簡易檢索 / 詳目顯示

研究生: 朱清麟
Chu, Ching-Lin
論文名稱: 溫度效應對大白斑蝶 (Idea leuconoe clara Butler) (Lepidoptera: Nymphalidae) 翅黑化面積之影響
Temperature effects on the wing melanization of Idea leuconoe clara (Lepidoptera: Nymphalidae)
指導教授: 吳立心
Wu, Li-Hsin
學位類別: 碩士
Master
系所名稱: 農學院 - 植物醫學系所
Department of Plant Medicine
畢業學年度: 108
語文別: 中文
論文頁數: 80
中文關鍵詞: 大白斑蝶20E蛻皮激素溫度影響黑色素沉澱
外文關鍵詞: Idea leuconoe clara, 20-Hydroxyecdysone, extreme temperature impacts, melanization
DOI URL: http://doi.org/10.6346/NPUST202000341
相關次數: 點閱:99下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 蝴蝶翅的顏色表現可以透過環境的調節產生不同,透過20-羥基蛻皮激素 (20-Hydroxyecdysone, 20E) 將環境信號傳達給發育中的組織,造成不同的呈色結果。大白斑蝶除了原有的黑斑,原本白色的部位也可能有暗灰色的黑化。本試驗利用不同的生長溫度,於15、20、25、30、35、40℃飼養600隻個體,發現在35及40℃產生黑化個體。接著縮短極端溫度的時間,僅針對前蛹停滯期個體進行低溫10℃與高溫35、40℃的衝擊試驗,冷衝擊12 天後出現黑化59~69% 的個體;熱衝擊後的翅黑化更高達59~82%。生理激素方面,透過極端溫度飼養,蛹期發育時間越長,體內測得的20E濃度越高,於40℃最高溫度時20E濃度高達9260.6 ± 103.3 (pg/μl),翅黑化比率最高。為了交互驗證20E與翅黑化的關聯性,於前蛹停滯期分別注入不同濃度的20E至不同的個體;結果濃度越高的處理,翅黑色斑紋卻逐漸變淡。綜上所述,高溫與低溫都會造成翅黑化,熱衝擊大面積黑化原本白色的翅區;冷衝擊則令原本的黑斑擴大。兩種不同黑化趨勢與其他文獻結果吻合。然而蛹期時能夠於高溫的處理檢測到較高濃度的20E,與直接注入不同濃度梯度的20E,高濃度的20E反而使翅斑紋變得更淡,推測與高濃度的20E能夠抑制幾個黑色素合成時上游基因表現有關;同時亦可知道高溫造成的調控機制亦不僅單一透過20E我們測試的路徑。本試驗得知極端溫度調節大白斑蝶翅黑色素的沈澱20E的確有參與,且蛹期前期這個特定時間的溫度對黑色素的沈澱有重要的影響。

    Different wing color performance could be attribute to environmental factors, and 20-Hydroxyecdysone (20E), physioligcal signals to developing tissues. Idea leuconoe clara has large wingspan and black spots and the degree of coarseness and melanization of the wings are usually adopted for species identification. To test the effects of the development temperature on melanization of the wings of I. leuconoe, we reared 600 larvae under 6 constant temperatures 15-40°C and found 2 melanized adults under 35 and 40°C. We further conducted heat/cold-shock-treatments during their wandering stage before pupation. In response to the cold treatment, 2 melanized adults presented 59-69% of melanization of the wings area; on the other hand, 11 melanized adults presented 59-82% melanization under the heat treatment. In terms of hymoglobin detection survey, the higher the pupal development under extreme temperatures, the higher the 20E concentration in the body, in the 40°C test with the highest wing blackening rate, the concentration of 20E reached maximum as 9260.6 ± 103.3 (pg/μl). In order to confirm the relationship between 20E and the melanization of the wings area, different concentrations of 20E were injected during the wandering stage larva of I. leuconoe and keep in the same temperature. The black spots on the wings became lighter at higher 20E concentrations. In summary, high temperature and low temperature treatmentslead the wings to melanized, the heat shock will blacken the white area; however, the cold shock enlarged the black spots. The reverse results were revealed for the higher concentration of 20E were detected along with the higher temperatures treatments for wandering stage of I. leuconoe; on the other hand, direct injections of 20E titer under the same wandering stage treatments result in the lighter color on the wing spot. It is speculated that high concentration of 20E will inhibit the upstream melanin gene. This experiment confirmed that 20E played an important and complicated role in wing melanization of I. leuconoe clara.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 IX
    表目錄 X
    壹、前言 11
    貳、文獻回顧 14
    一、大白斑蝶 14
    二、溫度如何影響蝴蝶翅呈色 16
    (一) 蝴蝶的表型可塑性實例整理 16
    (二)極端溫度誘導蝴蝶翅成色改變的案例 17
    三、蝴蝶翅鱗片色素的發展 19
    (一)蝴蝶翅鱗片結構的介紹 19
    (二)蝴蝶翅顏色決定的時間 19
    (三)蝴蝶翅色素沉澱的發展流程 19
    (四) CRISPR/Cas9編輯蝴蝶翅黑色素 20
    (五)黑色素對鱗翅目昆蟲的功能與重要性 21
    四、20-羥基蛻皮激素對蝴蝶翅色素沉澱之影響 22
    (一) 20E蛻皮激素對蝴蝶色素沉澱的影響 22
    (二) 直接注射20E蛻皮激素對蝴蝶色素沉澱的影響 22
    參、材料與方法 24
    一、供試蟲源與飼養方法 24
    (一) 蟲源取得與飼養環境 24
    (二) 生活史試驗 24
    二、極端溫度衝擊試驗 24
    三、翅黑色面積計算 26
    (一) 標本製作 26
    (二) 影像處理 27
    (三) 翅黑色面積測量 28
    四、20E蛻皮激素萃取 30
    (一) 血淋巴的萃取 30
    (二) 20E蛻皮激素的濃度定量 30
    五、20E蛻皮激素注射試驗 34
    六、建制Maxent物種分布模型 36
    (一) 樣本資料點及環境變數圖層 36
    (二) 模型準確度評估 36
    七、統計分析 36
    肆、結果 38
    一、溫度誘導大白斑蝶的翅黑色面積 38
    (一) 6個溫度下大白斑蝶的存活率 38
    (二) 6個溫度下大白斑蝶的發育速率 39
    (三) 6個溫度下大白斑蝶的翅黑色面積 41
    (四) 極端溫度衝擊試驗誘導的翅面積黑化率 44
    (五) 極端溫度衝擊試驗無誘導翅黑化的個體翅黑色面積 47
    二、20E蛻皮激素操作試驗 48
    (一) 極端溫度衝擊下大白斑蝶20E蛻皮激素的濃度 48
    (二) 注射不同濃度20E 蛻皮激素對大白斑蝶翅黑色面積的影響 51
    伍、討論 54
    一、6個溫度下大白斑蝶的存活率及發育速率 54
    二、6個溫度下大白斑蝶的翅黑色面積 57
    三、極端溫度衝擊試驗誘導的翅面積黑化率 60
    四、20E 蛻皮激素操作試驗 62
    陸、結論 64
    柒、參考文獻 65
    附錄 75
    作者簡介 81


    圖目錄
    圖1 大白斑蝶成蟲標本示意圖 14
    圖2 黑化型大白斑蝶的示意圖 27
    圖3 使用IMAGE J計算大白斑蝶翅黑色斑紋的流程 29
    圖4 定量20E蛻皮激素的ELASA標準曲線圖 31
    圖5 大白斑蝶在6種溫度下的存活率 39
    圖6 大白斑蝶在6種溫度下的發育速率 40
    圖7 6種溫度下大白斑蝶的翅黑色面積比例 43
    圖8 低溫衝擊試驗的大白斑蝶翅黑化面積比例 44
    圖9 高溫衝擊試驗的大白斑蝶翅黑化面積比例 45
    圖10 大白斑蝶在四種溫度下蛹期前期的20E蛻皮激素濃度 48
    圖11 20E蛻皮激素激素操作對大白斑蝶翅斑紋性狀的影響 51
    圖12 物種分布模型MAXENT 預測的大白斑蝶分布熱點 55
    圖13 白斑蝶屬 (IDEA) 的蝴蝶地理分佈區域 58

    表目錄
    表1大白斑蝶樣本採集資訊 25
    表2 ELISA定量標準品的20E蛻皮激素濃度表 33
    表3 20E蛻皮激素注射試驗之濃度表 35
    表4 6種溫度下飼養的大白斑蝶的發育速率及存活率 41
    表5大白斑蝶於不同的衝擊試驗處理後的存活率及黑化誘導率 46
    表6 ELISA定量極端溫度試驗下的大白斑蝶20E蛻皮激素濃度 49

    呂至堅、陳建仁。2014。蝴蝶生活史圖鑑。晨星出版社。第328~329頁。
    林育綺、徐堉峰。2012。以形距分析探究大白斑蝶之分布與分化。臺灣師範大學生命科學研究所學位論文。70頁。
    林春吉、蘇錦平。2013。台灣蝴蝶大圖鑑。綠世界工作室。107頁。
    林柏昌、林有義。2008。蝴蝶食草圖鑑。晨星出版社。25頁。
    徐堉峰。2013。台灣蝴蝶圖鑑 (下)。晨星出版社。384頁。
    陳素瓊、歐陽盛芝、王筱瑗、黃校翊、何昇儒、黃信傑、施佳佑、陳文杰。2003。溫度對大白斑蝶 (Idea leuconoe clara (Butler))(鱗翅目:斑蝶科) 發育之影響。台灣昆蟲 23: 331-351。
    歐陽盛芝、陳素瓊。2009。台灣五種蝴蝶人工飼育評估。宜蘭大學生物資源學刊 5: 47-56。
    Ackery, P. R., and Vane-Wright, R. I. 1984. Milkweed Butterflies: Their Cladistics and Biology. British Museum (Natural History). Cornell University Press, Ithaca, New York. 425 pp.
    Altizer, S. M., Oberhauser, K. S., and Brower, L. P. 2000. Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecol. Entomol. 25: 125-139.
    Angilletta, M. J. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, New York, New York. 302 pp.
    Bale, J. S. 1996. Insect cold hardiness: a matter of life and death. Eur. J. Entomol. 93: 369-382.
    Bartel, R. A., Oberhauser, K. S., Roode, J. C., and Altizer, S. M. 2011. Monarch butterfly migration and parasite transmission in eastern North America. Ecology.92: 342-351.
    Bear, A., Prudic, K. L., and Monteiro, A. 2017. Steroid hormone signaling during development has a latent effect on adult male sexual behavior in the butterfly Bicyclus anynana. PLoS One 12: e0174403. doi: 10.1371/journal.pone.0174403.
    Beldade, P., Mateus, A. R., and Keller, R. A. 2011. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 20: 1347-1363.
    Bhardwaj, S., Jolander, L. S., Wenk, M. R., Oliver, J. C., Nijhout, H. F., and Monteiro, A. 2020. Origin of the mechanism of phenotypic plasticity in satyrid butterfly eyespots. eLife 9: e49544. doi: 10.7554/eLife.49544.
    Bhardwaj, S., Prudic, K. L., Bear, A., M. Dasgupta, M., Wasik, B. R., Tong, X., Cheong, W. F., Wenk, M. R., and Monteiro, A. 2018. Sex differences in 20-Hydroxyecdysone hormone levels control sexual dimorphism in Bicyclus anynana wing patterns. Mol. Biol. Evol. 35: 465-472.
    Brakefield, P. M., and Frankino, W. A. 2009. Polyphenisms in Lepidoptera: multidisciplinary approaches to studies of evolution and development. Pages 337-368 in: Phenotypic Plasticity in Insects: Mechanisms and Consequences. D. Whitman, and T. Ananthakrishnan eds. CRC Press, Enfield, 904 pp.
    Davis, A., Chi, J., Bradley, C., and Altizer, S. 2012. The redder the better: wing color predicts flight performance in monarch butterflies. PLoS One 7: e41323. doi: 10.1371/journal.pone.0041323.
    Davis, A., Farrey, B., and Altizer, S. 2005. Variation in thermally induced melanism in monarch butterflies (Lepidoptera: Nymphalidae) from three North American populations. J. Therm. Biol. 30: 410-421.
    Dhungel, B., and Otaki, J. M. 2013. Larval temperature experience determines sensitivity to cold-shock-induced wing color pattern changes in the blue pansy butterfly Junonia orithya. J. Therm. Biol. 38: 427-433.
    Ellers, J., and Boggs, C. L. 2002. The evolution of wing color in colias butterflies: heritability, sex linkage, and population divergence. Evolution 56: 836-840.
    Ferdig, M. T., Taft, A. S., Smartt, C. T., Lowenberger, C. A., Li, J., Zhang, J., and Christensen, B. M. 2000. Aedes aegypti dopa decarboxylase: gene structure and regulation. Insect Mol. Biol. 9: 231-239.
    Fischer, K., and Karl, I. 2010. Exploring plastic and genetic responses to temperature variation using copper butterflies. Clim. Res. 43: 17-30.
    Franke, K., Karl, I., Centeno, T. P., Feldmeyer, B., Lasse, K. C., Oostra, V., Riedel, K., Stanke, M., Wheat, C. W., and Fischer, K. 2019. Effects of adult temperature on gene expression in a butterfly: identifying pathways associated with thermal acclimation. BMC Biol. 19: 32. doi: 10.1186/s12862-019-1362-y.
    Futahashi, R., and Fujiwara, H. 2005. Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus. Dev. Genes Evol. 215: 519-529.
    Futahashi, R., and Fujiwara, H. 2007. Regulation of 20-hydroxyecdysone on the larval pigmentation and the expression of melanin synthesis enzymes and yellow gene of the swallowtail butterfly, Papilio xuthus. Insect Biochem. Mol. Biol. 37: 855-864.
    Gershenson, S. M. 1994. A melanic form of the oak silkworm Antheraea pernyi (Lepidoptera, Attacidae). Vestnik Zool. 6: 46-51. (in Ukrainian).
    Gibbs, A. G., Fukuzato, F., and Matzkin, L. M. 2003. Evolution of water conservation mechanisms in Drosophila. J. Exp. Biol. 206: 1183-1192.
    Guppy, C. S. 1986. The adaptive significance of alpine melanism in the butterfly Parnassus phoebus (Lepidoptera, Papilonidae). Oecologia 70: 205-213.
    Hanley, D., Miller, N., Flockhart, D., and Norris, D. 2013. Forewing pigmentation predicts migration distance in wild-caught migratory monarch butterflies. Behav. Ecol. 24: 1108-1113.
    Hartfelder, K., and Emlen, D. J. 2012. Endocrine control of isect polyphenism. Pages 464-522 in: Insect Endocrinology. L. I. Gilbert ed. Academic Press, London, 588 pp.
    Hiruma, K., and Riddiford L. M. 1985. Hormonal regulation of dopa decarboxylase during a larval molt. Dev. Biol. 110: 509-513.
    Hwang, J., Kang, S., Goo, T., Yun, E., Lee, J., Kwon, O., Chun, T., Suzuki, Y. and Fujiwara, H. 2003. cDNA cloning and mRNA expression of l-3, 4-dihydroxyphenylalanine decarboxylase gene homologue from the silkworm, Bombyx mori. Biotechnol. Lett. 25: 997-1002.
    Islam, A., Razzak, M., Islam, M., Saifullah, A., Endo, K., and Yamanaka, A. 2010. Dry and wet season polymorphism in the butterflies Melanitis leda and Mycalesis mineus (Satyridae: Lepidoptera). Univ. J. Zool. Rajshahi Univ. 29: 33-40.
    Iwata, M., Tsutsumi, M., and Otaki, J. M. 2018. Developmental dynamics of butterfly wings: Real-time in vivo whole-wing imaging of twelve butterfly species. Sci. Rep. 8: 16848. doi: 10.1038/s41598-018-34990-8.
    Karl, I., Janowitz, S. A., and Fischer, K. 2008. Altitudinal life-history variation and thermal adaptation in the copper butterfly Lycaena tityrus. Oikos 117: 778-788.
    Kellermann, V., Hoffmann, A. A., Overgaard, J., Loeschcke, V., and Sgrò, C. M. 2018. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc. R. Soc. Lond. B 285: 20180048. doi: 10.1098/rspb.2018.0048.
    Kennelly, D., Grigg, J., Tabaru, A., and Sentak, K. 2017. The effects of temperature on Vanessa cardui wing size. J. Biol. Sci. 3: 6-8.
    Kertész, K., Piszter, G., Horváth, Z. E., Bálint, Z., and Biró, L. P. 2017. Changes in structural and pigmentary colours in response to cold stress in Polyommatus icarus butterflies. Sci. Rep. 7: 1118. doi: 10.1038/s41598-017-01273-7.
    Kingsolver, J. G. and Buckley, L. B. 2017. Evolution of plasticity and adaptive responses to climate change along climate gradients. Proc. Royal Soc. B. 284: 1860. doi: 10.1098/rspb.2017.0386.
    Kingsolver, J. G., Massie, K. R., Ragland, G. J., and Smith, M. H. 2007. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule. J. Evol. Biol. 20: 892-900.
    Koch, P. B., Behnecke, B., and ffrench-Constant, R. H. 2000. The molecular basis of melanism and mimicry in a swallowtail butterfly. Curr. Biol. 10: 591-594.
    Koch, P. B., Merk, R., Reinhardt, R., and Weber, P. 2003. Localization of ecdysone receptor protein during colour pattern formation in wings of the butterfly Precis coenia (Lepidoptera: Nymphalidae) and co-expression with Distal-less protein. Dev. Genes Evol. 212: 571-584.
    Lee, K. P., and Roh, C. 2010. Temperature‐by‐nutrient interactions affecting growth rate in an insect ectotherm. Entomol. Exp. Appl. 136: 151-163.
    Mahdi, S. H., Yamasaki, A. H., and Otaki, J. M. 2011. Heat-shock-induced colorpattern changes of the blue pansy butterfly Junonia orithya: Physiological and evolutionary implications. J. Therm. Biol. 36: 312-321.
    Masuoka, Y., and Maekawa, K. 2016. Gene expression changes in the tyrosine metabolic pathway regulate caste‐specific cuticular pigmentation of termites. Insect Biochem. Mol. Biol. 74: 21-31.
    Mateus, A. R., Marques-Pita, A. M., Oostra, V., Lafuente, E., Brakefield, P. M., Zwaan, B. J., and Beldade, P. 2014. Adaptive developmental plasticity: Compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility. BMC Biol. 12: 97. doi: 10.1186/s12915-014-0097-x.
    Matsuoka, Y., and Monteiro, A. 2018. Melanin pathway genes regulate color and morphology of butterfly wing scales. Cell Rep. 24: 56-65.
    Mayekar, H. V., and Kodandaramaiah, U. 2017. Pupal colour plasticity in a tropical butterfly, Mycalesis mineus (Nymphalidae: Satyrinae). PLoS One 12: e0171482. doi: 10.1371/journal. pone.0171482.
    Morishita, K. 1974. Idea leuconoe. Lepid. Soc Jap 78: 3-11. (in Japanese).
    Morishita, K. 1985. Butterflies of the south east Asian islands. Volume Ⅱ, Pages 518-520. In: Danaidae. E. Tsukada ed. Plapac. Co. Ltd, Tokyo, 623pp. (in Japanese).
    Mouchet, S. R., and Vukusic, P. 2018. Structural Colours in Lepidopteran Scales. Pages 1-53 in: Butterfly Wings Patterns and Mimicry. R. ffrench-Constant ed. Adv. Insect Physiol. 54. Elsevier, Amsterdam, 115 pp.
    Nakagawa, Y., and Sonobe, H. 2016. 20-Hydroxyecdysone. Pages 560-563 in: Handbook of Hormones. Comparative Endocrinology for Basic and Clinical Research. Y. Takei, H. Ando, and K. Tsutsui eds. Academic Press, Japan, 674 pp.
    Norhisham, A. R., Abod, F., Rita, M., and Hakeem, K. R. 2013. Effect of humidity on egg hatchability and reproductive biology of the bamboo borer (Dinoderus minutus Fabricius). SpringerPlus 2: 9. doi: 10.1186/2193-1801-2-9.
    Oostra, V., Saastamoinen, M., Zwaan, B. J., and Wheat, C. W. 2018. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9: 1005. doi: 10.1038/s41467-018-03384-9.
    Otaki, J. M. 2008. Phenotypic plasticity of wing color patterns revealed by temperature and chemical applications in a nymphalid butterfly Vanessa indica. J. Therm. Biol. 33: 128-139.
    Otaki, J. M. 2017. Contact-mediated eyespot color-pattern changes in the peacock pansy butterfly: contributions of mechanical force and extracellular matrix to morphogenic signal propagation. Pages 83-102 in: Lepidoptera. F. Perveen ed. Rijeka, InTech.
    Otaki, J. M., Hiyama, A., Iwata, M., and Kudo, T. 2010. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha. BMC Evol. Biol. 10: 252. doi: 10.1186/1471-2148-10-252.
    Riddiford, L. M., Palli, S. R., Hiruma, K., Li, W., Green, J., Hice, R. H., Wolfgang, W. J., and Webb, B. A. 1990. Developmental expression, synthesis, and secretion of insecticyanin by the epidermis of the tobacco hornworm, Manduca sexta. Arch. Insect Bioch. Physiol. 14: 171-190.
    Roland, J. 1982. Melanism and diel activity of Alpine Colias (Lepidoptera: Pieridae). Oecologia 53: 214-221.
    Roskam, J. C., and Brakefield, M. P. 1999. Seasonal polyphenism in Bicyclus (Lepidoptera: Satyridae) butterflies: different climates need different cues. Biol. J. Linn. Soc. 66: 345-356.
    Safranek, L., and Riddiford, L. M. 1975. The biology of the black larval mutant of the tobacco hornworm, Manduca sexta. J. Insect Physiol. 21: 1931-1938.
    Stelbrink, P., Pinkert, S., Brunzel, S., Kerr, J., Wheat, C. W., Brandl, R., and Zeuss, D. 2019. Colour lightness of butterfly assemblages across North America and Europe. Sci. Rep. 9: 1760. doi: 10.1038/s41598-018-36761-x.
    Stoehr, A. M., and Goux, H., 2008, Seasonal phenotypic plasticity of wing melanisation in the cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae). Ecol. Entomol. 33: 137-143.
    Stoehr, A. M., and Wojan, E. M. 2016. Multiple cues influence multiple traits in the phenotypically plastic melanization of the cabbage white butterfly. Oecologia 182: 691-701.
    Stuart-Fox, D., Newton, E., and Clusella-Trullas, S. 2017. Thermal consequencesof colour and near-infrared reflectance. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372: 20160345. doi: 10.1098/rstb.2016.0345.
    Tada, H., Mann, S. E., Miaoulis, I. N., and Wong, P. Y. 1999. Effects of a butterfly scale microstructure on the iridescent color observed at different angles. Opt. Express 5: 87-92.
    True, J. R. 2003. Insect melanism: the molecules matter. Trends Ecol. Evol. 18: 640-647.
    Trullas, C. S., van Wyk, J. H., and Spotila, J. R. 2007. Thermal melanism in ectotherms. J. Therm. Biol. 32: 235-245.
    Verhoog, M. D., Boven, A. V., and Brakefield, P. 1996. Melanic moths and the ability to encapsulate parasitoid eggs and larvae. Proc. Neth. Entomol. Soc. 7: 127-133.
    Verhoog, M. D., Breuker, C. J., and Brakefield, P. M. 1998. The influence of genes for melanism in the activity of the flour moth, Ephestia kuehniella. Anim. Behav. 56: 683-688.
    Vukusic, P., Sambles, J. R., and Lawrence, C. R., 2000. Structural colour: colour mixing in wing scales of a butterfly. Nature 404: 457. doi: 10.1038/35006561.
    Wilson, K., Cotter, S. C., Reeson, A. F., and Pell, J. K. 2001. Melanism and disease resistance in insects. Ecol. Lett. 4: 637-649.
    Wu, S., Chang, C., Mai, G., Rubenstein, D., Yang, C., Huang, Y., Lin, H., Shih, L., Chen, S., and Shen, S. 2019. Artificial intelligence reveals environmental constraints on colour diversity in insects. Nat. Commun. 10: 4554. doi: 10.1038/s41467-019-12500-2.
    Xing, S., Cheng, W., Nakamura, A., Tang, C. C., Pickett, E. J., Huang, S., Odell, E., Goodale, E., Goodale, U. M., and Bonebrake, T. C. 2018. Elevational clines in morphological traits of subtropical and tropical butterfly assemblages. Biol. J. Linn. Soc. 123: 506-517.
    Yin, C., Zhu, S., Yao, F., Gu, J., Zhang, W., Chen, Z., and Zhang, D. 2013. Biomimetic fabrication of WO3 for water splitting under visible light with high performance. J. Nanopart. Res. 15: 1812. doi: 10.1007/s11051-013-1812-1.
    Zhang, L., Martin, A., Perry, M. W., van der Burg, K. R., Matsuoka, Y., Monteiro, A., and Reed, R. D. 2017. Genetic basis of melanin pigmentation in butterfly wings. Genetics 205: 1537-1550.
    Zhang, L., and Reed, R. D. 2016. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns. Nat. Commun. 7: 11769. doi: 10.1038/ncomms11769.
    Zheng, X. L., Yang, Q. S., Hu, Y. W., Lei, C. L., and Wang, X. P. 2015. Latitudinal variation of morphological characteristics in the swallowtail Sericinus montelus Gray, 1798 (Lepidoptera: Papilionidae). Acta Zool. 96: 242-252.

    下載圖示
    QR CODE