簡易檢索 / 詳目顯示

研究生: 林衣凡
Lin, Yi-Fan
論文名稱: 台灣桃金孃科與桑科可食用果樹葉片抗醣化能力之探討
Anti-glycation Properties of Myrtaceae and Moraceae Fruit Leaves in Taiwan
指導教授: 蔡碧仁
Tsai, Pi-Jen
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 108
語文別: 中文
論文頁數: 108
中文關鍵詞: 醣化終產物甲基乙二醛桃金孃科桑科抗醣化
外文關鍵詞: Advanced glycation end-products (AGEs), Methylglyoxal, Myrtaceae, Moraceae, Anti-glycation
DOI URL: http://doi.org/10.6346/NPUST202000475
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 糖尿病為2018年國人十大死因之一,由於血糖居高不下,易於體內進行梅納反應,產生醣化終產物(Advanced glycation end-products, AGEs),導致許多併發症如阿茲海默症、心血管疾病等,而醣化終產物除了會使糖尿病患者產生相關併發症,也被認為是促使人體老化的影響因子,因此本研究使用文獻指出具抗糖尿病的桃金孃科(嘉寶果、芭樂、蓮霧)與桑科(波羅蜜、無花果、桑葉)植物葉片進行抗醣化實驗,並針對樣品中酚類化合物進行分析。實驗結果顯示,桃金孃科對AGEs生成之半抑制濃度為400-750 ppm,桑科AGEs之IC50為900-1500 ppm,在甲基乙二醛捕獲率IC50上桃金孃科樣品為200-250 ppm,桑科植物則皆大於500 ppm,且將各項實驗經主成分分析及因子分析,並可明顯將不同科植物區分,同時看出桃金孃科具有較佳之抗醣化與抗氧化能力。在樣品各實驗項目相關性分析,由於抗醣化能力與抗氧化能力呈正相關R=0.805-0.969,推測樣品是利用清除形成希夫鹼所釋放的自由基以避免反應性羰基化合物形成達到抗醣化的功效;接著對樣品中的酚酸及類黃酮標準品進行AGEs IC50與甲基乙二醛捕獲率IC50之測定,結果顯示酚酸與類黃酮結構顯著影響其抗醣化能力,並與不飽和鍵結、羥基位置、數量及官能基等有關。

    Diabetes is one of the top ten causes of death in Taiwan in 2018. The cause of diabetes is complicate. Due to the high blood sugar, it is easy to undergo Maillard reaction in the body to produce advanced glycation end-products (AGEs), which in turn leads to many complications such as Alzheimer’s disease, cardiovascular disease and human aging. This study is aimed to analyze and discuss some plant leaves, such as Myrtaceae (Jaboticaba, Guava, Wax apple), and Moraceae (Jackfruit, Fig, Mulberry), which has been reported to exhibit the anti-diabetic function. The results showed that the IC50 of AGEs of Myrtaceae is 400-750 ppm, and the Moraceae is 900-1500 ppm; the IC50 of methylglyoxal trapping of Myrtaceae is 200-250 ppm, the Moraceae is more than 500 ppm, and the sample can be separated according to the families through using principal component analysis (PCA) and factor analysis. Since the correlation coefficient between anti-glycation and antioxidant capacity is ranged from 0.805-0.969, it is speculated that the sample performed the anti-glycation effect through scavenge free radical release by formation Schiff base. Subsequent analysis of IC50 in AGEs and methylglyoxal trapping of standard phenolic acids and flavonoids occurred in the sample, by using aminoguanidine as the control group, showed that the structure of phenolic compounds significantly affects the ability of anti-glycation and depended on the unsaturated bonds, the position and number of hydroxyl groups.

    中文摘要 I
    Abstract II
    謝誌 I
    目錄 II
    圖目錄 VII
    表目錄 IX
    第一章 前言 1
    第二章 文獻回顧 2
    2.1 醣化終產物(Advanced glycation end-products, AGEs) 2
    2.1.1 AGEs形成途徑 2
    2.1.1.1 梅納反應(Maillard reaction) 2
    2.1.1.2 反應性羰基 5
    2.1.2 醣化終產物於人體內影響機制 5
    2.1.3 醣化終產物相關慢性疾病 7
    2.1.3.1糖尿病 7
    2.1.3.2 心血管疾病 9
    2.1.3.3 神經性疾病 9
    2.1.3.4 皮膚老化 10
    2.1.4 抑制醣化終產物形成機制 10
    2.1.4.1酚類化合物對AGEs的抑制作用 11
    2.1.4.1.1 酚類化合物 11
    2.1.4.1.1.1 酚酸(Phenolic acids) 14
    2.1.4.1.1.2 類黃酮(Flavonoids) 16
    2.2 桃金孃科(Myrtaceae) 20
    2.2.1 嘉寶果(Myrciana cauliflora) 20
    2.2.2 番石榴(Psidium guajava) 21
    2.2.3 蓮霧(Syzygium samarangense) 21
    2.3 桑科(Moraceae) 23
    2.3.1 波羅蜜(Artocarpus heterophyllus) 23
    2.3.2 無花果(Ficus carica) 23
    2.3.3 桑樹(Morus alba) 24
    第三章 材料與方法 26
    3.1 試驗材料 26
    3.2 試驗藥品 26
    3.3 試驗儀器 27
    3.4 試驗設計 29
    3.4 試驗分析 33
    3.4.1 抗醣化能力測定 33
    3.4.1.1 螢光AGEs測定 33
    3.4.1.2 甲基乙二醛捕獲率 34
    3.4.2 糖化酵素抑制 35
    3.4.2.1 抑制α-amylase活性 35
    3.4.2.2 抑制α-glucosidase活性 35
    3.4.3 抗氧化成分分析 36
    3.4.3.1 總多酚化合物含量測定 36
    3.4.3.2 總類黃酮含量測定 36
    3.4.3.3 HPLC分析 36
    3.4.4 抗氧化能力分析 38
    3.4.4.1 FRAP三價鐵還原能力 38
    3.4.4.2 DPPH自由基清除能力 38
    3.4.4.3 SOD-like超氧化物歧化酶類似物活性 38
    3.4.5 統計分析 39
    第四章 結果與討論 40
    4.1不同溶劑萃取對抑制AGEs生成之功效 40
    4.2不同桃金孃科與桑科植物葉片抗醣化能力分析 42
    4.2.1 AGEs醣化終產物抑制能力分析 42
    4.2.2 MG甲基乙二醛捕獲率 46
    4.3不同桃金孃科與桑科植物抑制醣化酵素能力 49
    4.3.1 α-amylase抑制能力分析 49
    4.3.2 α-glucosidase抑制能力 50
    4.4不同桃金孃科與桑科植物抗氧化成分 51
    4.4.1總酚含量(Total phenolic content) 51
    4.4.2總類黃酮含量(Total flavonoid content) 54
    4.4.3酚類化合物定性及定量分析 57
    4.5不同桃金孃科與桑科植物抗氧化能力 60
    4.5.1 FRAP三價鐵還原能力 60
    4.5.2 DPPH自由基清除能力 61
    4.5.3 SOD-like活性 65
    4.6數據及統計分析 67
    4.6.1桃金孃科植物與桑科植物主成分分析 67
    4.6.2桃金孃科與桑科植物相關性分析 71
    4.7各酚類物質對抗醣化能力分析 76
    4.7.1酚類化合物對AGEs醣化終產物抑制能力 76
    4.7.1.1酚酸對AGEs醣化終產物IC50 76
    4.7.1.2類黃酮對AGEs醣化終產物IC50 82
    4.7.2酚類物質對MG甲基乙二醛捕獲率 87
    第五章 結論 91
    參考文獻 92
    作者簡介 108

    Abdillah, S. and A.W. Prakoso, 2018. Antioxidant and anti-ages (advanced glycationend-product) activities of ethanolic extract of ficus carica linn from indonesia. Journal of Pharmacognosy and Phytochemistry, 7(5): 598-601.
    Abe, Y., M. Yagi, A. Uwaya, F. Isami and Y. Yonei, 2016. Effect of iridoid (containing plants) on age formation and degradation. Glycative Stress Res, 3: 56-64.
    Adisakwattana, S., W. Sompong, A. Meeprom, S. Ngamukote and S. Yibchok-Anun, 2012. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation. Int J Mol Sci, 13(2): 1778-1789.
    Agarwal, P. and R. Gupta, 2016. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci, 5: 1-8.
    Alcantara, M.A., I. de Lima Brito Polari, B.R.L. de Albuquerque Meireles, A.E.A. de Lima, J.C. da Silva Junior, E. de Andrade Vieira, N.A. Dos Santos and A.M.T. de Magalhaes Cordeiro, 2019. Effect of the solvent composition on the profile of phenolic compounds extracted from chia seeds. Food Chem, 275: 489-496.
    Alezandro, M.R., P. Dubé, Y. Desjardins, F.M. Lajolo and M.I. Genovese, 2013. Comparative study of chemical and phenolic compositions of two species of jaboticaba: Myrciaria jaboticaba (vell.) berg and myrciaria cauliflora (mart.) o. Berg. Food Research International, 54(1): 468-477.
    Alezandro, M.R., D. Granato and M.I. Genovese, 2013. Jaboticaba (myrciaria jaboticaba (vell.) berg), a brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Food Research International, 54(1): 650-659.
    Allaman, I., M. Belanger and P.J. Magistretti, 2015. Methylglyoxal, the dark side of glycolysis. Front Neurosci, 9: 23.
    Almulaiky, Y., M. Zeyadi, R. Saleh, O. Baothman, W. Al-shawafi and H. Al-Talhi, 2018. Assessment of antioxidant and antibacterial properties in two types of yemeni guava cultivars. Biocatalysis and Agricultural Biotechnology, 16: 90-97.
    Arumugam, B., T. Manaharan, C.K. Heng, U.R. Kuppusamy and U.D. Palanisamy, 2014. Antioxidant and antiglycemic potentials of a standardized extract of syzygium malaccense. LWT - Food Science and Technology, 59(2): 707-712.
    Aryal, S., M.K. Baniya, K. Danekhu, P. Kunwar, R. Gurung and N. Koirala, 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western nepal. Plants (Basel), 8(4).
    Bernatoniene, J. and D.M. Kopustinskiene, 2018. The role of catechins in cellular responses to oxidative stress. Molecules, 23(4).
    Bhattacherjee, A. and A. Datta, 2015. Mechanism of antiglycating properties of syringic and chlorogenic acids in in vitro glycation system. Food Research International, 77: 540-548.
    Cai, W., M. Ramdas, L. Zhu, X. Chen, G.E. Striker and H. Vlassara, 2012. Oral advanced glycation endproducts (ages) promote insulin resistance and diabetes by depleting the antioxidant defenses age receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A, 109(39): 15888-15893.
    Chanda, S., R. Dave and M. Kaneria, 2011. In vitro antioxidant property of some indian medicinal plants. Res J Med Plant, 5(2): 169-179.
    Chang, W.C., S.C. Shen and J.S. Wu, 2013. Protective effects of vescalagin from pink wax apple [syzygium samarangense (blume) merrill and perry] fruit against methylglyoxal-induced inflammation and carbohydrate metabolic disorder in rats. J Agric Food Chem, 61(29): 7102-7109
    Chanthasri, W., N. Puangkeaw, N. Kunworarath, P. Jaisamut, S. Limsuwan, K. Maneenoon, P. Choochana and S. Chusri, 2018. Antioxidant capacities and total phenolic contents of 20 polyherbal remedies used as tonics by folk healers in phatthalung and songkhla provinces, thailand. BMC Complement Altern Med, 18(1): 73.
    Chen, H.-Y. and G.-C. Yen, 2007. Antioxidant activity and free radical-scavenging capacity of extracts from guava (psidium guajava l.) leaves. Food Chemistry, 101(2): 686-694.
    Chen, K., J. Maley and P.H. Yu, 2006. Potential inplications of endogenous aldehydes in beta-amyloid misfolding, oligomerization and fibrillogenesis. J Neurochem, 99(5): 1413-1424.
    Chew, K.K., M.Z. Khoo, S.Y. Ng, Y.Y. Thoo, W.W. Aida and C.W. Ho, 2011. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of orthosiphon stamineus extracts. International Food Research Journal, 18(4): 1427.
    Cheynier, V., G. Comte, K.M. Davies, V. Lattanzio and S. Martens, 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem, 72: 1-20.
    Cobaleda Velasco, M., R.E. Alanis Bañuelos, N. Almaraz Abarca, M. Rojas López, L.S. González Valdéz, J.A. Ávila Reyes and S. Morales Rodrigo, 2017. Phenolic profiles and antioxidant properties of physalis angulata l. As quality indicators. Journal of Pharmacy & Pharmacognosy Research, 5(2): 114-128.
    Dawidowicz, A.L., D. Wianowska and M. Olszowy, 2012. On practical problems in estimation of antioxidant activity of compounds by dpph method (problems in estimation of antioxidant activity). Food Chemistry, 131(3): 1037-1043.
    de Paulo Farias, D., I.A. Neri-Numa, F.F. de Araujo and G.M. Pastore, 2020. A critical review of some fruit trees from the myrtaceae family as promising sources for food applications with functional claims. Food Chem, 306: 125630.
    Deepa, P., K. Sowndhararajan, S. Kim and S.J. Park, 2018. A role of ficus species in the management of diabetes mellitus: A review. J Ethnopharmacol, 215: 210-232.
    Diaz-de-Cerio, E., V. Verardo, A.M. Gomez-Caravaca, A. Fernandez-Gutierrez and A. Segura-Carretero, 2016. Exploratory characterization of phenolic compounds with demonstrated anti-diabetic activity in guava leaves at different oxidation states. Int J Mol Sci, 17(5).
    Eghbaliferiz, S. and M. Iranshahi, 2016. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother Res, 30(9): 1379-1391.
    El-Sayyad, H.I.H., M.A. El-Sherbiny, M.A. Sobh, A.M. Abou-El-Naga, M.A.N. Ibrahim and S.A. Mousa, 2011. Protective effects of morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats. International journal of biological sciences, 7(6): 715.
    Everette, J.D., Q.M. Bryant, A.M. Green, Y.A. Abbey, G.W. Wangila and R.B. Walker, 2010. Thorough study of reactivity of various compound classes toward the folin-ciocalteu reagent. J Agric Food Chem, 58(14): 8139-8144.
    Fernando, K.S.S.P., U.G. Chandrika, A.K.E. Goonathilake, M.I. Choudhary, P. Chayanika and A.M. Abeysekera, 2018. In-vitro biological activities of fractions of ethyl acetate fraction of the water extract of artocarpus heterophyllus senescent leaves. International Journal of Pharmaceutical Sciences and Research, 9(6).
    Fernando, M.R., S.N. Wickramasinghe, M.I. Thabrew, P.L. Ariyananda and E.H. Karunanayake, 1991. Effect of artocarpus heterophyllus and asteracanthus longifolia on glucose tolerance in normal human subjects and in maturity-onset diabetic patients. Journal of ethnopharmacology, 31(3): 277-282.
    Firuzi, O., K. Javidnia, M. Gholami, M. Soltani and R. Miri, 2010. Antioxidant activity and total phenolic content of 24 lamiaceae species growing in iran. Natural product communications, 5(2).
    Fournet, M., F. Bonte and A. Desmouliere, 2018. Glycation damage: A possible hub for major pathophysiological disorders and aging. Aging Dis, 9(5): 880-900.
    Fujiwara, Y., N. Kiyota, K. Tsurushima, M. Yoshitomi, K. Mera, N. Sakashita, M. Takeya, T. Ikeda, T. Araki, T. Nohara and R. Nagai, 2011. Natural compounds containing a catechol group enhance the formation of nε-(carboxymethyl)lysine of the maillard reaction. Free Radical Biology and Medicine, 50(7): 883-891.
    Garay-Sevilla, M.E., C. Luevano-Contreras and K. Chapman-Novakofski, 2016. Nutritional modulation of advanced glycation end products. In: Molecular basis of nutrition and aging: pp: 263-276.
    Gryn-Rynko, A., G. Bazylak and D. Olszewska-Slonina, 2016. New potential phytotherapeutics obtained from white mulberry (morus alba l.) leaves. Biomed Pharmacother, 84: 628-636.
    Grzegorczyk-Karolak, I., K. Golab, J. Gburek, H. Wysokinska and A. Matkowski, 2016. Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from scutellaria alpina l. And s. Altissima l. Molecules, 21(6).
    Gutierrez, R.M., S. Mitchell and R.V. Solis, 2008. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol, 117(1): 1-27.
    Hao, J.Y., Y. Wan, X.H. Yao, W.G. Zhao, R.Z. Hu, C. Chen, L. Li, D.Y. Zhang and G.H. Wu, 2018. Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in southern china. PLoS One, 13(6).
    Hartog, J.W., A.A. Voors, S.J. Bakker, A.J. Smit and D.J. van Veldhuisen, 2007. Advanced glycation end-products (ages) and heart failure: Pathophysiology and clinical implications. Eur J Heart Fail, 9(12): 1146-1155.
    Heleno, S.A., A. Martins, M.J.R.P. Queiroz and I.C.F.R. Ferreira, 2015. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, 173: 501-513.
    Kasote, D.M., S.S. Katyare, M.V. Hegde and H. Bae, 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci, 11(8): 982-991.
    Katalinic, V., M. Milos, T. Kulisic and M. Jukic, 2006. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry, 94(4): 550-557.
    Khamchan, A., T. Paseephol and W. Hanchang, 2018. Protective effect of wax apple (syzygium samarangense (blume) merr. & l.M. Perry) against streptozotocin-induced pancreatic ss-cell damage in diabetic rats. Biomed Pharmacother, 108: 634-645.
    Khan, M., H. Liu, J. Wang and B. Sun, 2020. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res Int, 130: 108933.
    Kim, J., I.H. Jeong, C.S. Kim, Y.M. Lee, J.M. Kim and J.S. Kim, 2011. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch Pharm Res, 34(3): 495-500.
    Kim, J.-S., T.K. Hyun and M.-J. Kim, 2011. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chemistry, 124(4): 1647-1651.
    Ko, S.Y., H.A. Ko, K.H. Chu, T.M. Shieh, T.C. Chi, H.I. Chen, W.C. Chang and S.S. Chang, 2015. The possible mechanism of advanced glycation end products (ages) for alzheimer's disease. PLoS One, 10(11)
    Kuo, C.T., T.H. Liu, T.H. Hsu, F.Y. Lin and H.Y. Chen, 2015. Antioxidant and antiglycation properties of different solvent extracts from chinese olive (canarium album l.) fruit. Asian Pac J Trop Med, 8(12): 1013-1021.
    Lin, C.-Y. and H.-L. Lay, 2013. Characteristics of fruit growth, component analysis and antioxidant activity of mulberry (morus spp.). Scientia Horticulturae, 162: 285-292.
    Liu, Z.Q., 2020. Bridging free radical chemistry with drug discovery: A promising way for finding novel drugs efficiently. Eur J Med Chem, 189: 112020.
    Lo, C.Y., W.T. Hsiao and X.Y. Chen, 2011. Efficiency of trapping methylglyoxal by phenols and phenolic acids. J Food Sci, 76(3): H90-96.
    Luevano-Contreras, C. and K. Chapman-Novakofski, 2010. Dietary advanced glycation end products and aging. Nutrients, 2(12): 1247-1265.
    Manaharan, T., D. Appleton, H.M. Cheng and U.D. Palanisamy, 2012. Flavonoids isolated from syzygium aqueum leaf extract as potential antihyperglycaemic agents. Food Chemistry, 132(4): 1802-1807.
    Mandal, S.C., P.K. Mukherjee, K. Saha, J. Das, M. Pal and B.P. & Saha, 1997. Hypoglycemic activity of ficus racemosa l.(moraceae) leaves in streptozotocin-induced diabetic rats. Natural Product Sciences, 3(1): 38-41.
    Marin-Penalver, J.J., I. Martin-Timon, C. Sevillano-Collantes and F.J. Del Canizo-Gomez, 2016. Update on the treatment of type 2 diabetes mellitus. World J Diabetes, 7(17): 354-395.
    Marles, R.J. and N.R. Farnsworth, 1995. Antidiabetic plants and their active constituents. Phytomedicine, 2(2): 137-189.
    Meeprom, A., W. Sompong, T. Suantawee, T. Thilavech, C.B. Chan and S. Adisakwattana, 2015. Isoferulic acid prevents methylglyoxal-induced protein glycation and DNA damage by free radical scavenging activity. BMC Complement Altern Med, 15: 346.
    Metwally, F.M., H. Rashad and A.A. Mahmoud, 2019. Morus alba l. Diminishes visceral adiposity, insulin resistance, behavioral alterations via regulation of gene expression of leptin, resistin and adiponectin in rats fed a high-cholesterol diet. Physiol Behav, 201: 1-11.
    Moneruzzaman Khandaker, M., A. Nasrulhaq Boyce, N. Osman and A. Sharif Hossain, 2012. Physiochemical and phytochemical properties of wax apple (syzygium samarangense [blume] merrill & l. M. Perry var. Jambu madu) as affected by growth regulator application. ScientificWorldJournal, 2012: 728613.
    Mullarkey, C.J., D. Edelstein and M. Brownlee, 1990. Free radical generation by early glycation products- a mechanism for accelerated atherogenesis in diabetes. Biochemical and biophysical research communications, 173(3): 932-939.
    Nagala, S., M. Yekula and R.R. Tamanam, 2013. Antioxidant and gas chromatographic analysis of five varieties of jackfruit (artocarpus) seed oils. Drug Invention Today, 5(4): 315-320.
    Nantitanon, W., S. Yotsawimonwat and S. Okonogi, 2010. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT - Food Science and Technology, 43(7): 1095-1103.
    Naowaboot, J., P. Pannangpetch, V. Kukongviriyapan, B. Kongyingyoes and U. Kukongviriyapan, 2009. Antihyperglycemic, antioxidant and antiglycation activities of mulberry leaf extract in streptozotocin-induced chronic diabetic rats. Plant Foods Hum Nutr, 64(2): 116-121.
    Navarro, M. and F.J. Morales, 2015. Mechanism of reactive carbonyl species trapping by hydroxytyrosol under simulated physiological conditions. Food Chem, 175: 92-99.
    Olagaray, K.E. and B.J. Bradford, 2019. Plant flavonoids to improve productivity of ruminants – a review. Animal Feed Science and Technology, 251: 21-36.
    Olszowy, M., 2019. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry, 144: 135-143.
    Omar, H.S., H.A. El-Beshbishy, Z. Moussa, K.F. Taha and A.N. Singab, 2011. Antioxidant activity of artocarpus heterophyllus lam. (jack fruit) leaf extracts: Remarkable attenuations of hyperglycemia and hyperlipidemia in streptozotocin-diabetic rats. ScientificWorldJournal, 11: 788-800.
    Ott, A., R.P. Stolk, F. van Harskamp, H.A. Pols, A. Hofman and M.M. Breteler, 1999. Diabetes mellitus and the risk of dementia: The rotterdam study. Neurology, 53(9): 1937-1942.
    Ott, C., K. Jacobs, E. Haucke, A. Navarrete Santos, T. Grune and A. Simm, 2014. Role of advanced glycation end products in cellular signaling. Redox Biol, 2: 411-429.
    Pękal, A. and K. Pyrzynska, 2014. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9): 1776-1782.
    Peppa, M., J. Uribarri and H. Vlassara, 2003. Glucose, advanced glycation end products, and diabetes complication- what is new and what works. Clinical Diabetes, 21(4): 186-187.
    Poulsen, M.W., R.V. Hedegaard, J.M. Andersen, B. de Courten, S. Bugel, J. Nielsen, L.H. Skibsted and L.O. Dragsted, 2013. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol, 60: 10-37.
    Prakash, O., R. Kumar, A. Mishra and R. Gupta, 2009. Artocarpus heterophyllus (jackfruit): An overview. Pharmacognosy Reviews, 3(6): 353.
    Quatrin, A., L. Conte, D.T. da Silva, C.G. Figueiredo, S. Somacal, M. Roehrs, C.F. Teixeira, F. Barbisan, P.R. Augusti, M.R. Marostica Junior, I.B.M. da Cruz and T. Emanuelli, 2018. The hepatoprotective effect of jaboticaba peel powder in a rat model of type 2 diabetes mellitus involves the modulation of thiol/disulfide redox state through the upregulation of glutathione synthesis. J Nutr Metab, 2018: 9794629.
    Rabbani, N. and P.J. Thornalley, 2014. The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes, 63(1): 50-52.
    Rasouli, H., S.M. Hosseini-Ghazvini, H. Adibi and R. Khodarahmi, 2017. Differential alpha-amylase/alpha-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct, 8(5): 1942-1954.
    Ravichandran, G., D.K. Lakshmanan, K. Raju, A. Elangovan, G. Nambirajan, A.A. Devanesan and S. Thilagar, 2019. Food advanced glycation end products as potential endocrine disruptors: An emerging threat to contemporary and future generation. Environ Int, 123: 486-500.
    Reynertson, K.A., H. Yang, B. Jiang, M.J. Basile and E.J. Kennelly, 2008. Quantitative analysis of antiradical phenolic constituents from fourteen edible myrtaceae fruits. Food Chem, 109(4): 883-890.
    Sadeghi, Z., J. Valizadeh, O.A. Shermeh and M. Akaberi, 2015. Antioxidant activity and total phenolic content of boerhavia elegans (choisy) grown in baluchestan, iran. Avicenna journal of phytomedicine, 5(1): 1.
    Sekhon-Loodu, S. and H.P.V. Rupasinghe, 2019. Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants. Front Nutr, 6: 53.
    Selkoe, D.J., 1994. Normal and abnormal biology of the beta-amyloid precursor protein. Annual review of neuroscience, 17(1): 489-517.
    Semba, R.D., E.J. Nicklett and L. Ferrucci, 2010. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci, 65(9): 963-975.
    Shai, L.J., P. Masoko, M.P. Mokgotho, S.R. Magano, A.M. Mogale, N. Boaduo and J.N. Eloff, 2010. Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in phalaborwa, south africa. South African Journal of Botany, 76(3): 465-470.
    Shao, X., H. Chen, Y. Zhu, R. Sedighi, C.T. Ho and S. Sang, 2014. Essential structural requirements and additive effects for flavonoids to scavenge methylglyoxal. J Agric Food Chem, 62(14): 3202-3210.
    Shen, S.C. and W.C. Chang, 2013. Hypotriglyceridemic and hypoglycemic effects of vescalagin from pink wax apple [syzygium samarangense (blume) merrill and perry cv. Pink] in high-fructose diet-induced diabetic rats. Food Chem, 136(2): 858-863.
    Singh, R., A. Barden, T. Mori and L. Beilin, 2001. Advanced glycation end-products: A review. Diabetologia, 44(2): 129-146.
    Singh, V.P., A. Bali, N. Singh and A.S. Jaggi, 2014. Advanced glycation end products and diabetic complications. The Korean Journal of Physiology & Pharmacology, 18(1): 1-14.
    Singh, V.P., A. Bali, N. Singh and A.S. Jaggi, 2014. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol, 18(1): 1-14.
    Sobal, G., J. Menzel and H. Sinzinger, 2000. Why is glycated ldl more sensitive to oxidation than native ldl? A comparative study. Prostaglandins Leukot Essent Fatty Acids, 63(4): 177-186.
    Stephen Irudayaraj, S., S. Christudas, S. Antony, V. Duraipandiyan, A.D. Naif Abdullah and S. Ignacimuthu, 2017. Protective effects of ficus carica leaves on glucose and lipids levels, carbohydrate metabolism enzymes and beta-cells in type 2 diabetic rats. Pharm Biol, 55(1): 1074-1081.
    Suzuki, M., T. Watanabe, A. Miura, E. Harashima, Y. Nakagawa and K. Tsuji, 2002. An extraction solvent optimum for analyzing polyphenol contents by folin–denis assay. Journal of the Japanese Society for Food Science and Technology
    Sytar, O., I. Hemmerich, M. Zivcak, C. Rauh and M. Brestic, 2018. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J Biol Sci, 25(4): 631-641.
    Tan, Y., S.K.C. Chang and Y. Zhang, 2017. Comparison of alpha-amylase, alpha-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem, 214: 259-268.
    Thengyai, S., P. Thiantongin, C. Sontimuang, C. Ovatlarnporn and P. Puttarak, 2020. Α-glucosidase and α-amylase inhibitory activities of medicinal plants in thai antidiabetic recipes and bioactive compounds from vitex glabrata r. Br. Stem bark. Journal of Herbal Medicine, 19.
    Thoo, Y.Y., S.K. Ho, J.Y. Liang, C.W. Ho and C.P. Tan, 2010. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (morinda citrifolia). Food Chemistry, 120(1): 290-295.
    Uribarri, J., W. Cai, M. Ramdas, S. Goodman, R. Pyzik, X. Chen, L. Zhu, G.E. Striker and H. Vlassara, 2011. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: Potential role of ager1 and sirt1. Diabetes Care, 34(7): 1610-1616.
    Venkatakrishnan, K., H.-F. Chiu and C.-K. Wang, 2019. Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism. Journal of Functional Foods, 57: 425-438.
    Vitek, M.P., K. Bhattacharya, J.M. Glendening, E. Stopa, H. Vlassara, R. Bucala, M. K. and A. Cerami, 1994. Advanced glycation end products contribute to amyloidosis in alzheimer disease. Proceedings of the National Academy of Sciences, 91(11): 4766-4770.
    Wang, H., Y.-J. Du and H.-C. Song, 2010. Α-glucosidase and α-amylase inhibitory activities of guava leaves. Food Chemistry, 123(1): 6-13.
    Wang, Q., M. Rehman, D. Peng and L. Liu, 2018. Antioxidant capacity and α-glucosidase inhibitory activity of leaf extracts from ten ramie cultivars. Industrial Crops and Products, 122: 430-437.
    Wei, Q., T. Liu and D.-W. Sun, 2018. Advanced glycation end-products (ages) in foods and their detecting techniques and methods: A review. Trends in Food Science & Technology, 82: 32-45.
    Wu, C.H. and G.C. Yen, 2005. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. Journal of agricultural and food chemistry, 53(8): 3167-3173.
    Wu, J.-W., C.-L. Hsieh, H.-Y. Wang and H.-Y. Chen, 2009. Inhibitory effects of guava (psidium guajava l.) leaf extracts and its active compounds on the glycation process of protein. Food Chemistry, 113(1): 78-84.
    Wu, S.-B., C. Long and E.J. Kennelly, 2013. Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from brazil. Food Research International, 54(1): 148-159.
    Xiao, J., T.S. Muzashvili and M.I. Georgiev, 2014. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol Adv, 32(6): 1145-1156.
    Xie, Y. and X. Chen, 2013. Structures required of polyphenols for inhibiting advanced glycation end products formation. Curr Drug Metab, 14(4): 414-431.
    Xu, D.P., Y. Li, X. Meng, T. Zhou, Y. Zhou, J. Zheng, J.J. Zhang and H.B. Li, 2017. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int J Mol Sci, 18(1).
    Yagi, S., N. Drouart, F. Bourgaud, M. Henry, Y. Chapleur and D. Laurain-Mattar, 2013. Antioxidant and antiglycation properties of hydnora johannis roots. South African Journal of Botany, 84: 124-127.
    Yan, H. and J.J. Harding, 1997. Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochemical Journal, 328(2): 599-605.
    Yeh, W.J., S.M. Hsia, W.H. Lee and C.H. Wu, 2017. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal, 25(1): 84-92.
    Younus, H., 2018. Therapeutic potentials of superoxide dismutase. International journal of health sciences, 12(3): 88.
    Yuan, S., Y. Zhang, J. Liu, Y. Zhao, L. Tan, J. Liu, Q. Wang and H. Zhang, 2019. Structure-affinity relationship of the binding of phenolic acids and their derivatives to bovine serum albumin. Food chemistry, 278: 77-83.
    Zhang, D.-Y., Y. Wan, J.-Y. Hao, R.-Z. Hu, C. Chen, X.-H. Yao, W.-G. Zhao, Z.-Y. Liu and L. Li, 2018. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern china. Industrial Crops and Products, 122: 298-307.
    Zhu, H., M.M. Poojary, M.L. Andersen and M.N. Lund, 2019. Effect of ph on the reaction between naringenin and methylglyoxal: A kinetic study. Food Chem, 298: 125086.
    Zhu, H., M.M. Poojary, M.L. Andersen and M.N. Lund, 2020. The effect of molecular structure of polyphenols on the kinetics of the trapping reactions with methylglyoxal. Food Chem, 319: 126500.
    Zhu, P., C. Yang, L.H. Chen, M. Ren, G.J. Lao and L. Yan, 2011. Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified bsa. Arch Dermatol Res, 303(5): 339-350.

    無法下載圖示 校外公開
    2025/08/12
    QR CODE