簡易檢索 / 詳目顯示

研究生: 楊子姸
Tzu-Yen Yang
論文名稱: Bornyl cis-4-Hydroxycinnamate造成黑色素癌細胞凋亡及粒線體失活與內質網壓力之探討
The Effect of Bornyl cis-4-Hydroxycinnamate on Melanoma Cell Apoptosis Is Associated with Mitochondrial Dysfunction and Endoplasmic Reticulum Stress
指導教授: 吳美莉
Mei-Li Wu
吳裕仁
Yu-Jen Wu
學位類別: 博士
Doctor
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 黑色素瘤Bornyl cis-4-hydroxycinnamate蛋白質體學粒線體功能失活細胞凋亡內質網壓力細胞侵襲細胞遷移
外文關鍵詞: melanoma, bornyl cis-4-hydroxycinnamate, proteomic, mitochondrial dysfunction, apoptosis, endoplasmic reticulum stress, Cell invasion, cell migration
DOI URL: http://doi.org/10.6346/NPUST202000418
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 從荖葉莖中所分離出的活性化合物Bornyl cis-4-hydroxycinnamate,具有用作抗癌藥的潛力。在這項研究中,研究了Bornyl cis-4-hydroxycinnamate對黑素瘤細胞增殖,蛋白質表達以及細胞遷移和侵襲的影響。透過使用流式細胞儀分析了由Bornyl cis-4-hydroxycinnamate誘導的黑色素瘤細胞系凋亡的早期階段,並採用了比較蛋白質質體學技術研究了該化合物對A375細胞蛋白質表現的影響。 A375細胞的二維電泳(2-DE)分析顯示35種蛋白質的表現水平發生了顯著變化,其中18種蛋白質表現量上升而17種蛋白質表現量下降。蛋白質體學研究確定了幾種與內質網壓力(ER Stress)和粒線體功能失活有關的蛋白質。該處理還導致粒線體膜電位顯著下降,細胞色素C釋放到細胞質中,激活Bax、Bad、caspase-3、caspase-9表現量,以及造成p-Bad、Bcl-2,Bcl-xl和Mcl-1的表現量降低,由結果顯示 Bornyl cis-4-hydroxycinnamate誘導的凋亡是由粒線體誘導的caspase依賴性途徑所造成。Bornyl cis-4-hydroxycinnamate所引起的的細胞死亡也會經由PERK-eIF2α-ATF4-CHOP信號傳遞被活化。我們的研究結果支持Bornyl cis-4-hydroxycinnamate誘導的黑色素瘤細胞凋亡與caspase活化,粒線體功能失活和內質網壓力相關的機制有相關聯性。
    另外,本文也研究Bornyl cis-4-hydroxycinnamate(1–6 µM)處理過的黑色素瘤細胞的細胞遷移和侵襲的研究。為了驗證Bornyl cis-4-hydroxycinnamate是否對黑色素細胞瘤具有潛在的抗轉移作用,在研究中使用Boyden測定法和Transwell對黑色素細胞瘤進行了細胞遷移和侵襲測定。用明膠酶譜法測定MMP-2和MMP-9的酵素活性。並進行MMP-2,MMP-9和TIMP-1 / 2以及MAPK,FAK / PI3K / Akt / mTOR信號傳遞中的關鍵分子的蛋白質免以色分析法。由結果可以發現,Bornyl cis-4-hydroxycinnamate是潛在有用的藥物,通過抑制FAK / PI3K / Akt / mTOR和MAPKs降低MMP-2和MMP-9的表達,從而抑制黑素瘤細胞的遷移和侵襲並改變黑素瘤細胞的轉移。這些研究結果發現Bornyl cis-4-hydroxycinnamate具有作為化學治療劑的潛力,並且值得進一步研究以用於黑色素細胞瘤的治療。
    關鍵詞:黑色素瘤、Bornyl cis-4-hydroxycinnamate、蛋白質體學、粒線體功能失活、細胞凋亡、內質網壓力,細胞侵襲、細胞遷移

    Bornyl cis-4-hydroxycinnamate, an active compound isolated from Piper betle stems, has the potential for use as an anti-cancer agent. In the study were investigated the effects of bornyl cis-4-hydroxycinnamate on melanoma cell proliferation, protein expression and cell migration and invasion in melanoma cells. The flow cytometric analysis to examine the early stages of apoptosis induced by bornyl cis-4-hydroxycinnamate in melanoma cell lines and employed comparative proteomic analysis to investigate the effects of bornyl cis-4-hydroxycinnamate on protein expression in A375 cells. Two-dimensional electrophoresis (2-DE) analysis of A375 cells showed that the expression levels of 35 proteins were significantly altered, with 18 proteins upregulated and 17 downregulated. The proteomics study identified several proteins that are involved in endoplasmic reticulum stress (ER stress) and mitochondrial dysfunction. The treatment also resulted in a marked decline of the mitochondrial membrane potential, in cytochrome C release into the cytosol, in the activation of Bax, Bad, caspase-3, and caspase-9, and in the decreased expression of p-Bad, Bcl-2, Bcl-xl, and Mcl-1, indicating that apoptosis induced by bornyl cis-4-hydroxycinnamate was mediated by the mitochondria through the caspase-dependent pathway. Bornyl cis-4-hydroxycinnamate-related cell death also implied that the PERK)–eIF2α–ATF4–CHOP signal pathways was activated upon bornyl cis-4-hydroxycinnamate treatment. Altogether, our results support that bornyl cis-4-hydroxycinnamate-induced apoptosis in melanoma cells is associated with mechanisms correlated with the activation of caspase cascades, mitochondrial dysfunction, and endoplasmic reticulum stress, and indicate that this molecule has the potential to be developed as a chemotherapeutic agent for human melanoma. Cell migration and invasion were compared on melanoma cell lines treated bornyl cis-4-hydroxycinnamate (1–6 µM). To examine whether bornyl cis-4-hydroxycinnamate has a potential anti-metastatic effect on melanoma cells, cell migration and invasion assays were performed using a Boyden chamber assay and a transwell chamber on melanoma cell. Gelatin zymography was employed to determine the enzyme activities of MMP-2 and MMP-9. Cell lysates were collected for western blotting analysis of MMP-2, MMP-9 and TIMP-1/2, as well as key molecules in the MAPKs, FAK/PI3K/Akt/mTOR signaling pathways. Our results demonstrated that bornyl cis-4-hydroxycinnamate is a potentially useful agent that inhibits melanoma cell migration and invasion and alters melanoma cell metastasis by reducing MMP-2 and MMP-9 expressions through inhibition of the FAK/PI3K/Akt/mTOR and MAPKs signaling pathways. These findings suggested that bornyl cis-4-hydroxycinnamate has potential as a chemotherapeutic agent and warrants further investigation for use in the management of human melanoma.

    Keywords: melanoma; bornyl cis-4-hydroxycinnamate; proteomic; mitochondrial dysfunction; apoptosis; endoplasmic reticulum stress, Cell invasion; cell migration

    中文摘要 Ⅰ
    英文摘要 Ⅲ
    謝誌 Ⅴ
    壹、 前言 1
    一、 皮膚與紫外線傷害 1
    二、 荖葉(Piperbetel) 2
    貳、文獻回顧 4
    一、 細胞死亡 (cell death) 類型 4
    二、 細胞凋亡(apoptosis)之訊息傳遞途徑 4
    三、 粒線體失活 (mitochondrial dysfunction)引發之細胞凋亡 5
    四、 內質網壓力(Endoplasmic reticulum stress,ER stress)引發之凋亡途 徑 6
    五、 蛋白質體學 (Proteomics) 7
    参. 結果與討論Results 9
    一、以Characterization of the Constituents of the Ethyl Acetate (EA) 分離P. betle莖的成分 9
    二、Bornyl cis-4-Hydroxycinnamate對黑素瘤細胞的細胞毒性和抗增殖作用 10
    三、Bornyl cis-4-Hydroxycinnamate對黑色素瘤細胞引發凋亡 11
    四、A375細胞經 Bornyl cis-4-Hydroxycinnamate作用後的蛋白質體學分析 12
    五、Bornyl cis-4-Hydroxycinnamate造成粒線體失活誘導啟動細胞凋亡訊息傳遞途徑 17
    六、Bornyl cis-4-Hydroxycinnamate活化Caspase -Dependent pathway誘導細胞凋亡 19
    七、Bornyl cis-4-Hydroxycinnamate誘導Endoplasmic Reticulum (ER) Stress途徑 21
    八、Bornyl cis-4-Hydroxycinnamate對A2058和A375細胞的細胞毒性作用 24
    九、 Bornyl cis-4-Hydroxycinnamate抑制A2058和A375人類黑色素癌細胞的遷移和侵襲 26
    十、Bornyl cis-4-Hydroxycinnamate降低A2058和A375細胞人類黑色素癌細胞中MMP-2 / -9活性並調節MMP-2,MMP-9,uPA,TIMP-1和TIMP-2蛋白的表現量 29
    十一、Bornyl cis-4-Hydroxycinnamate抑制FAK / PI3K / Akt / mTOR訊息傳遞途徑相關蛋白 31
    十二、Bornyl cis-4-Hydroxycinnamate抑制MAPK訊息途徑相關分子
    目前已有研究證實mitogen-activated protein kinase (MAPK)………………………………………………………...…...32
    十三、Bornyl cis-4-Hydroxycinnamate 對GRB2 Signaling Pathway抑制作用 34
    十四、Bornyl cis-4-Hydroxycinnamate對於抑制Epithelial to Mesenchymal Transition (EMT)之效果 35
    肆、結果與討論 37
    伍、 材料與方法 42
    陸、 結論 49
    柒、參考文獻 51


    圖表目錄
    圖目錄
    圖 1. 從荖葉中分離出bornyl cis-4-hydroxycinnamate的化學結構……….9
    圖2. 評估bornyl cis-4-hydroxycinnamate對黑素瘤細胞的細胞毒性和抗增殖作用………………………………………………………………………..10
    圖3. bornyl cis-4-hydroxycinnamate誘導的A2058和A375黑色素瘤細胞凋亡...............………………………………………………………………...11
    圖4. (A)透過LC-MS / MS鑑定了2-DE圖譜上的標記為表現量具差異的蛋白質斑點………………………………………………..…………………16
    圖5. Bornyl cis-4-hydroxycinnamate透過線粒體膜電位(Δψm)變化和線粒體誘導的途徑在A2058和A375黑色素瘤細胞中引發凋亡 18
    圖6. Bornyl cis-4-hydroxycinnamate所誘導產生的througcaspase-dependent pathways細胞凋亡機制 20
    圖7. bornyl cis-4-hydroxycinnamate作用後,在A375和A2058黑色素瘤細胞中內質網(ER)激應所誘導的蛋白質的表現量 22
    圖 8. 使用抑製劑salubrinal(Sal)驗證了bornyl cis-4-hydroxycinnamate作用後的細胞存活率 23
    圖9. bornyl cis-4-hydroxycinnamate處理和對照組(dimethyl sulfoxide; DMSO)處理24小時後,A2058和A375細胞的細胞活性 24
    圖10. bornyl cis-4-hydroxycinnamate對A2058和A375細胞遷移的影響 27
    圖 11. bornyl cis-4-hydroxycinnamate對A2058和A375細胞通過Matrigel-coated transwells侵襲的抑製作用 28
    圖 12. bornyl cis-4-hydroxycinnamate對A2058和A375細胞MMP-2 / -9活性和蛋白質表現量的影響 30
    圖13. bornyl cis-4-hydroxycinnamate對A2058和A375細胞中FAK / PI3K / Akt / mTOR訊息傳遞途徑的影響 31
    圖 14. bornyl cis-4-hydroxycinnamate對A2058和A375細胞中mitogen-activated protein kinase (MAPK) signaling pathways的影響 32
    圖15. bornyl cis-4-hydroxycinnamate對A2058和A375細胞GRB2 signaling pathway的影響 34
    圖16在A2058和A375細胞中抑制epithelial to mesenchymal transition (EMT) 35
    圖 17. Bornyl cis-4-hydroxycinnamate誘導A2058和A375黑色素癌細胞凋亡途徑 49
    圖18. Bornyl cis-4-hydroxycinnamate介導抑制A2058和A375黑色素瘤細胞遷移和侵襲的訊息傳遞途徑 50
    表目錄
    表1.加入bornyl cis-4-hydroxycinnamate作用24小時後表現量具有倍數差異之蛋白質

    Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA A Cancer J. Clin. 2005, 55, 74–108.
    American Cancer Society. Melanoma Skin Cancer. Available online: https://www.cancer.org/cancer/melanoma-skin-cancer/about.html (accessed on 19 November 2017).
    Fuglede, N.; Brinck-Claussen, U.; Deltour, I.; Boesen, E.; Dalton, S.; Johansen, C. Incidence of cutaneousmalignant melanoma in denmark, 1978–2007. Br. J. Dermatol. 2011, 165, 349–353.
    Sasse, A.D.; Sasse, E.C.; Clark, L.; Ulloa, L.; Clark, O. Chemoimmunotherapy versus chemotherapy for metastatic malignant melanoma. Cochrane Database Syst. Rev. 2007, 24, CD005413.
    Tawbi, H.A.; Buch, S.C. Chemotherapy resistance abrogation in metastatic melanoma. Clin. Adv. Hematol.Oncol. 2010, 8, 259–266.
    Chang, J. Cutaneous melanoma: Taiwan experience and literature review. Chang Gung Med. J. 2010, 33, 602–612.
    Essner, R. Surgical treatment of malignant melanoma. Surg. Clin. 2003, 83, 109–156.
    Bleehen, N.; Newlands, E.; Lee, S.M.; Thatcher, N.; Selby, P.; Calvert, A.; Rustin, G.; Brampton, M.;Stevens, M. Cancer research campaign phase II trial of temozolomide in metastatic melanoma. J. Clin.
    Oncol. 1995, 13, 910–913.
    Treisman, J.; Garlie, N. Systemic therapy for cutaneous melanoma. Clin. Plast. Surg. 2010, 37, 127–146.
    Acquavella, N.; Kluger, H.; Rhee, J.; Farber, L.; Tara, H.; Ariyan, S.; Narayan, D.; Kelly, W.; Sznol, M.Toxicity and activity of a twice daily high-dose bolus interleukin 2 regimen in patients with metastaticmelanoma and metastatic renal cell cancer. J. Immunother. 2008, 31, 569–576.
    Ibrahim, N.; Haluska, F.G. Molecular pathogenesis of cutaneous melanocytic neoplasms. Annu. Rev.Pathol. Mech. Dis. 2009, 4, 551–579.
    Ng, P.L.; Rajab, N.F.; Then, S.M.; Yusof, Y.A.M.; Ngah, W.Z.W.; Pin, K.Y.; Looi, M.L. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancercells. J. Zhejiang Univ. Sci. B 2014, 15, 692–700.
    Rai, M.P.; Thilakchand, K.R.; Palatty, P.L.; Rao, P.; Rao, S.; Bhat, H.P.; Baliga, M.S. Piper betel Linn (betel vine),the maligned southeast asian medicinal plant possesses cancer preventive effects: Time to reconsider the wronged opinion. Asian Pac. J. Cancer Prev. 2011, 12, 2149–2156.
    Venkadeswaran, K.; Muralidharan, A.R.; Annadurai, T.; Ruban, V.V.; Sundararajan, M.; Anandhi, R.; Thomas, P.A.; Geraldine, P. Antihypercholesterolemic and antioxidative potential of an extract of the plant, Piper betle, and its active constituent, eugenol, in triton WR-1339-induced hypercholesterolemia in experimental rats. Evid.-Based Complement. Altern. Med. 2014, 2014, 478973.
    Al-Adhroey, A.H.; Nor, Z.M.; Al-Mekhlafi, H.M.; Amran, A.A.; Mahmud, R. Antimalarial activity ofmethanolic leaf extract of Piper betle L. Molecules 2011, 16, 107–118.
    Toyota, M.; Saito, T.; Matsunami, J.; Asakawa, Y. A comparative study on three chmo-type of the liverwort conocephalum conicum using volatile constituents. Phytochemistry 1997, 44, 1265–1270.
    Haze, K.; Yoshida, H.; Yanagi, H.; Yura, T.; Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 1999, 10, 3787–3799.
    Fusaro, G.; Dasgupta, P.; Rastogi, S.; Joshi, B.; Chellappan, S. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J. Biol. Chem. 2003, 278, 47853–47861.
    Nijtmans, L.G.; de Jong, L.; Sanz, M.A.; Coates, P.J.; Berden, J.A.; Back, J.W.; Muijsers, A.O.; van der Spek, H.;Grivell, L.A. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins.EMBO J. 2000, 19, 2444–2451.
    Rajalingam, K.; Wunder, C.; Brinkmann, V.; Churin, Y.; Hekman, M.; Sievers, C.; Rapp, U.R.; Rudel, T. Prohibitin is required for ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nat. Cell Biol. 2005, 7, 837–843.
    Winter, A.; Kämäräinen, O.; Hofmann, A. Molecular modeling of prohibitin domains. Proteins Struct. Funct. Bioinform. 2007, 68, 353–362.
    Wong, P.-F.; Cheong, W.-F.; Shu, M.-H.; Teh, C.-H.; Chan, K.-L.; AbuBakar, S. Eurycomanone suppresses expression of lung cancer cell tumor markers, prohibitin, annexin 1 and endoplasmic reticulum protein 28. Phytomedicine 2012, 19, 138–144.
    Yang, H.-B.; Song, W.; Chen, L.-Y.; Li, Q.-F.; Shi, S.-L.; Kong, H.-Y.; Chen, P. Differential expression and regulation of prohibitin during curcumin-induced apoptosis of immortalized human epidermal hacat cells. Int. J. Mol. Med. 2014, 33, 507–514.
    Liu, C.-I.;Wang, R.Y.-L.; Lin, J.-J.; Su, J.-H.; Chiu, C.-C.; Chen, J.-C.; Chen, J.Y.-F.;Wu, Y.-J. Proteomic profiling of the 11-dehydrosinulariolide-treated oral carcinoma cells Ca9–22: Effects on the cell apoptosis through mitochondrial-related and ER stress pathway. J. Proteom. 2012, 75, 5578–5589.
    Denicourt, C.; Dowdy, S.F. Targeting apoptotic pathways in cancer cells. Science 2004, 305, 1411–1413.
    Igney, F.H.; Krammer, P.H. Death and anti-death: Tumour resistance to apoptosis. Nat. Rev. Cancer 2002, 2, 277.
    Liao, C.-T.; Chang, J.T.-C.; Wang, H.-M.; Ng, S.-H.; Hsueh, C.; Lee, L.-Y.; Lin, C.-H.; Chen, I.-H.; Huang, S.-F.;Cheng, A.-J. Analysis of risk factors of predictive local tumor control in oral cavity cancer. Ann. Surg. Oncol.2008, 15, 915–922.
    Nicholson, D.W.; Thornberry, N.A. Life and death decisions. Science 2003, 299, 214–215. Amarante-Mendes, G.P.; Kim, C.N.; Liu, L.; Huang, Y.; Perkins, C.L.; Green, D.R.; Bhalla, K. Bcr-abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3. Blood 1998, 91, 1700–1705.
    Rao, R.V.; Poksay, K.S.; Castro-Obregon, S.; Schilling, B.; Row, R.H.; del Rio, G.; Gibson, B.W.; Ellerby, H.M.;Bredesen, D.E. Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J. Biol. Chem. 2004, 279, 177–187.
    Kim, I.; Xu,W.; Reed, J.C. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 2008, 7, 1013–1030.
    Xu, C.; Bailly-Maitre, B.; Reed, J.C. Endoplasmic reticulum stress: Cell life and death decisions. J. Clin. Investig. 2005, 115, 2656–2664.
    Boyce, M.; Yuan, J. Cellular response to endoplasmic reticulum stress: A matter of life or death. Cell Death Differ. 2006, 13, 363–373.
    Kouroku, Y.; Fujita, E.; Tanida, I.; Ueno, T.; Isoai, A.; Kumagai, H.; Ogawa, S.; Kaufman, R.; Kominami, E.; Momoi, T. ER stress (PERK/eIF2_ phosphorylation) mediates the polyglutamine-induced LC3 conversion,an essential step for autophagy formation. Cell Death Differ. 2007, 14, 230–239.
    Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004,11, 381–389.
    Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007, 8, 519–529.
    Bollo, M.; Paredes, R.M.; Holstein, D.; Zheleznova, N.; Camacho, P.; Lechleiter, J.D. Calcineurin interacts with perk and dephosphorylates calnexin to relieve ER stress in mammals and frogs. PLoS ONE 2010, 5, e11925.
    Muller, C.; Bandemer, J.; Vindis, C.; Camaré, C.; Mucher, E.; Guéraud, F.; Larroque-Cardoso, P.; Bernis, C.; Auge, N.; Salvayre, R. Protein disulfide isomerase modification and inhibition contribute to ER stress and apoptosis induced by oxidized low density lipoproteins. Antioxid. Redox Signal. 2013, 18, 731–742.
    Teske, B.F.;Wek, S.A.; Bunpo, P.; Cundiff, J.K.; McClintick, J.N.; Anthony, T.G.;Wek, R.C. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol. Biol. Cell 2011, 22, 4390–4405.
    Lin, Y.-H.; Chiu, J.-H. Use of chinese medicine among patients with liver cancer in taiwan. J. Altern. Complement. Med. 2010, 16, 527–528.
    Lin, J.-J.; Wang, R.Y.; Chen, J.-C.; Chiu, C.-C.; Liao, M.-H.; Wu, Y.-J. Cytotoxicity of 11-epi-sinulariolide acetate isolated from cultured soft corals on HA22T cells through the endoplasmic reticulum stress pathway and mitochondrial dysfunction. Int. J. Mol. Sci. 2016, 17, 1787.
    Wu, Y.-J.; Wong, B.-S.; Yea, S.-H.; Lu, C.-I.; Weng, S.-H. Sinularin induces apoptosis through mitochondria dysfunction and inactivation of the pi3k/akt/mtor pathway in gastric carcinoma cells. Mar. Drugs 2016, 14, 142.
    Andreu-Fernandez, V., A. Genoves, T. H. Lee, M. Stellato, F. Lucantoni, M. Orzaez, I. Mingarro, M. I. Aguilar and E. Perez-Paya (2014). "Peptides Derived from the Transmembrane Domain of Bcl-2 Proteins as Potential Mitochondrial Priming Tools." ACS Chem Biol.
    Arawwawala, L. D., L. S. Arambewela and W. D. Ratnasooriya (2014). "Gastroprotective effect of Piper betle Linn. leaves grown in Sri Lanka." J Ayurveda Integr Med 5(1): 38-42.
    Armstrong, B. K. and A. Kricker (2001). "The epidemiology of UV induced skin cancer." J Photochem Photobiol B 63(1-3): 8-18.
    Ashkenazi, A. and V. M. Dixit (1998). "Death receptors: signaling and modulation." Science 281(5381): 1305-1308.
    Bollo, M., R. M. Paredes, D. Holstein, N. Zheleznova, P. Camacho and J. D. Lechleiter (2010). "Calcineurin interacts with PERK and dephosphorylates calnexin to relieve ER stress in mammals and frogs." PLoS One 5(8): e11925.
    Cheon, S. A., K. W. Jung, Y. S. Bahn and H. A. Kang (2014). "The unfolded protein response (UPR) pathway in Cryptococcus." Virulence 5(2): 341-350.
    Darzynkiewicz, Z., D. Galkowski and H. Zhao (2008). "Analysis of apoptosis by cytometry using TUNEL assay." Methods 44(3): 250-254.
    de Gruijl, F. R. (1999). "Skin cancer and solar UV radiation." Eur J Cancer 35(14): 2003-2009.
    East, D. A. and M. Campanella (2013). "Ca2+ in quality control: an unresolved riddle critical to autophagy and mitophagy." Autophagy 9(11): 1710-1719.
    Elmore, S. (2007). "Apoptosis: a review of programmed cell death." Toxicol Pathol 35(4): 495-516.
    Epstein, E. H., Jr. (2013). "Skin cancer: Basal cell carcinoma--pay your money, take your choice." Nat Rev Clin Oncol 10(9): 489-490.
    Firtina, Z. and M. K. Duncan (2011). "Unfolded Protein Response (UPR) is activated during normal lens development." Gene Expr Patterns 11(1-2): 135-143.
    Galligan, J. J., R. L. Smathers, C. T. Shearn, K. S. Fritz, D. S. Backos, H. Jiang, C. C. Franklin, D. J. Orlicky, K. N. Maclean and D. R. Petersen (2012). "Oxidative Stress and the ER Stress Response in a Murine Model for Early-Stage Alcoholic Liver Disease." J Toxicol 2012: 207594.
    Galluzzi, L., T. Vanden Berghe, N. Vanlangenakker, S. Buettner, T. Eisenberg, P. Vandenabeele, F. Madeo and G. Kroemer (2011). "Programmed necrosis from molecules to health and disease." Int Rev Cell Mol Biol 289: 1-35.
    Kim, H. S., A. R. Ingermann, J. Tsubaki, S. M. Twigg, G. E. Walker and Y. Oh (2004). "Insulin-like growth factor-binding protein 3 induces caspase-dependent apoptosis through a death receptor-mediated pathway in MCF-7 human breast cancer cells." Cancer Res 64(6): 2229-2237.
    Kudo, T. (2012). "[ER stress and neuropsychiatric disease]." Seishin Shinkeigaku Zasshi 114(2): 115-123.
    Lee, A. H., N. N. Iwakoshi and L. H. Glimcher (2003). "XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response." Mol Cell Biol 23(21): 7448-7459.
    Lee, A. S. (2005). "The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress." Methods 35(4): 373-381.
    Li, C. P., J. H. Li, S. Y. He, P. Li and X. L. Zhong (2014). "Roles of Fas/Fasl, Bcl-2/Bax, and Caspase-8 in rat nonalcoholic fatty liver disease pathogenesis." Genet Mol Res 13(2): 3991-3999.
    Li, D., H. Ma, Y. Ye, C. Ji, X. Tang, D. Ouyang, J. Chen, Y. Li and Y. Ma (2014). "Deoxynivalenol induces apoptosis in mouse thymic epithelial cells through mitochondria-mediated pathway." Environ Toxicol Pharmacol 38(1): 163-171.
    Majno, G. and I. Joris (1995). "Apoptosis, oncosis, and necrosis. An overview of cell death." Am J Pathol 146(1): 3-15.
    Masciarelli, S., A. M. Fra, N. Pengo, M. Bertolotti, S. Cenci, C. Fagioli, D. Ron, L. M. Hendershot and R. Sitia (2010). "CHOP-independent apoptosis and pathway-selective induction of the UPR in developing plasma cells." Mol Immunol 47(6): 1356-1365.
    Muller, C., J. Bandemer, C. Vindis, C. Camare, E. Mucher, F. Gueraud, P. Larroque-Cardoso, C. Bernis, N. Auge, R. Salvayre and A. Negre-Salvayre (2013). "Protein disulfide isomerase modification and inhibition contribute to ER stress and apoptosis induced by oxidized low density lipoproteins." Antioxid Redox Signal 18(7): 731-742.
    Pilgrim, W., R. Hayes, D. W. Hanson, B. Zhang, B. Boudreau and S. Leonfellner (2014). "Skin Cancer (Basal Cell Carcinoma, Squamous Cell Carcinoma, and Malignant Melanoma): New Cases, Treatment Practice, and Health Care Costs in New Brunswick, Canada, 2002-2010." J Cutan Med Surg 18(0): 1-12.
    Sun, H., C. Lv, L. Yang, Y. Wang, Q. Zhang, S. Yu, H. Kong, M. Wang, J. Xie, C. Zhang and M. Zhou (2014). "Solanine induces mitochondria-mediated apoptosis in human pancreatic cancer cells." Biomed Res Int 2014: 805926.
    Teske, B. F., S. A. Wek, P. Bunpo, J. K. Cundiff, J. N. McClintick, T. G. Anthony and R. C. Wek (2011). "The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress." Mol Biol Cell 22(22): 4390-4405.
    Venkadeswaran, K., A. R. Muralidharan, T. Annadurai, V. V. Ruban, M. Sundararajan, R. Anandhi, P. A. Thomas and P. Geraldine (2014). "Antihypercholesterolemic and Antioxidative Potential of an Extract of the Plant, Piper betle, and Its Active Constituent, Eugenol, in Triton WR-1339-Induced Hypercholesterolemia in Experimental Rats." Evid Based Complement Alternat Med 2014: 478973.
    Vincenz, L., R. Jager, M. O'Dwyer and A. Samali (2013). "Endoplasmic reticulum stress and the unfolded protein response: targeting the Achilles heel of multiple myeloma." Mol Cancer Ther 12(6): 831-843.
    Wang, D. Y., L. Zhang, J. Fan, F. Li, K. Q. Ma, P. Wang and J. H. Chen (2012). "Matrix metalloproteinases in human sclerotic dentine of attrited molars." Arch Oral Biol 57(10): 1307-1312.
    Wei, W., B. S. Han, L. Y. Guan, F. Huang, L. Feng, Y. Yang and C. M. Xu (2007). "[Mitochondrial transmembrane potential loss caused by reactive oxygen species plays a major role in sodium selenite-induced apoptosis in NB4 cells]." Zhongguo Yi Xue Ke Xue Yuan Xue Bao 29(3): 324-328.
    Yuan, X. J. and Y. E. Whang (2002). "PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway." Oncogene 21(2): 319-327.
    Zhang, S. Y., J. Feng and X. Wang (2013). "[ER stress and cardiometabolic disease: role of adipokines]." Sheng Li Ke Xue Jin Zhan 44(5): 339-344.
    Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA A Cancer J. Clin. 2005, 55, 74–108.
    American Cancer Society. Melanoma Skin Cancer. Available online: https://www.cancer.org/cancer/melanoma-skin-cancer/about.html (accessed on 19 November 2017).
    Fuglede, N.; Brinck-Claussen, U.; Deltour, I.; Boesen, E.; Dalton, S.; Johansen, C. Incidence of cutaneousmalignant melanoma in denmark, 1978–2007. Br. J. Dermatol. 2011, 165, 349–353.
    Sasse, A.D.; Sasse, E.C.; Clark, L.; Ulloa, L.; Clark, O. Chemoimmunotherapy versus chemotherapy for metastatic malignant melanoma. Cochrane Database Syst. Rev. 2007, 24, CD005413.
    Tawbi, H.A.; Buch, S.C. Chemotherapy resistance abrogation in metastatic melanoma. Clin. Adv. Hematol.Oncol. 2010, 8, 259–266.
    Chang, J. Cutaneous melanoma: Taiwan experience and literature review. Chang Gung Med. J. 2010, 33, 602–612.
    Essner, R. Surgical treatment of malignant melanoma. Surg. Clin. 2003, 83, 109–156.
    Bleehen, N.; Newlands, E.; Lee, S.M.; Thatcher, N.; Selby, P.; Calvert, A.; Rustin, G.; Brampton, M.;Stevens, M. Cancer research campaign phase II trial of temozolomide in metastatic melanoma. J. Clin.
    Oncol. 1995, 13, 910–913.
    Treisman, J.; Garlie, N. Systemic therapy for cutaneous melanoma. Clin. Plast. Surg. 2010, 37, 127–146.
    Acquavella, N.; Kluger, H.; Rhee, J.; Farber, L.; Tara, H.; Ariyan, S.; Narayan, D.; Kelly, W.; Sznol, M.Toxicity and activity of a twice daily high-dose bolus interleukin 2 regimen in patients with metastaticmelanoma and metastatic renal cell cancer. J. Immunother. 2008, 31, 569–576.
    Ibrahim, N.; Haluska, F.G. Molecular pathogenesis of cutaneous melanocytic neoplasms. Annu. Rev.Pathol. Mech. Dis. 2009, 4, 551–579.
    Ng, P.L.; Rajab, N.F.; Then, S.M.; Yusof, Y.A.M.; Ngah, W.Z.W.; Pin, K.Y.; Looi, M.L. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancercells. J. Zhejiang Univ. Sci. B 2014, 15, 692–700. [CrossRef] [PubMed]
    Rai, M.P.; Thilakchand, K.R.; Palatty, P.L.; Rao, P.; Rao, S.; Bhat, H.P.; Baliga, M.S. Piper betel Linn (betel vine),the maligned southeast asian medicinal plant possesses cancer preventive effects: Time to reconsider the wronged opinion. Asian Pac. J. Cancer Prev. 2011, 12, 2149–2156. [PubMed]
    Venkadeswaran, K.; Muralidharan, A.R.; Annadurai, T.; Ruban, V.V.; Sundararajan, M.; Anandhi, R.; Thomas, P.A.; Geraldine, P. Antihypercholesterolemic and antioxidative potential of an extract of the plant, Piper betle, and its active constituent, eugenol, in triton WR-1339-induced hypercholesterolemia in experimental rats. Evid.-Based Complement. Altern. Med. 2014, 2014, 478973. [CrossRef] [PubMed]
    Al-Adhroey, A.H.; Nor, Z.M.; Al-Mekhlafi, H.M.; Amran, A.A.; Mahmud, R. Antimalarial activity ofmethanolic leaf extract of Piper betle L. Molecules 2011, 16, 107–118. [CrossRef] [PubMed]
    Toyota, M.; Saito, T.; Matsunami, J.; Asakawa, Y. A comparative study on three chmo-type of the liverwort conocephalum conicum using volatile constituents. Phytochemistry 1997, 44, 1265–1270. [CrossRef]
    Haze, K.; Yoshida, H.; Yanagi, H.; Yura, T.; Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 1999, 10, 3787–3799. [CrossRef] [PubMed]
    Fusaro, G.; Dasgupta, P.; Rastogi, S.; Joshi, B.; Chellappan, S. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J. Biol. Chem. 2003, 278, 47853–47861. [CrossRef] [PubMed]
    Nijtmans, L.G.; de Jong, L.; Sanz, M.A.; Coates, P.J.; Berden, J.A.; Back, J.W.; Muijsers, A.O.; van der Spek, H.;Grivell, L.A. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins.EMBO J. 2000, 19, 2444–2451. [CrossRef] [PubMed]
    Rajalingam, K.; Wunder, C.; Brinkmann, V.; Churin, Y.; Hekman, M.; Sievers, C.; Rapp, U.R.; Rudel, T. Prohibitin is required for ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nat. Cell Biol. 2005, 7, 837–843. [CrossRef] [PubMed]
    Winter, A.; Kämäräinen, O.; Hofmann, A. Molecular modeling of prohibitin domains. Proteins Struct. Funct. Bioinform. 2007, 68, 353–362. [CrossRef] [PubMed]
    Wong, P.-F.; Cheong, W.-F.; Shu, M.-H.; Teh, C.-H.; Chan, K.-L.; AbuBakar, S. Eurycomanone suppresses expression of lung cancer cell tumor markers, prohibitin, annexin 1 and endoplasmic reticulum protein 28. Phytomedicine 2012, 19, 138–144. [CrossRef] [PubMed]
    Yang, H.-B.; Song, W.; Chen, L.-Y.; Li, Q.-F.; Shi, S.-L.; Kong, H.-Y.; Chen, P. Differential expression and regulation of prohibitin during curcumin-induced apoptosis of immortalized human epidermal hacat cells. Int. J. Mol. Med. 2014, 33, 507–514. [CrossRef] [PubMed]
    Liu, C.-I.;Wang, R.Y.-L.; Lin, J.-J.; Su, J.-H.; Chiu, C.-C.; Chen, J.-C.; Chen, J.Y.-F.;Wu, Y.-J. Proteomic profiling of the 11-dehydrosinulariolide-treated oral carcinoma cells Ca9–22: Effects on the cell apoptosis through mitochondrial-related and ER stress pathway. J. Proteom. 2012, 75, 5578–5589. [CrossRef] [PubMed]
    Denicourt, C.; Dowdy, S.F. Targeting apoptotic pathways in cancer cells. Science 2004, 305, 1411–1413. [CrossRef] [PubMed]
    Igney, F.H.; Krammer, P.H. Death and anti-death: Tumour resistance to apoptosis. Nat. Rev. Cancer 2002, 2, 277.[CrossRef] [PubMed]
    Liao, C.-T.; Chang, J.T.-C.; Wang, H.-M.; Ng, S.-H.; Hsueh, C.; Lee, L.-Y.; Lin, C.-H.; Chen, I.-H.; Huang, S.-F.;Cheng, A.-J. Analysis of risk factors of predictive local tumor control in oral cavity cancer. Ann. Surg. Oncol.2008, 15, 915–922. [CrossRef] [PubMed]
    Nicholson, D.W.; Thornberry, N.A. Life and death decisions. Science 2003, 299, 214–215. [CrossRef] [PubMed]
    Amarante-Mendes, G.P.; Kim, C.N.; Liu, L.; Huang, Y.; Perkins, C.L.; Green, D.R.; Bhalla, K. Bcr-abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3. Blood 1998, 91, 1700–1705. [PubMed]
    Rao, R.V.; Poksay, K.S.; Castro-Obregon, S.; Schilling, B.; Row, R.H.; del Rio, G.; Gibson, B.W.; Ellerby, H.M.;Bredesen, D.E. Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J. Biol. Chem. 2004, 279, 177–187. [CrossRef] [PubMed]
    Kim, I.; Xu,W.; Reed, J.C. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 2008, 7, 1013–1030. [CrossRef] [PubMed]
    Xu, C.; Bailly-Maitre, B.; Reed, J.C. Endoplasmic reticulum stress: Cell life and death decisions. J. Clin. Investig. 2005, 115, 2656–2664. [CrossRef] [PubMed]
    Boyce, M.; Yuan, J. Cellular response to endoplasmic reticulum stress: A matter of life or death. Cell Death Differ. 2006, 13, 363–373. [CrossRef] [PubMed]
    Kouroku, Y.; Fujita, E.; Tanida, I.; Ueno, T.; Isoai, A.; Kumagai, H.; Ogawa, S.; Kaufman, R.; Kominami, E.; Momoi, T. ER stress (PERK/eIF2_ phosphorylation) mediates the polyglutamine-induced LC3 conversion,an essential step for autophagy formation. Cell Death Differ. 2007, 14, 230–239. [CrossRef] [PubMed]
    Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004,11, 381–389. [CrossRef] [PubMed]
    Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007, 8, 519–529. [CrossRef] [PubMed]
    Bollo, M.; Paredes, R.M.; Holstein, D.; Zheleznova, N.; Camacho, P.; Lechleiter, J.D. Calcineurin interacts with perk and dephosphorylates calnexin to relieve ER stress in mammals and frogs. PLoS ONE 2010, 5, e11925. [CrossRef] [PubMed]
    Muller, C.; Bandemer, J.; Vindis, C.; Camaré, C.; Mucher, E.; Guéraud, F.; Larroque-Cardoso, P.; Bernis, C.; Auge, N.; Salvayre, R. Protein disulfide isomerase modification and inhibition contribute to ER stress and apoptosis induced by oxidized low density lipoproteins. Antioxid. Redox Signal. 2013, 18, 731–742. [CrossRef] [PubMed]
    Teske, B.F.;Wek, S.A.; Bunpo, P.; Cundiff, J.K.; McClintick, J.N.; Anthony, T.G.;Wek, R.C. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol. Biol. Cell 2011, 22, 4390–4405. [CrossRef] [PubMed]
    Lin, Y.-H.; Chiu, J.-H. Use of chinese medicine among patients with liver cancer in taiwan. J. Altern. Complement. Med. 2010, 16, 527–528. [CrossRef] [PubMed]
    Lin, J.-J.; Wang, R.Y.; Chen, J.-C.; Chiu, C.-C.; Liao, M.-H.; Wu, Y.-J. Cytotoxicity of 11-epi-sinulariolide acetate isolated from cultured soft corals on HA22T cells through the endoplasmic reticulum stress pathway and mitochondrial dysfunction. Int. J. Mol. Sci. 2016, 17, 1787. [CrossRef] [PubMed]
    Wu, Y.-J.; Wong, B.-S.; Yea, S.-H.; Lu, C.-I.; Weng, S.-H. Sinularin induces apoptosis through mitochondria dysfunction and inactivation of the pi3k/akt/mtor pathway in gastric carcinoma cells. Mar. Drugs 2016, 14, 142.[CrossRef] [PubMed]

    下載圖示
    QR CODE