簡易檢索 / 詳目顯示

研究生: 張郡庭
Chang, Chun-Ting
論文名稱: 坡地崩塌對河道流量–輸砂量率定曲線及集水區產砂量影響之研究
The Influence of Landslide on Sediment Rating Curve and Sediment Yield
指導教授: 李錦育
Lee, Chin-Yu
陳金諾
Chen, Ching-Nuo
學位類別: 碩士
Master
系所名稱: 工學院 - 水土保持系所
Department of Soil and Water Conservation
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 崩塌地文性土壤沖淤模式流量–輸砂量率定曲線土壤沖蝕產砂量
外文關鍵詞: Landslide, PSED Model, Sediment rating curve, Soil erosion, Sediment yield
DOI URL: http://doi.org/10.6346/NPUST202000401
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究使用水利署長期流量與輸砂量觀測資料,輔以崩塌面積變遷趨勢及河道斷面資料,以瞭解高屏溪河道輸砂特性改變之情形,研究結果顯示,高屏溪流域相同流量條件下河道之輸砂量於2009年有明顯增加,並於2012年開始河道輸砂特性會趨於穩定,但仍高於2009年以前之輸砂量,造成差異主要之原因為集水區受莫拉克颱風影響,導致地文環境之變動,使輸砂特性出現明顯改變。因此,本研究配合莫拉克颱風事件發生時間,分期建立河道流量-輸砂量率定曲線,進一步檢核高屏溪流域現有5處水文站流量–輸砂量率定曲線之問題;同時,應用地文性土壤沖淤模式獲得涵蓋高低流量下之輸砂量資料,建立可信之流量–輸砂量關係,以修正實測之流量–輸砂量率定曲線,研究結果顯示修正後之率定曲線迴歸係數更加,且實測之率定曲線有低估的情形。
    另分析崩塌面積與降雨對於沖蝕量與產砂量之影響,結果證實隨崩塌裸露面積的增加,沖蝕量與產砂量亦有所增加,且變化情形大致與歷年新增崩塌面積變化相符。同時,沖蝕量及產砂量會受到累積雨量及降雨強度之影響,但其變化受到累積雨量影響為主,而降雨強度為輔助因素。

    In order to understand the influence of landslide on sediment transport characteristics at Kaoping Watershed, long-tern records of daily discharge, suspended sediment concentration, landslide change trend and cross-section survey data were used in this study. The results show obvious sediment transport changes between 1995 and 2018, and were associated to Typhoon Morakot. Sediment rating curves were separated into three periods according Typhoon Morakot. In the analysis of sediment yield, the study collected historical discharge and sediment transport data from Lilin bridge station, San-Di-Men station, Shan-Lin bridge station(2), Da-Jin bridge station(1) and Liou-Guei station(1) in the upstream of the Kaoping River.The Physiographic Soil Erosion-Deposition (PSED) model was used to simulate high flow period and suspended sediment transport caused by different typhoon and storm events in order to check the sediment rating curve of the five hydrological stations. The result shows that the curve tends to underestimate sediment transport.
    The Influencing of factors on soil erosion and sediment yield were bare land at landslide, accumulated precipitation and rainfall intensity.The analysis show that when the bare land at landslide increases, sediment yield and soil erosion will also increase.Subsequently, soil erosion and sediment yield will be affected by accumulated precipitation and rainfall intensity, but their changes are mainly affected by accumulated rainfall, and rainfall intensity is an auxiliary factor.

    摘 要···············································I
    Abstract···············································III
    謝 誌···············································V
    目 錄···············································VII
    表目錄···············································IX
    圖目錄···············································X
    符號索引···············································XII
    壹、前言···············································1
    一、動機············································1
    二、目的·········································1
    貳 文獻回顧··································2
    一、崩塌及颱洪事件與輸砂量之關係···········2
    二、流量與懸浮載含量之關係···········3
    三、輸砂量估算···········3
    參、研究材料與方法···········6
    一、研究區域概述···········6
    (一)地理位置···········6
    (二)高屏溪水系···········7
    (三)地形地勢···········8
    (四)土地利用···········11
    二、水文測站資料···········12
    (一)雨量資料蒐集與分析···········12
    (二)流量與輸砂量資料蒐集與分析···········17
    三、崩塌面積分析···········19
    (一)崩塌資料來源···········19
    (二)崩塌面積分析方法···········19
    四、地文性土壤沖淤模式建立···········21
    (一)水流演算···········21
    (二)土壤沖淤演算···········24
    (三)數值方法···········26
    五、計算網格之建立···········28
    (一)子集水區劃分原則與坡地格區之產生···········30
    (二)河道格區之劃分···········30
    (三)給定計算網格之屬性資料···········30
    (四)模式演算流程···········33
    肆、結果與討論···········34
    一、歷年輸砂量變化及影響分析···········34
    (一)歷年輸砂量變化···········34
    (二)歷年崩塌面積變化分析···········38
    (三)歷年河道斷面型態···········47
    二、地文性土壤沖於模式之驗證···········53
    (一)流量歷線之模擬···········53
    (二)懸浮載濃度歷線之模擬···········56
    三、流量–輸砂量率定曲線之修正···········60
    (一)流量–輸砂量率定曲線之修正延伸···········61
    (二)延伸修正前後各颱洪事件產砂量之差異···········68
    四、崩塌對集水區沖蝕產砂量之影響···········71
    伍、結論與建議···············································75
    一、結論···············································75
    二、建議···············································76
    參考文獻···············································77
    作者簡介···············································82

    1.王俊哲,2018,九二一集集大地震前後集水區泥砂量推估之探討-以烏溪支流北港溪集水區為例,碩士論文,國立中興大學,水土保持學系,臺中。
    2.朱怡亭,2007,玉峰集水區颱風暴雨中心與崩塌地時空分布對河川懸移質輸砂濃度的影響,碩士論文,國立臺灣大學,地理環境資源學研究所,臺北。
    3.朱怡亭,徐美玲,2007,「玉峰集水區颱風事件河川流量和懸移質濃度關係之研究」,地理學報,第49期,第1-22頁。
    4.行政院農業委員會,2017,衛星判釋全島崩塌地圖,取自https://data.coa.gov.tw/,臺北市。
    5.呂名翔,2007,新武呂溪流域的山崩與輸砂量在地震與颱風事件中的相對應關係,碩士論文,國立臺灣大學,地質科學研究所,臺北。
    6.李秉乾,雷祖強,謝孟勳,黃亦敏,方耀民,周天穎,連惠邦,2016,「105年應用坡地易損性模式於崩塌風險與警戒機制研析」,行政院農業委員會水土保持局委辦計畫摘要報告,第1-18頁。
    7.汪正忠,1988,「山坡地開發對逕流、入滲及泥砂產量影響之研究」,中華水土保持學報,第19卷,第2期,第63-74頁。
    8.沈哲緯,劉時宏,陳毅青,邱昱嘉,劉格非,2016,「全臺流域集水區崩塌土砂收支研究與探討-以莫拉克颱風前後期間(2008~2012年)為例」,農業工程學報,第62卷,第3期,第23-42頁。
    9.林孟龍,2000,颱風對於蘭陽溪上游集水區懸移質生產特性的影響,碩士論文,國立臺灣大學,地理學研究所,臺北。
    10.林孟龍,林俊全,2003,「颱風對於蘭陽溪上游集水區懸移質生產特性的影響」,地理學報,第33期,第39-53頁。
    11.林俐玲,1995,「覆蓋管理因子(C值)之評定」,中美陡坡土壤流失量推估技術研討會論文輯,屏東,第109-116頁。
    12.金雁海,柴建華,朱智紅,2006,「內蒙古黃土丘陵區次降雨條件下坡面土壤侵蝕影響因子研究」,水土保持研究,第13卷,第6期,第192-194頁。
    13.胡蘇澄,盧昭堯,吳益裕,陳臺芳,1995,「臺灣中部蓮華池地區高粘土含量土壤之紋溝間沖蝕率」,林業試驗所研究報告季刊,第10卷,第1期,第33-40頁。
    14.徐碧治,2011,降雨特性對洪水懸浮載濃度與懸浮載產砂量影響之研究,博士論文,國立成功大學,水利及海洋工程學系,臺南。
    15.馬明明,1995,臺灣中部與台北地區降雨特性及沖蝕性關係之研究,碩士論文,國立中興大學,土木工程研究所,臺中。
    16.張永誠,何世華,林昭遠,2012,「旗山溪莫拉克颱風土砂災害河段清疏區位優選之研究」,水土保持學報,第44卷,第4期,第407-420頁。
    17.莊善傑,2005,大甲溪流域的山崩在颱風與地震事件中與地質環境之對應關係,碩士論文,國立臺灣大學,地質科學研究所,臺北。
    18.陳薔諾,蔡智恆,蔡長泰,2004,「集水區地文性土壤沖淤模式與地理資訊系統結合應用之研究」,中國土木水利工程學刊,第51卷,第1期,第379-391頁。
    19.黃依凡,2010,濁水溪河川輸砂特性變動之研究,碩士論文,國立彰化師範大學,地理學系,彰化。
    20.黃朝恩,1982,「臺灣河川輸砂特性及其地形意義」,師大學報,第27期,第649-680頁。
    21.經濟部水利署水利規劃試驗所,2014,「高雄市淹水潛勢圖第二次更新計畫」,臺中。
    22.蔡智恆,2000,定岸沖積河流水理及底床演變之模擬,博士論文,國立成功大學,水利及海洋工程學系,台南。
    23.蔡智恆,陳金諾,蔡長泰,2010,「應用地文性土壤沖淤模式模擬多子集水區流域之產砂量」,中國土木水利工程學刊,第22卷,第3期,第233-247頁。
    24.鄭皆達,謝在郎,1997,「石門水庫集水區泥砂生產與水文特性之關係」,中華水土保持學報,第28卷,第1期,第1-9頁。
    25.盧金發,2004,「黃河中游流域產沙量與降雨的關係」,地理學報,第38期,第17-29頁。
    26.謝玉興,2004,「南橫公路邊坡崩壞與降雨關係研究」,臺灣公路工程,第30卷,第11期,第26-45頁。
    27.謝敏政,2014,泥砂率定曲線之偏差修正及區域化泥砂量推估,碩士論文,逢甲大學,水利工程與資源保育學系,臺中。
    28.闕笙安,2012,臺灣主要河川懸砂的時空變異與收支研究,碩士論文,國立中山大學,海洋地質及化學研究所,高雄。
    29.Chen, C.N., Tsai, C.H., and Tsai, C.T., 2006, “Simulation of Sediment Yield from Watershed by Physiographic Soil Erosion-Deposition Model,” Journal of Hydrology, Vol.327, No.3, pp. 293-303.
    30.Chen, C.N., Yeh, C.H., Tsai, C.H., C.T, 2002, “The simulation of discharge and suspended sediment concentration hydrographs in river basin,” Proceeding of the 5th Taiwan-Japan Joint Seminar on Natural Hazards Mitigation, Tainan, Taiwan, pp. 99-108.
    31.Chow, V. T., Maidment D. R. and Mays, L. W., 1988, Applied Hydrology, McGraw-Hill, United States, pp. 153-155 .
    32.Chuang, S.C., Chen, H., Lin, G.W., Lin, C.W., and Chang, C.P., 2009, “Increase in basin sediment yield from landslides in storms following major seismic disturbance,” Engineering Geology, Vol.103, pp.59-65.
    33.Dadson, S. J., 2004, Erosion of an active mountain belt, Doctoral Dissertation, Department of Earth Sciences, University of Cambridge, Cambridge.
    34.Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Ching, H. J., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C., 2003, “Links between erosion, runoff variability and seismicity in the Taiwan orogen,” Nature, Vol. 426, pp. 648-651.
    35.Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., and Stark, C. P., 2004, “Earthquake triggered increase in sediment delivery from an active mountain belt.” Geology, Vol.32, No.8, pp. 733-736.
    36.Duan, N., 1983, “Smearing estimate: A non-parametric retransformation method,” Journal of the American Statistical Association, vol. 78, No 383, pp. 605–610.
    37.Fuller, C. W., Willett, S. D., Hovius, N., and Slingerland, R., 2003, “Erosion rates for Taiwan mountain basins: New determinations from suspended sediment records and a stochastic model of their temporal variation,” Journal of Geology, Vol. 111, pp. 71–87.
    38.Hovius, N., Stark, C. P., Chu,H. T. ,and Lin, J. C, 2000, “Supply and Removal of Sediment in a Landslide‐Dominated Mountain Belt: Central Range, Taiwan,” Journal of Geology, Vol. 108, No.1, pp. 73-89.
    39.Itakura, T., Kishi, T., 1980, “Open channel flow with suspended sediments,” Journal of the Hydraulics Division, Vol. 106, No. 8, pp. 1325-1343.
    40.Jeje, L.K., Ogunkoya, O.O. and Oluwatimlehin, J.M. ,1991, “Variation in suspended sediment concentration during storm discharge in three small streams in upper osun basin, central western Nigeria,” Hydrological Processes, Vol 5, No.4, pp361-369.
    41.Kao, S. J. and Liu, K. K., 2001, “Estimating of suspended load by using the historical hydrometric record from the Lanyang-His watershed,” Terrestrial Atmospheric and Oceanic Sciences, Vol. 12, No.2, pp. 401–414.
    42.Kao, S. J. and Liu, K. K., 2002, “The exacerbation of erosion induced by human perturbation in a typical Oceania watershed: insight from 45 years of hydrological records from the Lanyang-Hsi River, northeastern Taiwan,” Glob. Biogeochem. Cycles, Vol. 16, No.1, pp. 1-7.
    43.Kao, S. J., Chan, S. C., Kuo, C. H. and Liu, K. K., 2005, “Transport-dominated sediment loading in Taiwanese rivers: a case study from the Ma-an stream,” Journal of Geology, Vol. 113, pp. 217-225.
    44.Langbein, W.B. and Schumm, S.A., 1958,. “Yield of sediment in relation to mean annual precipitation,” Transactions, American Geophysical Union, 39:pp.1078-1084
    45.Lin, G.W., Chen, H., Chen, Y.H., and Horng, M.J., 2008, “Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge,” Engineering Geology, Vol.97, pp.32-41.
    46.Mutchler, C.K. and Young, R.A., 1975, “Soil detachment by raindrops,” Proceedings of sediment-yield workshop, ARS-S-40, USDA.
    47.Sharma, P. P., Gupta, S. C. and Foster, G. R., 1995, “Raindrop-induced soil detachment and sediment transport from interrill areas,” Soil Science Society America Journal, Vol. 59, pp. 727-734。
    48.Tsai, C.T., and Tsai, C.H., 1997, “A study on the applicability of discharge formulas for trapezoidal broad-crested weirs,” Taiwan Water Conservancy, Vol. 45, pp. 29-45.
    49.Walling, D.E., and Webb, B.W., 1982, “Sediment availability and the prediction of storm-period sediment yields,” Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield, IAHS Publication, Vol. 137, pp. 327-337.
    50.Yang, C. R., 2000, Study on construction of a physiographic inundation forecasting system, Doctoral Dissertation, Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan.

    下載圖示
    QR CODE