簡易檢索 / 詳目顯示

研究生: 陳韋豪
Chan, Wei-Hao
論文名稱: 轉向架活性銲接殘留應力分析之研究
A Study on the Residual Stress of Activated Welding Bogie Frame
指導教授: 陳勇全
Chan, Yung-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 車輛工程系所
Department of Vehicle Engineering
畢業學年度: 108
語文別: 中文
論文頁數: 128
中文關鍵詞: 轉向架銲接殘留應力雙橢球熱源模型活性銲接銲接順序銲接參數
外文關鍵詞: Bogie Frame, Residual stress, Double Ellipsoid Heat Source Model, Activated Welding, Welding Sequence, Welding Parameter
DOI URL: http://doi.org/10.6346/NPUST202000479
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 摘要 I
    ABSTRACT II
    謝誌 IV
    目錄 V
    表目錄 IX
    圖目錄 XI
    符號索引 XIX
    第一章 緒論 1
    1.1前言 1
    1.2文獻回顧 2
    1.2.1銲接殘留應力之探討 2
    1.2.2轉向架銲接之探討 2
    1.2.3銲接參數之探討 3
    1.2.4活性銲接之探討 4
    1.2.5銲接順序影響殘留應力之探討 4
    1.3 研究目的 4
    1.4 組織與章節 5
    第二章 理論介紹 6
    2.1電弧銲接原理 6
    2.2雙橢球熱源模型 8
    2.3熱傳導理論 12
    2.4熱對流理論 15
    2.5熱彈塑性理論 17
    2.6活性氬弧銲接(ACTIVATED TIG WELDING)原理 18
    2.6.1電弧緊縮效應 18
    2.6.2熔池表面張力 18
    第三章 試片活性銲接實驗及有限元素分析模型建立 22
    3.1 實驗設備 25
    3.2 實驗步驟 31
    3.2.1銲接實驗量測 31
    3.2.2試片蝕刻實驗流程 40
    3.3 實驗結果 42
    3.3.1活性銲接實驗量測結果 42
    3.3.2填料銲接實驗量測結果 45
    3.3.3銲接試片蝕刻實驗結果 48
    3.4 銲接試片有限元素分析 50
    3.4.1幾何尺寸與有限元素模型 50
    3.4.2材料性質與邊界條件 57
    3.4.3建立熱源模型 61
    3.4.4熱源模型設計參數範圍設定 63
    3.4.5熱源模型參數最佳化分析結果 66
    3.4.6有限元素模型驗證 70
    3.4.7銲接試片溫度場隨時間之變化及銲後殘留應力 80
    第四章 轉向架銲接實驗及有限元素模型分析 88
    4.1 轉向架銲接實驗量測 88
    4.1.1大型銲接試片幾何尺寸模型 88
    4.1.2大型銲接試片量測規劃 88
    4.1.3大型銲接試片實驗量測結果 89
    4.2.1幾何尺寸與邊界負載條件 89
    4.2.2大型銲接試片有限元素模型驗證 90
    4.3最佳化銲接順序 102
    4.3.1銲接順序直交表 102
    4.3.2銲接順序最佳化結果 102
    第五章 結論與未來展望 121
    5.1 結論 121
    5.2 未來展望 121
    參考文獻 123
    作者簡介 128

    1. Vladislav, B., Mária, B., Michal, Š., Milan, V., and Milan, S., 2017,“Measurement and Numerical Analyses of Residual Stress Distribution Near Weld Joint” Procedia Engineering, Vol. 192 , pp. 22-27.
    2. Chen, B. Q.,2016, “Effects of Plate Configurations on the Weld Induced Deformations and Strength of Fillet-Welded Plates” Marine Structures, Vol. 50, pp. 243-259.
    3. Chen, Z., Chen, Z. C., and Shenoi, R., 2015, “Influence of Welding Sequence on Welding Deformation and Residual Stress of a Stiffened Plate Structure” Ocean Engineering, Vol. 106, pp. 271-280.
    4. Deng, D, and Murakawa, H., 2005, “Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison with Experimental Measurements”, Computational Materials ,Vol. 37,pp.269-277.
    5. Eisazadeh, H., Achuthan, A., Goldak,J.A.,and Aidun,D.K.,2015,” Effect of Material Properties and Mechanical Tensioning Load on Residual Stress Formation in GTA 304-A36 dissimilar weld,” Journal of Materials Processing Technology,Vol. 222, pp.344-355.
    6. Venkata, A. K.,Trunam, C. E.,Wimpory, R. C., and Pirling, T., 2017, “Numerical Simulation of a Three-Pass TIG Welding using Finite Element Method with Validation from Measurements” International Journal of Pressure Vessels and Piping,pp. 1-120.
    7. Dean, D., and Hidekazu, .M., 2008, “Prediction of Welding Distortion and Residual Stress in Athin Plate Butt-Welded Joint” Computational Materials Science, Vol. 43, pp. 353–365.
    8. Li, T., Zhang, L., Chang, C., and Wei, L.,2018,” A Uniform-Gaussian Distributed Heat Source Model for Analysis of Residual Stress Field of S355 Steel T Welding,” Advances in Engineering Software,Vol.126,pp.1-8.
    9. Shen, J.,and Chen, Z.,2014,” Welding Simulation of Fillet-Welded Joint using Shell Elements with Section Integration,” Journal of Materials Processing Technology,Vol. 214,pp.2529-2536.
    10. Lu, Y., Lu, C.,Zhang, D.,Chen, T.,Zeng, J., and Wu, P.,2019,” Numerical Computation Methods of Welding Deformation and their Application in Bogie Frame for High-Speed Trains,” Journal of Manufacturing Processes,Vol. 38,pp.204-213.
    11. 黃小葉,2008,「銲接構架測梁殘餘應力數值模擬分析」,碩士論文,西南交通大學,車輛工程學院,西南。
    12. Bhatti, A. A., Barsoum, Z., and Khurshid, M, “Development of a Finite Element Simulation Framework for the Prediction of Residual Stresses in Large Welded Structures” Computers and Structures, Vol. 133, pp. 1-11.
    13. Joshi, S., Hilderbrand, J., Aloraier, A. S., and Rabczulk, T, 2013, “Characterization of Material Properties and Heat Source Parameters in Welding Simulation of Two Overlapping Beads on a Substrate Plate” Computational Materials Science, Vol. 69. pp. 559-565.
    14. Heinze, C., Schwenk, C., and Rethmeier, M., 2012, “Effect of Heat Source Configuration on the Result Quality of Numerical Calculation of Welding-Induced Distortion” Simulation Modelling Practice and Theory, Vol. 20, pp. 112-123.
    15. Gery, D., Long, H., and Maropoulos, P., 2005, “Effects of Welding Speed, Energy Input and Heat Source Distributionon Temperature Variations in Butt Joint Welding” Journal of Materials Processing Technology, Vol. 167, pp. 393-401.
    16. Jerzy Winczek, 2010, “Analytical Solution to Transient Temperature Field in a Half-Infinite Body Caused by Moving Volumetric Heat Source” International Journal of Heat and Mass Transfer, Vol. 53, pp. 5774-5781.
    17. Sabapathy, P. N., Wahab, M. A., and Painter, M. J., 2000, “The Prediction of Burn-through during in-Service Welding of Gas Pipelines” International Journal of Pressure Vessels and Piping, Vol. 77, pp. 669-677.
    18. Weilin, Z., Gunnars, J.,Dong, P., and Hong, J,“Improvement and Validation of Weld Residual Stress Modelling Procedure”.Computers and Structures, Vol. 133, pp. 1-11.
    19. Ganesh, K.C., Balasubramanian, K.R., Vasudevan, M.,Vasantharaja, P., and Chandrasekhar, N.,2016,“ Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints,” Metallurgical and Materials ,Vol.47, pp.1347-1362
    20. Kollár, D., Kövesdi, B. Vigh,L.G., and Horváth, S.,2019,” Weld Process Model for Simulating Metal Active Gas Welding,” The International Journal of Advanced Manufacturing Technology, Vol.102,pp.2063-2083.
    21. Wang, X., Huang, J.,Huang, Y.,Fan, D., and Guo, Y.,2017,” Investigation of Heat Transfer and Fluid Flow in Activating TIG Welding by Numerical Modeling,” Applied Thermal Engineering, Vol.113, pp.27-35.
    22. Bai, R.,Guo, Z.,Tian, C.,Lei, Z.,Yan, C.,and Tao,W.,2018,” Investigation on Welding Sequence of I-Beam by Hybrid Inversion,” Marine Structures,Vol.62,pp.23-39.
    23. Chen, Z.,Chen, Z,and Shenoi, R.A.,2015, “Influence of Welding Sequence on Welding Deformation and Residual Stress of a Stiffened Plate Structure,” Ocean Engineering,Vol.106,pp. 271-280.
    24. 陳家權,肖順湖,陽新彥,吳剛,2005,「銲接過程數值類比熱源模型的研究進展」,設備製造技術,3,1-5.
    25. Goldak, J.,Chakravarti, A.,and Bibby, M.,1984,“A New Finite Element Model for Welding Heat Source,” Metall Trans B,Vol.15, pp.299-305.
    26. 蕭弘岳,2018,「軌道車實作與轉向架銲接殘留應力分析」,碩士論文,國立屏東科技大學,車輛工程系,屏東。
    27. 高健,2014,「7A52鋁合金焊接接頭殘餘應力對疲勞壽命影響的有限元模擬」,碩士論文,內蒙古工業大學,材料科學與工程學院,內蒙古。
    28. 劉曉苗,2009,「特殊形狀貫穿件焊接殘餘應力和疲勞分析」,碩士論文,哈爾濱工程大學,能源學院,哈爾濱。
    29. Vidyarthy, R. S., and Dwivedi, D. K., 2016, ” Activating Flux Tungsten Inert Gas Welding for Enhanced Weld Penetration,” Journal of Manufacturing Processes,Vol. 22, pp. 211-228.
    30. Kwon, I. k., 2013, “ Evaluation Study on the Mechanical and Thermal Preperties of High Strength Structural Steel at High Temperature,”J. of Korean Institute of Fire Sci., Vol. 27,pp. 72-79.
    31. 王聰,2012,「鋼結構大型銲接構件的銲接變形預測與控制」,碩士論文,青島理工大學,土木工程學院,青島市。
    32. 陳躍,2014,「地鐵構架多道銲應力調控與銲接順序優化方法研究」,博士論文,北京交通大學,載運工具應用工程學院,北京市。
    33. 莫春立、錢百年、國旭明、于少飛,2001,「銲接熱源計算模式的研究進展」,銲接學報,第22卷,第3期,第93-96頁。
    34. 王秋實,2014,「轉向架構架側樑的銲接變形數值模擬研究」,碩士論文,西南交通大學,交通運輸工程學院,西南。

    無法下載圖示 校外公開
    2025/08/12
    QR CODE