiology Immunology 39: 897-904.
    Yuliar, Y., Y. A. Nion and K. Toyota. 2015. Recent Trends in Control Methods for Bacterial Wilt Disease Caused by Ralstonia solanacearum. Microbes Environment 30: 1-11.
    Zeeshan, A., M., Khan, I. Shah, B. Naeem, A. Khan, N. Ullah, W. Adnan, M. Shah, S.R.A. K. Junaid and M. Iqbal. 2016. Study on the Management of Ralstonia solanacearum (Smith) with Spent Mushroom Compost. Journal of Entomology and Zoology Studies 4:114-121.
    Zheng, X., Y. Zhu, J. Wang, Z. Wang and B. Liu. 2019. Combined Use of a Microbial Restoration Substrate and Avirulent Ralstonia solanacearum for the Control of Tomato Bacterial Wilt. Scientific reports, Nature research 9: 1-1.

    下載圖示
    QR CODE