簡易檢索 / 詳目顯示

研究生: 吳光雅
Wu, Guang-Ya
論文名稱: 藉由 Propranolol 及 Selenium 之急毒性建立物種敏感性分佈以推導其預測無效應濃度
Prediction of No-Effect Concentrations by Establishing the Species Sensitivity Distributions of the Acute Toxicity of Propranolol and Selenium
指導教授: 謝季吟
Hsieh, Chi-Ying
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 108
語文別: 中文
論文頁數: 91
中文關鍵詞: 普萘洛爾物種敏感性分佈預測無效應濃度HC5保護95%物種的危險濃度
外文關鍵詞: Propranolol, Selenium, Species Sensitivity Distributions, Predicted no effect concentrations ( PNEC), Hazardous concentrations for 5% of species (HC5)
DOI URL: http://doi.org/10.6346/NPUST202000437
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 新興污染物已在各種環境介質中被檢出,並可能對人類健康和生態系統造成不利影響。其中屬於藥物及個人防護用品最常用的β-腎上腺素受體阻斷劑普萘洛爾(Propranolol)因具有不同急慢性毒性而受到重視。另外隨著人為活動;如化石燃料的燃燒、煉油廠、金屬冶煉、農業灌溉和工業採礦的污水排放,伴隨著土壤和水生環境中的金屬硒(Selenium, Se)亦因多管道被排放至環境,最終進入食物鏈,而可能影響人體健康。本研究根據物種敏感性分佈曲線(Species Sensitivity Distributions, SSDs)計算暴露於目標化合物(Propranolol & Selenium)造成5%物種的急毒性危險濃度( Hazardous concentrations for 5% of species , HC5)。本研究使用評估SSDs的水生物種群包括藻類、無脊椎動物和脊椎動物。成果期望能獲得水域環境中較少被探討的Propranolol以及Selenium的預測無效應濃度(Prediction of no-effect concentrations, PNEC)及HC5值,對於未來新興污染物的環境管理限值之擬定至關重要。
    物種暴露於Propranolol分別對8種生物之耐受性,由高至低依序為Chironomus riparius > Neocaridina denticulata > Chlorella vulgaris> Pseudorasbora parva> Daphnia magna > Cyprinus carpio > Hyalella azteca>Pseudokirchneriella subcapitata,推測Propranolol對於無脊椎動物之急毒性較小。暴露於Selenium之試驗結果耐受性,由高至低依序為Pseudorasbora parva> Cyprinus carpio > Chlorella vulgaris> Chironomus riparius > Neocaridina denticulata >Pseudokirchneriella subcapitata> Daphnia magna > Hyalella azteca,顯示Selenium對脊椎生物魚類以及藻類小球藻之急毒性影響較小。
    本研究結果Propranolol之HC5為0.465 mg/L,PNEC值為0.093 mg/L;Selenium之HC5為0.311 mg/L,PNEC值為0.0622 mg/L。若另置入數據庫擴大物種之急毒性數據,Propranolol之HC5為0.532 mg/L,PNEC值為0.106mg/L;Selenium之HC5為0.114 mg/L,PNEC值為0.0228 mg/L。判斷物種數以及物種組成大幅影響了HC5的估算。PNEC值越小風險越大,本研究顯示普萘洛爾和硒的風險商分別為0.0015-0.0024和0.0305-0.0864,顯示生態風險極低。

    Emerging contaminants have been detected in various environmental media and may cause adverse effects on human health and ecosystems. Among them are pharmaceuticals and personal care products (PPCPs). Propranolol, the most commonly used β-adrenoceptor blocker, has received attention because of its acute and chronic toxicity. In addition, human activities such as fossil fuel combustion, oil refineries, metal smelting, agricultural irrigation, and industrial mining wastewater regularly discharge selenium (selenium, Se) into sedicet and the aquatic environment, where it eventually enters the food chain and may affect human health. In this study, based on species sensitivity distributions (SSDs), we calculated the acute concentration (HC5) to 5% of species from exposure to two target compounds (propranolol & selenium). The aquatic species used in SSDs included algae, invertebrates, and vertebrates. The results of this study are helpful in obtaining the PNEC (prediction of no-effect concentrations) and HC5 values of propranolol and selenium in the water environment, which are rarely discussed but are very important in the formulation of environmental management limits for future emerging pollutants.
    The sensitivity of the eight species exposed to propranolol were, in descending order, Chironomus riparius > Neocaridina denticulata > Chlorella vulgaris > Pseudorasbora parva > Daphnia magna > Cyprinus carpio > Hyalella azteca > Pseudokirchneriella subcapitaol. It is speculated that propranolol is less acutely toxic to invertebrates. In addition, the sensitivity of the biota exposed to selenium is, from low to high: Pseudorasbora parva > Cyprinus carpio > Chlorella vulgaris > Chironomus riparius > Neocaridina denticulata > Pseudokirchneriella subcapitata > Daphnia magna > Hyalella azteca, showing that vertebrates and algae are less affected.
    In this study, the HC5 of propranolol was 0.465 mg/L and the PNEC value was 0.093 mg/L; the HC5 of selenium was 0.311 mg/L and the PNEC value was 0.0622 mg/L. In comparison to the HC5 of propranolol was increased to 0.532 mg/L and the PNEC value was 0.106 mg/L after added more species ecotoxicological data from the database; the HC5 of selenium was decreased to 0.114 mg/L and the PNEC value was 0.0228 mg/L. The number of species and the composition of the species greatly influenced the estimation of HC5. Ecological risk assessment usually uses the risk quotient (RQ) method, which is the ratio of a predicted environmental concentration (PEC) to a non-effect concentration PNEC, so the larger the PNEC value, the lower the risk. Our research revealed that the risk quotients calculated for propranolol and Se were 0.0015-0.0024 and 0.0305-0.0864, respectively, indicating very low ecological risks.

    摘要 I
    Abstract III
    致謝 V
    目錄 VI
    圖目錄 IX
    表目錄 X
    第一章 前言 1
    1.1研究動機 1
    1.2研究目的 3
    第二章 文獻回顧 5
    2.1環境污染物簡介 5
    2.2藥物及個人護理產品(Pharmaceuticals and Personal Care Products, PPCPs) 5
    2.2.1普萘洛爾(Propranolol)簡介 7
    2.2.2普奈洛爾之危害與影響 11
    2.3金屬硒 13
    2.3.1硒(Selenium)在環境中的循環 14
    2.3.2 硒之毒性與影響 16
    2.4物種敏感性分布(Species Sensitivity Distributions, SSDs) 18
    2.4.1發展歷史 18
    2.4.2物種敏感性分布之計算與應用性 19
    第三章 材料與方法 24
    3.1生物馴養與試驗 24
    3.1.1端足蟲(Hyalella azteca) 24
    3.1.1.1馴養條件 24
    3.1.1.2 H. azteca急毒性試驗 25
    3.1.2水蚤(Daphnia magna) 25
    3.1.2.1馴養條件 25
    3.1.2.2 D. magna急毒性試驗 26
    3.1.3搖蚊(Chironomus riparius) 26
    3.1.3.1馴養條件 26
    3.1.3.2 C. riparius急毒性試驗 26
    3.1.4多齒新米蝦(Neocaridina denticulata) 27
    3.1.4.1馴養條件 27
    3.1.4.2 N. denticulata急毒性試驗 28
    3.1.5鯉魚(Cyprinus carpio) 28
    3.1.5.1 馴養條件 28
    3.1.5.2 C. carpio急毒性試驗 29
    3.1.6羅漢魚(Pseudorasbora parva) 29
    3.1.6.1 馴養條件 29
    3.1.6.2 P. parva急毒性試驗 30
    3.1.7小球藻(Chlorella vulgaris Beij. 品系#3001) 30
    3.1.7.1馴養條件 30
    3.1.7.2 C. vulgaris試驗 31
    3.1.8羊角月牙藻(Pseudokirchneriella subcapitata) 32
    3.1.8.1馴養條件 32
    3.1.8.2 P. subcapitata試驗 33
    3.2實驗藥品 34
    3.3實驗器材與設備 36
    3.4統計軟體 36
    3.4.1半致死濃度、半影響濃度及半抑制濃度之計算 36
    3.4.2物種敏感性分布模式 36
    3.4.3 HC5及PNEC值之計算 37
    第四章 結果與討論 38
    4.1生物毒性試驗 38
    4.1.1普萘洛爾(Propranolol) 39
    4.1.1.1底棲無脊椎動物試驗 39
    (a)端足蟲(Hyalella azteca) 39
    (b)水蚤(Daphnia magna) 39
    (c)搖蚊(Chironomus riparius) 40
    (d)多齒新米蝦(Neocaridina denticulata) 41
    4.1.1.2魚類試驗 42
    (a)羅漢魚(Pseudorasbora parva) 42
    (b)鯉魚(Cyprinus carpio) 42
    4.1.1.3藻類試驗 44
    小球藻(Chlorella vulgaris Beij) 44
    羊角月芽藻(Pseudokirchneriella subcapitata) 44
    4.1.2硒(Selenium, Se)之毒性 46
    4.1.2.1底棲無脊椎動物試驗 46
    (a)端足蟲(Hyalella azteca) 46
    (b)水蚤(Daphnia magna) 46
    (c)搖蚊(Chironomus riparius) 47
    (d)多齒新米蝦(Neocaridina denticulata) 47
    4.1.1.2魚類試驗 49
    羅漢魚(Pseudorasbora parva) 49
    鯉魚(Cyprinus carpio) 49
    4.1.1.3藻類試驗 51
    小球藻(Chlorella vulgaris Beij.品系#3001) 51
    羊角月芽藻(Pseudokirchneriella subcapitata) 51
    4.2以物種敏感性分布(SSD)計算HC5和PNEC值 53
    4.2.1普奈洛爾(Propranolol) 53
    4.2.2硒(Selenium) 56
    4.3使用物種數對於物種敏感性分布(SSD)擬合結果之影響 59
    4.3.1普奈洛爾(Propranolol) 60
    4.3.1硒(Selenium) 63
    第五章 結論與建議 67
    5.1結論 67
    5.2建議 68
    參考文獻 69
    附錄一、不同生物馴養水配方組成 83
    附錄二、不同生物飼養配方 88
    附錄三、專有名詞 90
    作者簡介 91

    Abdel‐Hamid, M. I., and Skulberg, O. M. (1995). Effect of selenium on the growth of some selected green and blue‐green algae. Lakes and Reservoirs: Research and Management, 1(3), 205-211.
    Al-Farsi, R. S., Ahmed, M., Al-Busaidi, A., and Choudri, B. S. (2017). Translocation of pharmaceuticals and personal care products (PPCPs) into plant tissues: A review. Emerging Contaminants, 3(4), 132-137. doi: https://doi.org/10.1016/j.emcon.2018.02.001
    Amiard, J.-C., and Amiard-Triquet, C. (2015). Chapter 2 - Conventional Risk Assessment of Environmental Contaminants. In C. Amiard-Triquet, J.-C. Amiard and C. Mouneyrac (Eds.), Aquatic Ecotoxicology (pp. 25-49): Academic Press. Nantes, France.
    ASTM E1706-05(2010), Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates (Withdrawn 2019), ASTM International, West Conshohocken, PA, U.S.A.
    Barescut, J., Gariel, J., Péres, J., Morlon, H., Fortin, C., Adam, C., and Garnier-Laplace, J. (2005). Cellular quotas and induced toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii. Radioprotection, 40(S1), S101-S106.
    Beaty, T. V. (1995). The use of Chironomus riparius (Diptera: Chironomidae) in benthic toxicity tests and its response to selenium. Virginia Tech. Blacksburg Virginia, U.S.A.
    Boisson, F., M. Romeo, and M. Gnassia-Barelli. Effect of Selenium on Marine Algae (Effetdu Selenium surles Algues Marines). MAP Tech. Rep. Ser.79:13-31, 1994. ECOREF #16802
    Bottoni, P., Caroli, S., and Caracciolo, A. B. (2010). Pharmaceuticals as priority water contaminants. Toxicological and Environmental Chemistry, 92(3), 549-565. doi: 10.1080/02772241003614320
    Boyum KW (1984) The toxic effect of selenium on the zooplankton, Daphnia magna and Daphnia pulicaria, in water and the food source (Chlamydomonas reinhardtii). PhD Thesis. Dept. of Zoology, University of Wisconsin-Milwaukee.U.S.A.
    Brasher, A. M., and Scott Ogle, R. (1993). Comparative toxicity of selenite and selenate to the amphipod Hyalella azteca. Archives of Environmental Contamination and Toxicology, 24(2), 182-186. doi: 10.1007/BF01141346
    Brooke, L., Call, D., Harting, S., Lindberg, C., Markee, T., McCauley, D., and Poirier, S. (1985). Acute toxicity of selenium (IV) and selenium (VI) to freshwater organisms. Center for Lake Superior Environmental Studies, University of Wisconsin, WI, U.S.A.
    Brozmanová, J., Mániková, D., Vlčková, V., and Chovanec, M. (2010). Selenium: a double-edged sword for defense and offence in cancer. Archives of Toxicology, 84(12), 919-938. doi: 10.1007/s00204-010-0595-8.
    Buhl, K. J., and Hamilton, S. J. (1991). Relative sensitivity of early life stages of arctic grayling, coho salmon, and rainbow trout to nine inorganics. Ecotoxicology and Environmental Safety, 22(2), 184-197.
    Buhl, K. J., and Hamilton, S. (1996). Toxicity of inorganic contaminants, individually and in environmental mixtures, to three endangered fishes (Colorado squawfish, bonytail, and razorback sucker). Archives of Environmental Contamination and Toxicology, 30(1), 84-92.
    Call, D., Brooke, L., Ahmad, N., and Vaishnav, D. (1981). Aquatic Pollutant Hazard Assessments and Development of a Hazard Prediction Technology by Quantitative Structure–Activity Relationships; Second Quaterly Report, US EPA Cooperative Agreement No. Center for Lake Superior Environmental Studies, University of Wisconson.U.S.A.
    Calleja, M., Persoone, G., and Geladi, P. (1994). Comparative acute toxicity of the first 50 multicentre evaluation of in vitro cytotoxicity chemicals to aquatic non-vertebrates. Archives of Environmental Contamination and Toxicology, 26(1), 69-78.
    Cleuvers, M. (2003). Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicology Letters, 142(3), 185-194.
    Cleuvers, M. (2005). Initial risk assessment for three β-blockers found in the aquatic environment. Chemosphere, 59(2), 199-205. doi: https://doi.org/10.1016/j.Chemosphere.2004.11.090
    EU Commission. (2003). Technical guidance document on risk assessment. Institute for Health and Consumer Protection, European Chemicals Bureau. Part II. Available online at: http://echa.europa.eu/documents /10162/16960216/tgdpart2_2ed_en. pdf.
    Cumbie,P.M., and J.S. Velte . (1986). Comparison of Selenium Resistance in Belews Lake and Hatchery Green Sunfish (Lepomis cyanellus). Production Environmental Services Report 86-13, Duke Power Co., Huntersville.U.S.A.
    De la Cruz, N., Dantas, R. F., Giménez, J., and Esplugas, S. (2013). Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: Solar and artificial light. Applied Catalysis B: Environmental, 130-131, 249-256. doi: https://doi.org/10.1016/j.apc atb.2012.10.003
    Del Signore, A., Hendriks, A. J., Lenders, H. J. R., Leuven, R. S. E. W., and Breure, A. M. (2016). Development and application of the SSD approach in scientific case studies for ecological risk assessment. Environmental Toxicology and Chemistry, 35(9), 2149-2161. doi: 10.1002/etc.3474
    Di Lorenzo, T., Castaño-Sánchez, A., Di Marzio, W. D., García-Doncel, P., Nozal Martínez, L., Galassi, D. M. P., and Iepure, S. (2019). The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain. Chemosphere, 220, 227-236. doi: https://doi.org/10.1016/j.ch emosphere.2018.12.117
    Di Lorenzo, T., Di Cicco, M., Di Censo, D., Galante, A., Boscaro, F., Messana, G., and Paola Galassi, D. M. (2019). Environmental risk assessment of propranolol in the groundwater bodies of Europe. Environmental Pollution, 255, 113189. doi: https://doi.org/10.1016 /j.envpol.2019.113189
    Ding, J., Lu, G., Li, S., Nie, Y., and Liu, J. (2015). Biological fate and effects of propranolol in an experimental aquatic food chain. Science of The Total Environment, 532, 31-39. doi: https://doi.org/10.1016 /j.scitotenv.2015.06.002
    Dolezalova, J., and Rumlova, L. (2014). A new biological test of water toxicity–yeast Saccharomyces cerevisiae conductometric test. Environmental Toxicology and Pharmacology, 38(3), 977-981. doi: https://doi.org/10.1016/j.etap.2014.10.009
    Duarte, I. A., Reis-Santos, P., Novais, S. C., Rato, L. D., Lemos, M. F. L., Freitas, A., . . . Fonseca, V. F. (2020). Depressed, hypertense and sore: Long-term effects of fluoxetine, propranolol and diclofenac exposure in a top predator fish. Science of The Total Environment, 712, 136564. doi: https://doi.org/10.1016/j.scitotenv.2020.136564
    Duboudin, C., Ciffroy, P., and Magaud, H. (2004). Effects of data manipulation and statistical methods on species sensitivity distributions. Environmental Toxicology and Chemistry, 23(2), 489-499. doi: 10.1897/03-159
    Duncan, D., and Klaverkamp, J. (1983). Tolerance and resistance to cadmium in white suckers (Catostomus commersoni) previously exposed to cadmium, mercury, zinc, or selenium. Canadian Journal of Fisheries and Aquatic Sciences, 40(2), 128-138.
    Ebele, A. J., Abou-Elwafa Abdallah, M., and Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1-16. doi: https://doi.org/10.1016/j.emcon.2016.12.004
    El-Ramady, H., Abdalla, N., Alshaal, T., Domokos-Szabolcsy, É., Elhawat, N., Prokisch, J., . . . Shams, M. S. (2015). Selenium in soils under climate change, implication for human health. Environmental Chemistry Letters, 13(1), 1-19. doi: 10.1007/s10311-014-0480-4
    Fent, K., Weston, A. A., and Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122-159. doi: https://doi.org/10.1016/j.aquatox.2005.09.009
    Finn, J., Hui, M., Li, V., Lorenzi, V., de la Paz, N., Cheng, S. H., . . . Schlenk, D. (2012). Effects of propranolol on heart rate and development in Japanese medaka (Oryzias latipes) and zebrafish (Danio rerio). Aquatic Toxicology, 122-123, 214-221. doi: https://doi.org/10.1016/ j.aquatox.2012.06.013
    Fraysse, B., and Garric, J. (2005). Prediction and experimental validation of acute toxicity of β-blockers in Ceriodaphnia dubia. Environmental Toxicology and Chemistry, 24(10), 2470-2476.
    Gan, X., Huang, J.-C., Zhou, C., He, S., and Zhou, W. (2019). Relationship between selenium removal efficiency and production of lipid and hydrogen by Chlorella vulgaris. Chemosphere, 217, 825-832. doi: https://doi.org/10.1016/j.Chemosphere.2018.11.075
    Gao, P., Li, Z., Gibson, M., and Gao, H. (2014). Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model. Chemosphere, 104, 113-119. doi: https://doi.org/10.1016/j.Chemosphere.2013.10.076
    Giltrow, E., Eccles, P. D., Winter, M. J., McCormack, P. J., Rand-Weaver, M., Hutchinson, T. H., and Sumpter, J. P. (2009). Chronic effects assessment and plasma concentrations of the β-blocker propranolol in fathead minnows (Pimephales promelas). Aquatic Toxicology, 95(3), 195-202. doi: https://doi.org/10.1016/j.aquatox.2009.09.002
    Goettl,J.P.,Jr., P.H. Davies, and J.R. Sinley. Water Pollution Studies. In: D.B.Cope (Ed.), Colorado Fish.Res. Rev.1972-1975, DOW-R-R-F72-75, Colorado Div.of Wildl., Boulder, CO:68-75, 1976. ECOREF #14367
    Graham, R. V. (1993). A comparison of the environmental cycling and toxicity of selenite and selenomethionine. (1993): 3431-3431. Tennessee,U.S.A.
    Gredelj, A., Barausse, A., Grechi, L., and Palmeri, L. (2018). Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling. Environment International, 119, 66-78. doi: https://doi.org/10.1016/j.envint.2018.06.017
    Halter, M. T., Adams, W. J., and Johnson, H. E. (1980). Selenium toxicity to Daphnia magna, Hyallela azteca, and the Fathead minnow in hard water. Bulletin of Environmental Contamination and Toxicology, 24(1), 102-107.
    Hamilton, S. J., and Buhl, K. J. (1990). Acute toxicity of boron, molybdenum, and selenium to fry of chinook salmon and coho salmon. Archives of Environmental Contamination and Toxicology, 19(3), 366-373.
    Hamilton, S. J. (1995). Hazard assessment of inorganics to three endangered fish in the Green River, Utah. Ecotoxicology and Environmental Safety, 30(2), 134-142.
    Hamilton, S. J., and Buhl, K. J. (1997). Hazard assessment of inorganics, individually and in mixtures, to two endangered fish in the San Juan River, New Mexico. Environmental Toxicology and Water Quality: An International Journal, 12(3), 195-209.
    Hamilton, S., and Buhl, K. (1997). Hazard Evaluation of Inorganics, Singly and in Mixtures, to Flannelmouth SuckerCatostomus latipinnisin the San Juan River, New Mexico. Ecotoxicology and Environmental Safety, 38(3), 296-308.
    Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. Science of The Total Environment, 326(1), 1-31. doi: https://doi.org/10.1016/j.scitotenv.2004.01.019
    Hartwell, S., Jin, J., Cherry, D., and Cairns Jr, J. (1989). Toxicity versus avoidance response of golden shiner, Notemigonus crysoleucas, to five metals. Journal of Fish Biology, 35(3), 447-456.
    Hennebel, T., Boon, N., Maes, S., and Lenz, M. (2015). Biotechnologies for critical raw material recovery from primary and secondary sources: RandD priorities and future perspectives. New Biotechnology, 32(1), 121-127.
    Hockett, J. R., and Mount, D. R. (1996). Use of metal chelating agents to differentiate among sources of acute aquatic toxicity. Environmental Toxicology and Chemistry 15(10), 1687-1693.
    Hodson, P., Spry, D., and Blunt, B. (1980). Effects on rainbow trout (Salmo gairdneri) of a chronic exposure to waterborne selenium. Canadian Journal of Fisheries and Aquatic Sciences, 37(2), 233-240.
    Hoffman, D. J. (2002). Role of selenium toxicity and oxidative stress in aquatic birds. Aquatic Toxicology, 57(1), 11-26.
    Hood, P. E. (1982). Determination of the LC50 of Selenium in the Bluntnose Minnow, Pimephales Notatus (Rafinesque). University of North Alabama. Alabama, U.S.A.
    Huggett, D., Brooks, B., Peterson, B., Foran, C., and Schlenk, D. (2002). Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms. Archives of Environmental Contamination and Toxicology, 43(2), 229-235.
    Hunn, J. B., Hamilton, S. J., and Buckler, D. R. (1987). Toxicity of sodium selenite to rainbow trout fry. Water Research, 21(2), 233-238.
    Jeong, T.-Y., Kim, T.-H., and Kim, S. D. (2016). Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna. Environmental Pollution, 216, 811-818. doi: https://doi.org/10.1016/j.envpol.201 6.06.051
    Johnston, P. A. (1987). Acute toxicity of inorganic selenium to Daphnia magna (Straus) and the effect of sub-acute exposure upon growth and reproduction. Aquatic Toxicology, 10(5), 335-352. doi: https://doi.org/10.1016/0166-445X(87)90007-5
    Karthikeyan, P., Marigoudar, S. R., Nagarjuna, A., and Sharma, K. V. (2019). Toxicity assessment of cobalt and selenium on marine diatoms and copepods. Environmental Chemistry and Ecotoxicology, 1, 36-42. doi: https://doi.org/10.1016/j.enceco.2019.06.001
    Kim, J.-W., Ishibashi, H., Yamauchi, R., Ichikawa, N., Takao, Y., Hirano, M., . . . Arizono, K. (2009). Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). The Journal of Toxicological Sciences, 34(2), 227-232.
    Kimball, G. (1978). The effects of lesser known metals and one organic to fathead minnows (Pimephales promelas) and Daphnia magna Manuscript. Department of Entomology, Fish and Wildlife, Univ. of Minnesota, Minneapolis, U.S.A.
    Kümmerer, K. (2001). Introduction: Pharmaceuticals in the Environment. In K. Kümmerer (Ed.), Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks (pp. 1-8). Berlin, Heidelberg: Springer Berlin Heidelberg. Germany.
    Láng, J., and Kőhidai, L. (2012). Effects of the aquatic contaminant human pharmaceuticals and their mixtures on the proliferation and migratory responses of the bioindicator freshwater ciliate Tetrahymena. Chemosphere, 89(5), 592-601.
    Lemly, A. D. (2002). Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquatic Toxicology, 57(1), 39-49. doi: https://doi.org/10.1016/S0166-445X(01)00264-8
    Lemly, A. D. (2004). Aquatic selenium pollution is a global environmental safety issue. Ecotoxicology and Environmental Safety, 59(1), 44-56. doi: https://doi.org/10.1016/S0147-6513(03)00095-2
    Li, H., Zhang, J., Wang, T., Luo, W., Zhou, Q., and Jiang, G. (2008). Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquatic Toxicology, 89(4), 251-256.
    Li, S.-W., and Lin, A. Y.-C. (2015). Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere, 139, 190-196. doi: https://doi.org/10.1016/j.chemosphere.2015.06.010
    Lilius, H., Hästbacka, T., and Isomaa, B. (1995). A comparison of the toxicity of 30 reference chemicals to Daphnia magna and Daphnia pulex. Environmental Toxicology and Chemistry 14(12), 2085-2088.
    Lin, A. Y.-C., and Tsai, Y.-T. (2009). Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of The Total Environment, 407(12), 3793-3802. doi: https://doi.org/10.1016/j.sci totenv.2009.03.009
    Lin, A. Y.-C., Lin, C.-A., Tung, H.-H., and Chary, N. S. (2010). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183(1), 242-250. doi: https://doi.org/10.1016/j.jhazmat.2010.07.017
    Lin, A. Y.-C., Yu, T.-H., and Lateef, S. K. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 167(1), 1163-1169. doi: https://doi.org/10.1016/j.jhazmat.2009.01.108
    Liu, J., Lu, G., Zhang, Z., Bao, Y., Liu, F., Wu, D., and Wang, Y. (2015). Biological effects and bioaccumulation of pharmaceutically active compounds in crucian carp caged near the outfall of a sewage treatment plant. Environmental Science: Processes and Impacts, 17(1), 54-61. doi: 10.1149/C4EM00472H
    Liu, Q.-T., Williams, T. D., Cumming, R. I., Holm, G., Hetheridge, M. J., & Murray-Smith, R. (2009). Comparative aquatic toxicity of propranolol and its photodegraded mixtures: Algae and rotifer screening. Environmental Toxicology and Chemistry, 28(12), 2622-2631. doi: 10.1897/09-071.1
    López-Doval, J. C., Kukkonen, J. V. K., Rodrigo, P., and Muñoz, I. (2012). Effects of indomethacin and propranolol on Chironomus riparius and Physella (Costatella) acuta. Ecotoxicology and Environmental Safety, 78, 110-115. doi: https://doi.org/10.1016/j.ecoenv.2011. 11.004
    Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., . . . Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment, 473-474, 619-641. doi:
    Lyubomirsky, S. (1974). Environmental Effect of Photoprocessing Chemicals: National Association of Photographic Manufacturers.
    Ma, S., Zhou, Y., Chen, H., Hou, L., Zhao, J., Cao, J., . . . Xie, L. (2018). Selenium accumulation and the effects on the liver of topmouth gudgeon Pseudorasbora parva exposed to dissolved inorganic selenium. Ecotoxicology and Environmental Safety, 160, 240-248.
    Mauk, R., and Brown, M. (1999). Acute toxicity of sodium selenite to juvenile walleye. Bulletin of Environmental Contamination and Toxicology, 63(2), 188-194.
    Maurer, M., Escher, B. I., Richle, P., Schaffner, C., and Alder, A. C. (2007). Elimination of β-blockers in sewage treatment plants. Water Research, 41(7), 1614-1622.
    Mayer, F. L., and Ellersieck, M. R. (1986). Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals: US Department of the Interior, Fish and Wildlife Service. U.A.S.
    McIntyre, D. O., McCauley, D. J., McCool, P., Winkler, N., & DeGraeve, M. (1998). Effect of sulfate concentration on acute toxicity of selenite and selenate to invertebrates and fish. Final report (No. EPRI-TR-111878). Electric Power Research Inst., Palo Alto, CA (United States); Great Lakes Environmental Center, Columbus, OH (United States).
    Mercan Yücel, U., Başbuğan, Y., Uyar, A., Kömüroğlu, A. U., and Keleş, Ö. F. (2020). Use of an antiarrhythmic drug against acute selenium toxicity. Journal of Trace Elements in Medicine and Biology, 59, 126471. doi: https://doi.org/10.1016/j.jtemb.2020.126471
    Mezzelani, M., Gorbi, S., and Regoli, F. (2018). Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. Marine Environmental Research, 140, 41-60. doi: https://doi.org/10.1016/j.marenvres.2018.05.001
    Mitchell, K. (2013). The physiological and behavioural adjustments of the zebrafish Danio rerio exposed to the β-blocker propranolol: University of Ottawa (Canada).
    Monteiro, S. C., and Boxall, A. B. A. (2010). Occurrence and Fate of Human Pharmaceuticals in the Environment. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (pp. 53-154). New York, NY: Springer New York.
    Morlon, H., Fortin, C., Floriani, M., Adam, C., Garnier-Laplace, J., and Boudou, A. (2005). Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: comparison between effects at the population and sub-cellular level. Aquatic Toxicology, 73(1), 65-78.
    Nałe, G., and Sawicki, J. (1998). Toxicity of inorganic compounds in the Spirotox test: a miniaturized version of the Spirostomum ambiguum test. Archives of Environmental Contamination and Toxicology, 34(1), 1-5.
    Nalecz-Jawecki, G., and Sawicki, J. (2005). Influence of water hardness on the toxicity of selected pharmaceuticals and metals to the protozoa Spirostomum ambiguum and Tetrahymena termophila. Fresenius Environmental Bulletin, 14(10), 873-877.
    Nassos, P., Brown, J. C. R. M. D., and Hansen, L. (1980). Model Ecosystem, Toxicity, and Uptake Evaluation of. Bull. Environm. Contam. Toxico, 24, 752-758.
    Neuwoehner, J., and Escher, B. I. (2011). The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model. Aquatic Toxicology, 101(1), 266-275. doi: https://doi.org/10.1016/j.aquato x.2010.10.008
    Nielsen, M. E., and Roslev, P. (2018). Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol. Chemosphere, 211, 978-985. doi: https://doi.org/10.1016/j.chemosp here.2018.08.027
    Nielsen, M. G., and Gissel-Nielsen, G. (1978). Sensitivity of trout to chronic and acute exposure to selenium. Agriculture and Environment, 4(1), 85-91.
    Niimi, A., and LaHam, Q. (1976). Relative toxicity of organic and inorganic compounds of selenium to newly hatched zebrafish (Brachydanio rerio). Canadian journal of zoology, 54(4), 501-509.
    Niu, Z., Du, L., Li, J., Zhang, Y., & Lv, Z. (2018). Ecological risk assessment of microcystin-LR in the upstream section of the Haihe River based on a species sensitivity distribution model. Chemosphere, 193, 403-411.
    OECD. (2004). Test No. 219: Sediment-Water Chironomid Toxicity Using Spiked Water. OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/978926 4070288-en.
    Owsley, J. A. (1984). Acute and chronic effects of selenite-selenium on Ceriodaphnia affinis. Vanderbilt University, Nashville, Tennessee, U.S.A.
    Palawski, D., Hunn, J. B., and Dwyer, F. J. (1985). Sensitivity of young striped bass to organic and inorganic contaminants in fresh and saline waters. Transactions of the American Fisheries Society, 114(5), 748-753.
    Pastierová, J., Kramarová, Z., Molnárová, M., and Fargašová, A. (2009). Comparison of the sensitivity of four freshwater microalgae to selenate and selenite. Fresenius Environmental Bulletin, 18(11), 2029-2033.
    Pérez-Lemus, N., López-Serna, R., Pérez-Elvira, S. I., and Barrado, E. (2019). Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review. Analytica Chimica Acta, 1083, 19-40.
    Posthuma, L., and de Zwart, D. (2014). Species Sensitivity Distributions. In P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition) (pp. 363-368). Oxford: Academic Press.
    Ramesh, M., Sankaran, M., Veera-Gowtham, V., and Poopal, R. K. (2014). Hematological, biochemical and enzymological responses in an Indian major carp Labeo rohita induced by sublethal concentration of waterborne selenite exposure. Chemico-biological interactions, 207, 67-73.
    Reading, J. T., and Buikema, A. L. (1983). Chronic effects of selenite-selenium onDaphnia pulex. Archives of Environmental Contamination and Toxicology, 12(4), 399-404. doi: 10.1007/BF010 57582
    Roux, A. J. (1982). Effects of Increased Environmental Realism on the Toxicity of Zinc and Selenium to Mosquitofish (Gambusia Affinis) in Single Species Toxicity Tests. North Carolina State University.
    Schiavon, M., Ertani, A., Parrasia, S., and Vecchia, F. D. (2017). Selenium accumulation and metabolism in algae. Aquatic Toxicology, 189, 1-8. doi: https://doi.org/10.1016/j.aquatox.2017.05.011
    Schultz, T. W., Freeman, S. R., and Dumont, J. N. (1980). Uptake, depuration, and distribution of selenium inDaphnia and its effects on survival and ultrastructure. Archives of Environmental Contamination and Toxicology, 9(1), 23-40.
    Shabana, E., and El-Attar, S. (1995). Influence of clay minerals on selenium toxicity to algae. Egyptian Journal of Microbiology. Cairo Univ Faculty of Science, Egypt..
    Stanley, J. K., Ramirez, A. J., Mottaleb, M., Chambliss, C. K., and Brooks, B. W. (2006). Enantiospecific toxicity of the β‐blocker propranolol to Daphnia magna and Pimephales promelas. Environmental Toxicology and Chemistry: An International Journal, 25(7), 1780-1786.
    Tan, L. C., Nancharaiah, Y. V., van Hullebusch, E. D., and Lens, P. N. L. (2016). Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnology Advances, 34(5), 886-907. doi: https://doi.org/10.1016/j.biotechadv.2016.05.005
    Tsui, M. T., Wang, W.-X., and Chu, L. (2005). Influence of glyphosate and its formulation (Roundup®) on the toxicity and bioavailability of metals to Ceriodaphnia dubia. Environmental Pollution, 138(1), 59-68.
    US EPA, 2001, “Origins and Fate of PPCPs in the Environment”, U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory Environmental Sciences Division Environmental Chemistry Branch, Available at: htt p://epa.gov/nerlesd1/chemistry/pharma/, February 2001.
    US EPA, 2017, “Causal Analysis/Diagnosis Decision Information System (CADDIS) Volume 4: Data Analysis”, , Available at: http s://www.epa.gov/caddis-vol4/caddis-volume-4-data-analysis-advanc ed-analyses-controlling-for-natural-variability#tab-5
    US EPA, 2020, “ECOTOX Knowledgebase”, , Available at: https://cfpub. epa.gov/ecotox/search.cfm, Mar 12, 2020
    US EPA, 2020, “CompTox Chemicals Dashboard”, , Available at: http s://comptox.epa.gov/dashboard/ Mar 22, 2020
    Vítová, M., Bišová, K., Hlavová, M., Zachleder, V., Rucki, M., and Čížková, M. (2011). Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquatic Toxicology, 102(1-2), 87-94.
    Wen, H., and Carignan, J. (2007). Reviews on atmospheric selenium: Emissions, speciation and fate. Atmospheric Environment, 41(34), 7151-7165. doi: https://doi.org/10.1016/j.atmosenv.2007.07.035
    Xie, P., Zou, Y., Jiang, S., Wang, Z., Wang, J., Zhang, L., . . . Feng, X. (2019). Application of vacuum-ultraviolet (VUV) to degrade β-blocker propranolol in aquatic environment: Efficiency, kinetics, pathways and acute toxicity. Journal of the Taiwan Institute of Chemical Engineers, 103, 75-84.
    Xu, F.-L., Li, Y.-L., Wang, Y., He, W., Kong, X.-Z., Qin, N., . . . Jorgensen, S. E. (2015). Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment. Ecological Indicators, 54, 227-237.
    Zhao, W., Wang, B., Wang, Y., Deng, S., Huang, J., and Yu, G. (2017). Deriving acute and chronic predicted no effect concentrations of pharmaceuticals and personal care products based on species sensitivity distributions. Ecotoxicology and Environmental Safety, 144, 537-542.
    Zhou, C., Huang, J.-C., Zheng, L., He, S., and Zhou, W. (2020). Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium. Environmental Pollution, 262, 114288.
    Zuccato, E., Castiglioni, S., Fanelli, R., Reitano, G., Bagnati, R., Chiabrando, C., . . . Calamari, D. (2006). Pharmaceuticals in the Environment in Italy: Causes, Occurrence, Effects and Control. Environmental Science and Pollution Research, 13(1), 15-21.
    行政院環境保護署,2020,全國環境水質監測資訊網 Available at: https://wq.epa.gov.tw/Code/?Languages=tw
    行政院環境保護署環境檢驗所,2013,水樣急毒性檢測方法-藻類靜水式法 (NIEA B906.10B), https://www.epa.gov.tw/niea/100D 91E044D8E0D6
    行政院環境保護署環境檢驗所,2013,生物急毒性檢測方法-水蚤靜水式法 (NIEA B901.14B), https://www.epa.gov.tw/niea/E7CD 223074FFE510#accesskey_c
    行政院環境保護署環境檢驗所,2013,生物急毒性檢測方法-米蝦靜水式法 (NIEA B905.13B), https://www.epa.gov.tw/niea/8D4A 417CD10D9295
    行政院環境保護署環境檢驗所,2013,生物急毒性檢測方法-鯉魚靜水式法(NIEA B904.13B), https://www.epa.gov.tw/niea/FE0C2 E42A553B580
    行政院環境保護署環境檢驗所,2013,生物急毒性檢測方法-羅漢魚靜水式法 (NIEA B902.13B), https://www.epa.gov.tw/niea/3D 09A67E53286BC1
    行政院環境保護署環境檢驗所,2013,生物慢毒性檢測方法-藻類靜水式法 (NIEAB907.20C), https://www.epa.gov.tw/niea/8740E 470A860F842
    行政院環境保護署環境檢驗所,2010,水中葉綠素 a 檢測方法-丙酮萃取/螢光分析法 (NIEA E509.01C), https://www.epa.gov.tw/ niea/D448C036D2C6FAB
    衛生福利部中央健康保險署NHI , 2019 , 藥品使用量分析Available at: https://www.nhi.gov.tw/Content_List.aspx?n=5AA7CAFFF61CB 16Dandtopn=3FC7D09599D25979

    無法下載圖示 校外公開
    2025/08/09
    QR CODE