簡易檢索 / 詳目顯示

研究生: 呂松育
Lu, Song-Yu
論文名稱: 旋轉平台多標的細胞觀測系統之開發
Development of multi-sample cell observation system with a rotate platform
指導教授: 王耀男
Wang, Yao-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 車輛工程系所
Department of Vehicle Engineering
畢業學年度: 108
語文別: 中文
論文頁數: 154
中文關鍵詞: 微機電整合光學系統
外文關鍵詞: MEMS integration, optics system
DOI URL: http://doi.org/10.6346/NPUST202000411
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究透過互補性氧化金屬半導體(Complementary Metal-Oxide Semiconductor, CMOS)工業相機整合液態透鏡、光學濾鏡組以及顯微物鏡建置一可自動對焦之影像擷取系統並搭配電動旋轉缸結合3D 列印技術建置一多樣品載臺;建立一套可置於細胞培養箱內旋轉平臺多標的細胞觀測系統,透過LabVIEW圖控程式整合各元件並提供自動化縮時之細胞影像,以降低長時間細胞培養過程之人力成本以及細胞汙染之風險。透過光學系統以及光源之配置,於單一影像擷取系統中實現拍攝明視野以及螢光視野之細胞影像並透過影像處理技術將細胞與背景分離,對細胞成長結果進行量化分析。透過觀測小鼠胚胎細胞以並於培養基中分別添加0.2、0.4、0.6、0.8、1 μg⁄ml 之LPS以及控制組進行對照;從結果中發現到,細胞成長率與添加濃度成反比並分別得到各組分裂指數:60.3 % ~ 65.3 %、53.9 % ~ 58.78 %、52.1 % ~ 55.06 %、46.7 % ~ 51.27 %、42.51 % ~ 45.54 % 以及38.71 % ~ 39.8 %;倍增時間為23.58 ~ 27.01小時、28.15 ~ 32.22小時、31.19 ~ 34.71小時、36.51 ~ 39.61小時、42.18 ~ 45.54小時以及49.17 ~ 50.97小時。

    In this study, Development of Auto-focusing image capture systeman include complementary metal oxide semiconductor (CMOS) industrial camera of a liquid lens, an optical filter set and an objective lens was proposed, which was constructed an electric rotate motor combined with the multi-sample cell culture platform by the 3D printing technology; development of multi-target cell observation system that can be placed on a rotating platform in the incubator, integration control of various components by the LabVIEW and providing automated time-lapse cell images to reduce long-term cells culture the labor cost and risk of cell contamination. Through the configuration of the optical system and the light source, the cell image of the bright field and the fluorescent field were captured in a single image capture system, and the cell is separated from the background by the image processing technology, the cell growth result was further proposed for the quantitatively analyzed. By observing the mouse embryonic cells with addition of 0.2, 0.4, 0.6, 0.8, 1 μg⁄ml of LPS and the control group to the medium, the results that the cell growth rate was inversely proportional to the concentration of addition and were obtained separately. The division index of each group were 60.3 % ~ 65.3 %, 53.9 % ~ 58.78 %, 52.1 % ~ 55.06 %, 46.7 % ~ 51.27 %, 42.51 % ~ 45.54 % and 38.71 % ~ 39.8 %, and the doubling time were 23.58 ~ 27.01 hr, 28.15 ~ 32.22 hr, 31.19 ~ 34.71 hr, 36.51 ~ 39.61 hr, 42.18 ~ 45.54 hr and 49.17 ~ 50.97 hr. Over all, the results presented in this study confirm, that the LPS for mouse cells can produce a immune response and slow down the growth rate of cells. The system can provide long term observation for cell culture in vitro culture, providing bright the fluorescent of cell image.

    摘要 I
    Abstract II
    誌謝 IV
    目錄 V
    表目錄VIII
    圖目錄 V
    簡寫表 XVII
    第1章 緒論 1
    1.1前言 1
    1.2文獻回顧 2
    1.3 研究動機 22
    第2章 旋轉平臺多標的細胞觀測系統之建置 23
    2.1簡介 23
    2.2 細胞培養 24
    2.2.1 生物滅菌 24
    2.2.2 配置培養基 28
    2.2.3 細胞解凍 29
    2.2.4. 細胞培養基 30
    2.2.5. 細胞分盤與計數 31
    2.2.6. CFSE細胞染色 32
    2.3細胞即時監測系統之建置 33
    2.3.1 簡介 33
    2.3.2 影像擷取與光學系統 37
    2.3.3 戴測物載臺系統 70
    2.3.4 螢光誘導系統之建置 75
    2.4系統整合 82
    2.5 影像後處理 86
    2.6 系統驗證與實驗方法 89
    2.6.1 縮時攝影應用於細胞生長可行性之探討 89
    2.6.2 不同感光元件大小對於自動對焦範圍之影響探討 89
    2.6.3步進馬達定位對於待測物載臺之重現性探討 90
    2.6.4 細胞生長觀測系統對溫度控制之探討 90
    第3章 結果與討論 92
    3.1 縮時攝影應用於細胞生長可行性之探討 92
    3.2 不同感光元件大小對於自動對焦範圍之影響探討 97
    3.3 步進馬達之定位對於待測物載臺之重現性探討 101
    3.4 細胞生長觀測系統對溫度控制之探討 105
    3.5 應用旋轉平台多標的細胞觀測系統於細胞培養觀測 109
    第4章 結論與未來展望 144
    4.1 結論 144
    4.2未來展望 145
    參考文獻 146
    作者簡介 154

    [1]吳慶余,2008,「基礎生命科學(第三版)」,藝軒圖書出版社, pp.97-98。
    [2]喬珊,1998,"CCD影像幾何圖形之辨識",國立中央大學機械工程研究所碩士學位論文。
    [3] 黃文傑,2005,"CCD-CMOS鏡頭模組檢測系統開發研究",國立中興大學機械工程學系碩士學位論文。
    [4] K. Suhling, L. M. Hirvonen, J. A. Levitta, P. H. Chunga, C. Tregidgo, A. L. Maroisa, D. A. Rusakov, K. Zheng, S. A. Beg, S. Poland, S. Coelho, R. Henderson and N. Krstajic, 2015, “Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments.”, Medical Photonics, Vol.27, pp.3-40.
    [5]章靜波,2005,組織和細胞培養技術,合記圖書出版社
    [6] G. M. Whitesides, 2006, “The origins and the future of microfluidics.”, Nature, Vol.442, pp.368-373.
    [7] G. A. T. P. Trumpie, J. Korf, and A. V. Amerongen, 2006, “Latera”l flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey.”, Analytical and Bioanalytical Chemistry, Vol.393, pp.569-582.
    [8] World Bank, World Development Report 2004 (Overview): Making Services Work for Poor People, World Bank.
    [9] The top 10 causes of death, https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death., Accessed 23 May 2020.
    [10] M. Khan, S. Mao, W. Li and J. M. Lin, 2018, “Microfluidic Devices in the Fast‐Growing Domain of Single‐Cell Analysis.”, Chemistry–A European Journal, Vol.24, pp.15398-15420.
    [11] R. Jack, K. Hussain, D. Rodrigues, M. Zeinali, E. Azizi, M. Wicha, D. M. Simeone and S. Nagrath, 2017, “Microfluidic continuum sorting of sub-populations of tumor cells via surface antibody expression levels.”, Lab on a chip, Vol.17, pp.1349-1358.
    [12] A. Raj, P. V. D. P Bogaard, S. A. Rifkin, A. V. Oudenaarden and S. Tyagi, 2008, “Imaging individual mRNA molecules using multiple singly labeled probes.”, Nature methods, Vol.10, pp.877-879.
    [13] A. M. H. Krebber, L. M. Buffart, G. Kleijn, I. C. Riepma, R. D. Bree, C. R. Leemans, A. Becker, J. Brug, A. V. Straten, P. Cuijpers and I. M. V. Leeuw, 2014, “Prevalence of depression in cancer patients: a meta- analysis of diagnostic interviews and self-report instruments.”, Psycho-Oncology, Vol.23, pp.121-130.
    [14] S. Lin, X. Zhi, D. Chen , F. Xia, Y. Shen, J. Niu, S. Huang, J. Song, J. Miao, D. Cui and X. Ding, 2019, “A flyover style microfluidic chip for highly purified magnetic cell separation.”, Biosensors and Bioelectronics, Vol.129, pp.175-181.
    [15] J. Marshall, X. Qiao, J. Baumbach, J. Xie, L. Dong and M. K. Bhattacharyya, 2017, “Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean.”, Scientific Reports, Vol.7, 44365.
    [16] G. Li, R. Zhang , N. Yang, C. Yin, M. Wei, Y. Zhang and J. Sun, 2018, “An approach for cell viability online detection based on the characteristics of lens-free cell diffraction fingerprint.”, Biosensors and Bioelectronics, Vol.107, pp.163-169.
    [17] L. Dong, “Microfluidic Plant, Soil and Nematode Assay Chips for High-throughput Plant Phenotyping and Sustainable Agricultural Management.”, 2017 IEEE SENSORS, Glasgow Scotland, UK.
    [18] Y. Li, F. Yang, Z. Chen, L. Shi ,B. Zhang, J. Pan, X. Li, D. Sun and H. Yang, 2014, “Zebrafish on a Chip: A Novel Platform for Real-Time Monitoring of Drug-Induced Developmental Toxicity.”, PLoS One, Vol.9, e94792.
    [19] P. Banerjee and A. K. Bhunia, 2009, “Mammalian cell-based biosensors for pathogens and toxins.”, Trends in Biotechnology, Vol.27, pp.179-188.
    [20] E. Evans, 2006, “Cell-based biosensors in proteomic analysis.”, Bentham Science Publishers, Vol. 225, pp.225-239
    [21] P. Banerjee, S. Kintzios and B. Prabhakarpandian, 2013, “Biotoxin detection using cell-based sensors.”, Toxins, Vol.5, pp.2366-2383.
    [22] S. E. Kintzios,2007, “Cell-based biosensors in clinical chemistry.”, Mini reviews in medicinal chemistry, Vol.10, pp.1019-1026
    [23] D. A. Stenger, G. W. Gross, E. W. Keefer, K. M. Shaffer, J. D. Andreadis, W. Ma and J. J. Pancrazio, 2001, “Detection of physiologically active compounds using cell-based biosensors.”, TRENDS in Biotechnology, Vol.9, pp.304-309
    [24] F. J. Livesey, 2003, “Strategies for microarray analysis of limiting amounts of RNA.”, Briefings in Functional Genomics, Vol.2, pp.31-36.
    [25] S. H. Wu, K. L. Lee, A. Chiou, X. Cheng and P. K. Wei, 2013, “Optofluidic Platform for Real-Time Monitoring of Live Cell Secretory Activities Using Fano Resonance in Gold Nanoslits.”, Small, Vol.9, pp.3532-3540.
    [26] Z. Chen, J. Li, X. Chen, J. Cao, J. Zhang, Q. Min and J. J. Zhu, 2015, “Single Gold-Silver Nanoprobes for Real-Time Tracing the Entire Autophagy Process at Single-Cell Level.”, Journal of the American Chemical Society, Vol.137, pp.1903-1908.
    [27] P. Shah, X. Zhu, C. Chen, Y. Hu and C. Z. Li, 2014, “Lab-on-chip device for single cell trapping and analysis.”, Biomedical Microdevices, Vol.16, pp.35-41.
    [28] J. Chen, R. V. Dalal, A. N. Petrov, A. Tsai, S. E. Leary, K. Chapin , J. Cheng, M. Ewan, P. L. Hsiung, P. Lundquist, S. W. Turner, D. R. Hsu and J. D. Puglisi, 2014, “High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence.”, Proceedings of the National Academy of Sciences, Vol.111, pp.664-669.
    [29] F. Asphahani, M. Thein, K. Wang, D. Wood, S. S. Wong, J. Xu and M. Zhang, 2012, “Real-time characterization of cytotoxicity using single-cell impedance monitoring.”, Analyst, Vol.137, pp.3011-3019.
    [30] M. Woutersen, S. Belkin, B. Brouwer, A. P. W. Van and M. B.Heringa, 2001, “luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?”, Analytical and Bioanalytical Chemistry, Vol.400, pp.915-929.
    [31] X. W. Jin, Z. Y. Li, P. P. Xu, X. Y. Zhang, N. Q. Ren, V. K. Vitaliy and K. Sun, 2019, “Advances in Microfluidic Biosensors Based on Luminescent Bacteria.”, Chinese Journal of Analytical Chemistry, Vol.47, pp.181-189.
    [32] Z. J. Guo, S. Park, J. Y. Yoon and I. Shin, 2014, “Recent progress in the development of near-infrared fluorescent probes for bioimaging applications.” Chemical Society Reviews, Vol.43, pp.16-29.
    [33] H. M. Kim and B. R. Cho, 2015, “Small-molecule two-photon probes for bioimaging applications.”, Chemical Reviews, Vol.115, pp.5014-5055.
    [34] D. Wu, A. C. Sedgwick, T. Gunnlaugsson, E. U. Akkaya, J. Yoon and T. D. James, 2017, “Fluorescent chemosensors: the past, present and future.”, Chemical Society Reviews, Vol.46, pp.7105-7123.
    [35] H. W. Liu, L. Chen, C. Xu, Z. Li, H. Zhang, X. B. Zhang and W. Tan, 2018, “Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging.”, Chemical Society Reviews, Vol.47, pp.7140-7180.
    [36] A. S. Klymchenko, 2017, “Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications.”, Accounts of Chemical Research, Vol.50, pp.366-375.
    [37] L. Yuan, W. Lin, K. Zheng and S. Zhu, 2013, “FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.”, Accounts of Chemical Research, Vol.46, pp.1462–1473.
    [38] L. W. He, X. L. Yang, K. X. Xu and W. Y. Lin, 2017, “Improved aromatic substitution-rearrangement- based ratiometric fluorescent cysteine-specific probe and its application of real-time imaging under oxidative stress in living zebrafish.”, Analytical Chemistry, Vol.89, pp.9567–9573.
    [39] A. P. Demchenko, 2010, “The concept of λ-ratiometry in fluorescence sensing and imaging.”, Journal of Fluorescence, Vol.20, pp.1099-1128.
    [40] R. D. Le, B. E. Root, C. R. Reedy, J. A. Hickey, O. N. Scott, J. M. Bienvenue, J. P. Landers, L. Chassagne and P. de Mazancourt, 2014, “DNA analysis using an integrated microchip for multiplex PCR amplification and electrophoresis for reference samples.”, Analytical Chemistry, Vol.86, pp.8192-8199
    [41] D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam and D. A. Dletcher, 2009, “Mobile phone based clinical microscopy for global health applications.”, PLoS One, Vol.4, e6320.
    [42] S. A. Lee and C. Yang, 2014, “A smartphone-based chip-scale microscope using ambient illumination.”, Lab on a Chip, Vol.14, pp.3056-3063.

    [43] B. Han, B. Jung, J. S. Nelson and E. H. Choi, 2007, “Analysis of facial sebum distribution using a digital fluorescent imaging system.”, Journal of Biomedical Optics, Vol.12, 014006.
    [44] D. Shin, M. Pierce, A. Gillenwater and R. R. Kortum, 2010, “A fiber-optic fluorescence microscope using a consumer-grade digital camera for in vivo cellular imaging.”, PLoS One, Vol.5, e11218.
    [45] V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan and D. E. Williams, 2012, “Point of care diagnostics: status and future.”, Analytical Chemistry, Vol.84, pp.487-515.
    [46] J. K. Rosenstein, M. Wanunu, C. A. Merchant, M. Drndic and K. L. Shepard, 2012, “Integrated nanopore sensing platform with sub-microsecond temporal resolution.”, Nature Mmethods, Vol.9, 487.

    [47] B. Jang and A. Hassibi,2009, “Biosensor systems in standard CMOS processes: Fact or fiction?”, IEEE Transactions on Industrial Electronics, Vol.56, pp.979-985.
    [48] L. Hong, H. Li, H. Yang and K. Sengupta, 2017, “Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS.”, IEEE Journal of Solid-State Circuits, Vol.52, pp.2388-2406
    [49]呂俊翰,2015,"即時螢光細胞檢測系統研究 ",國立屏東科技大學車輛工程系碩士學位論文。
    [50]龐均庭,2019,"使用單一平台即時細胞生長紀錄儀追踪 STO細胞株氧化壓力損傷後的凋亡狀態 ",國立屏東科技大學生物科技系碩士學位論文。
    [51] L. Sandeau, C. Vuillaume, S. Contié, E. Grinenval, F. Belloni, H. Rigneault, R. M. Owens and M. B. Fournet, 2015, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing.”, Lab on a Chip, Vol.15, pp.877-881.
    [52] C. H. Chen, R. Z. Hwang, L. S. Huang, S. M. Lin, H. C. Chen, Y. C. Yang, Y. T. Lin, S. A. Yu, Y. S. Lin, Y. H. Wang and N. K. Chou, 2008, “A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics.”, IEEE Transaction on Biomedical Engineering, Vol.56, pp.462-470.
    [53] T. Saeki, M. Hosokawa, T. K. Lim, M. Harada, T. Matsunaga and T. Tanaka, 2014, “Digital cell counting device integrated with a single-cell array.”, PLoS One, Vol.9, e89011.
    [54] T. Chi, J. S. Park, J. C. Butts, T. A. Hookway, A. Su, C. Zhu, M. P. Styczynski and H. Wang, 2015, “A multi-modality CMOS sensor array for cell-based assay and drug screening”, IEEE Transactions on Biomedical Circuits and Systems, Vol.9, pp.801-814.
    [55] C.Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, M. A. Jongsma and F. P. Widdershoven, 2015, “Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays.”, Nature Nanotechnology, Vol.10, pp.791-795.
    [56]張淯荏,2013,"無透鏡 CMOS感測器於細胞生長監控之研究 ",國立屏東科技大學車輛工程系碩士學位論文。
    [57] K. M. Lei, P. I. Mak, M. K. Law and R. P. Martins, 2016, “CMOS biosensors for in vitro diagnosis–transducing mechanisms and applications.”, Lab on a Chip, Vol.16, pp.3664-3681.
    [58] H. Jiang, M. A. Ali, Y. Jiao, B. Yang and L. Dong, “In-situ, real-time monitoring of nutrient uptake on plant chip integrated with nutrient sensor.”, 2017 19th International Conference on Solid-State Sensors, Kaohsiung, Taiwan, pp.289-292.
    [59] I. Maschmeyer, A. K. Lorenz, K. Schimek, T. Hasenberg, A. P. Ramme, J. Hubner, M. Lindner, C. Drewell, S. Bauer, A. Thomas, N. S. Sambo, F. Sonntag, R. Lauster and U. Marx, 2015, “A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents.”, Lab on a chip, Vol.15, pp.2688-2689.
    [60] K. W. Barron, 1995, Physiology(4th ed.), New York, Springer.
    [61] S. A. M. Shaegh, F. D. Ferrari, Y. S. Zhang ,M. Nabavinia, N. B. Mohammad, J. Ryan, A. Pourmand, E. Laukaitis, R. B. Sadeghian, A. Nadhman, S. R. Shin, A. S. Nezhad, A. Khademhosseini and M. R. Dokmeci, 2016, “A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices.”, Bio-microfluidics, Vol.10, 044111.
    [62] Y. Zhu, K. Wang, X. Wu, Y. Sun, X. Gong, D. Cao, R. Guan and Z. Liu, 2020, “A highly sensitive turn-on fluorescent probe for real-time detecting hypochlorite and its application in living cells.”, Talanta, Vol.209, 120548.
    [63] Y. H. Kwak, S. M. Hong and S. S. Park, 2010, “A single cell tracking system in real-time.”, Cellular Immunology, Vol.265, pp.44-49.

    [64] S. L. Tressel, R. P. Huang, N. Tomsen and H. Jo, 2007, “Laminar shear inhibits tubule formation and migration of endothelial cells by an angiopoietin-2–dependent mechanism.”, Arteriosclerosis, Thrombosis, and Vascular Biology, Vol.27, pp.2150-2156.
    [65] N. Shen, J. A. Riedl, D. A. C. Berrio, Z. Davis, M. G. Monaghan, S. L. Layland, S. Hinderer and S. L. Schenke, 2018, “A flow bioreactor system compatible with real-time two-photon fluorescence lifetime imaging microscopy.”, Biomedical Materials, Vol.13, 024101.
    [66] O. M. Iribarren, J. Zabalo, S. Arana and M. Mujika, 2019, “Improved microfluidic platform for simultaneous multiple drug screening towar ds personalized treatment.”, Biosensors and Bioelectronics, Vol.123, pp.237-243.
    [67] H. Buhler, R. Adamietz, T. Abeln, D. D. Carballo, P. N. Kouam, T. Hero, and I. A. Adamietz, 2017, “Automated multichamber time-lapse videography for long-term in vivo observation of migrating cells.”, In Vivo, Vol.31, pp.329-334.
    [68]梁伯暘,2017,"三軸自動化對焦細胞即時監測系統之研發 ",國立屏東科技大學車輛工程系碩士學位論文。
    [69]林佳偉,2019,"細胞即時觀測自動對焦三軸平台之開發 ",國立屏東科技大學車輛工程系碩士學位論文。
    [70]小山秀機,1999,細胞培養(第三版),Springer。
    [71]劉賢祥,1987,動物組織培養技術(第三版),徐氏基金會出版。
    [72]高偉良譯,1994,動物細胞培養(第一版),金名圖書有限公司。
    [73]陳嘉芬,2016,細胞生物學(第三版),藝軒圖書文具有限公司。
    [74]瞿中和,2001,細胞分子生物學(第一版),九州圖書。
    [75] C. G. Uhl and Y. Liu,2019, “Microfluidic device for e xpedited tumor growth towards drug evaluation.”, Lab on a Chip, Vol.9, pp.1458-1470.

    無法下載圖示 校外公開
    2025/08/06
    QR CODE