簡易檢索 / 詳目顯示

研究生: 廖培志
Liao, Pei-Chih
論文名稱: 臺灣水生動物疾病流行病學研究:疾病監控系統之建立及應用
Epidemiologic studies of aquatic animals diseases in Taiwan:Establishment and application of disease surveillance system
指導教授: 陳石柱
Chen, Shih-Chu
學位類別: 博士
Doctor
系所名稱: 獸醫學院 - 獸醫學系所
Department of Veterinary Medicine
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 水生動物監控系統預警生產醫學氣候因子
外文關鍵詞: aquatic, surveillance system, warning, production medicine, climate factor
DOI URL: http://doi.org/10.6346/NPUST202000542
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究以流行病學的相關技術,建立一套例行性的水生動物疾病網路監控系統,進行長時間、大規模及跨區域的資訊整合及分析,並透過建置之平台,建立氣象因子與疾病發生關係性之分析模式與生產醫學研究模組。目前已成功即時整合全台灣主要水產養殖縣市之水生動物疾病發生疫情資訊,並應用地理資訊系統,建立相關視覺化統計、分析及預警圖表或儀表板。監測系統中並建置智慧型魚病輔助診斷、水生動物藥物使用查詢與計算及常見水生動物疾病查詢資料庫,提供第一線水生動物獸醫師完整之診療,及後端之疫情分析預警支援。從2006至2017年例行性送檢資料統計中,不同類別好發疾病分別為寄生蟲以車輪蟲症(35.04%)為最高,細菌性疾病以鏈球菌症(27.03%)為主,病毒性疾病則是以虹彩病毒症(47.64%)占最大宗,其中寄生蟲性疾病發生比例近年有增加趨勢。在本研究中,應用所建置的監控系統,進行吳郭魚鏈球菌感染與氣候因子間的相關性分析。結果,當平均溫度高於27.0℃,平均壓力低於1005.1hPa或紫外線指數高於7.2時,於送檢吳郭魚的病例中,陽性場的累積百分比將高於50%。另,在降雨後三日內,降雨因子與吳郭魚鏈球菌的發生有關。因此,使用監控系統作為吳郭魚感染鏈球菌的預警工具,將有助於減少養殖場的經濟損失和人工成本。從監控系統所建立之「生產醫學」研究模組中,首次針對四指馬鮁與赤鰭笛鯛進行接種感染N. seriolae後的病理學研究,在實驗室可控環境下,證實本病原與臨床病灶間之關係性。另,我們發現養殖場須落實生物安全措施,才能有效預防疾病入侵或場內交互感染。由上述結果顯示,此監控系統可即時掌握水生動物疫病趨勢,並找出影響生產之危險因子,透過早期預警機制建立,有效的控制及預防疾病發生。

    This research uses epidemiological related technologies to set up a surveillance system for monitoring aquatic animal diseases. This system collects long-term, large-scale and cross-regional informations. From integrating and analyzing the collected datas, we are able to study how the climate changes affect the incidence of diseases. Thus, we establish an analysis model showing the correlation between climatic factors and diseases, and further establish the production medical system. Now, in the main aquaculture counties in Taiwan, the surveillance system not only successfully integrates all the prompt informations on occurrence of aquatic animal diseases, but also simultaneously applies to the geographic information system to provide visual statistics, analysis, warning charts or dashboards. The surveillance system builds in intelligent fish disease auxiliary diagnosis with drug usage query and dosage calculation. It also serves as the database archives of common aquatic animal diseases. This database provides the front-line aquatic animal veterinarians with complete diagnosis and treatment information, and supports the back-end epidemic analysis and create early prevention warning. In the data submitted for inspection from 2006 to 2017, the most common parasitic diseases were caused by Trichodiniasis (35.04%). The bacterial diseases were mostly caused by Streptococcosis (27.03%). As for the viral diseases, Iridovirus infection (47.64%) came to the first place. From the data, we also noticed that the incidence of parasitic diseases has been increasing in recent years. In this research, we applied the surveillance system to analyze the correlation between tilapia Streptococcus infection and climatic factors. The result showed that the cumulated percentage of positive farms from all submitted tilapia cases was more than 50% under the following circumstances; when the average temperature was higher than 27.0℃, when the average pressure was lower than 1005.1hPa, when the UV index was higher than 7.2 or when it rained three days. This result indicates that certain climate factors are highly correlated to the occurrence of Streptococcus in tilapia. We can conclude that this surveillance system serves well as an early warning tool for tilapia Streptococcus infection, thus helps to reduce the labour costs and the economic loss in aquatic indystry. As for the production medical model, we applied the surveillance system to proceed further pathological studies. For the first time, the pathological study of N. seriolae infection was carried out on two fish species; the four-finger threadfin and red snapper. In controlled laboratory tests, the correlation between the pathogen and the lesions was confirmed. In addition, with the implementation of biosecurity measures can effectively prevent disease and cross infection between the farms. In conclusion, from all the results stated, this surveillance system not only provides real-time aquatic animal disease trend and identifies the risk factors affecting production, but also serves as the warning mechanism to effectively control and prevent the occurrence of the aquatic animal diseases.

    中文摘要 Ⅰ
    英文摘要 Ⅱ
    謝 誌 Ⅳ
    目 錄 Ⅴ
    圖表目錄 Ⅶ
    第1章 前言 1
    第2章 文獻回顧 3
    2.1台灣水生動物養殖概況及挑戰 3
    2.2水生動物疾病控制發展趨勢 5
    2.3流行病學在疾病控制上應用 6
    2.4動物監控系統 15
    2.5吳郭魚鏈球菌症簡介 18
    第2章 材料與方法 21
    3.1建立水生動物疾病診療系統之原理與方法 21
    3.2養魚場數據與氣象資料數據收集 26
    3.3水生動物疾病診療系統資料統計及分析模式建立 29
    3.4新興養殖魚種細菌性疾病檢測方法 29
    第4章 結果 30
    4.1水生動物疾病診療系統之操作模式 30
    4.2水生動物疾病診療系統之統計分析 41
    4.3水生動物疾病發生因子之分析與預測 48
    4.4新興養殖魚種病例報告 54
    第5章 討論 61
    5.1監控系統開發 61
    5.2監控系統應用 65
    5.3監控系統發展 68
    5.4結論 69
    5.5未來發展方向 70
    參考文獻 71
    附錄 85
    附錄1、水生動物疾病監控系統操作頁面功能程式設計 85
    附錄2、水生動物疾病監控系統統計分析與程式設計 88
    附錄3、專利證書:水生動物疾病病菌與疫苗主種子管控系統及其方法,發明第I686762號 89
    附錄4、專利證書:錦鯉生產供應鏈管理系,發明第I521460號 90
    作者簡介 91
    期刊發表 93
    圖目錄
    Fig. 1 History of aquatic animal diseases in Taiwan 4
    Fig. 2 Production medical system 6
    Fig. 3 Data collection object 22
    Fig. 4 Aquatic animal disease diagnosis procedures 23
    Fig. 5 System structure 24
    Fig. 6 System function summary 24
    Fig. 7 Collect six climate factors from 8 different weather stations 27
    Fig. 8 The structural diagram of TDS shows how the system analyzes data and provides information for clinical diagnosis 28
    Fig. 9 The operation process of the aquatic animal disease diagnosis and treatment system 33
    Fig. 10 Create new cases 33
    Fig. 11 Farmer database 34
    Fig. 12 Case inquire 34
    Fig. 13 Pond database 35
    Fig. 14 Current data 35
    Fig. 15 Water quality parameter 36
    Fig. 16 History 36
    Fig. 17 Used drugs 37
    Fig. 18 Signs 37
    Fig. 19 Smear examination 38
    Fig. 20 Examination 38
    Fig. 21 Diagnosis 39
    Fig. 22 Suggestion 39
    Fig. 23 Remarks 40
    Fig. 24 Report 40
    Fig. 25 Different categories of disease occurrence trend 43
    Fig. 26 Single and complex infection analysis 43
    Fig. 27 The cumulated infection rate streptococcosis and vibriosis in Taiwan during 2006-2017 44
    Fig. 28 The cumulated infection rate of tilapia streptococcosis in each month 44
    Fig. 29 Gross lesions of streptococcosis in tilapia 49
    Fig. 30 The cumulated infection rate of tilapia streptococcosis in each month throughout a decade (2006-2015) 50
    Fig. 31 The infection rate and cumulative infection rate of tilapia streptococcosis in Taiwan during 2006-2015 50
    Fig. 32 The relations between the percentage of cumulated positive farms from all submitted tilapia cases and climate factors 51
    Fig. 33 The tilapia streptococcosis hot zone at different times 51
    Fig. 34 Nocardiosis infected East Asian four finger threadfin gross lesions 56
    Fig. 35 Nocardiosis infected East Asian four finger threadfin pathological lesions 57
    Fig. 36 Nocardiosis infected red snapper pathological lesions 57
    Fig. 37 Acid-fast staining of infected spleen of red snapper 58
    Fig. 38 16S rRNA sequence-based phylogenetic tree of NM107152 and NM108007 isolates from our study and from GenBank 58
    Fig. 39 Analysis and design of aquatic animal disease surveillance dashboard 63
    Fig. 40 System structure and process 64
    Fig. 41 This text cloud is drawn based on the content of the plan of this query result, and extracts the more representative words with higher word frequency 65
    表目錄
    Table 1 Standard form 25
    Table 2 Total cases of fish diseases from different counties 45
    Table 3 Statistics from fish species 45
    Table 4 Statistical parasitic disease 46
    Table 5 Statistical bacterial disease 46
    Table 6 Statistical viral disease 47
    Table 7 Streptococcus often occurs in fish species analysis 47
    Table 8 Identification Gram positive cocci isolated from tilapia from 2013 to 2015 52
    Table 9 Univariate logistic regression analysis on tilapia streptococcosis and climatic factors 52
    Table 10 Multivariate logistic regression analysis on tilapia streptococcosis and climatic factors 53
    Table 11 Univariate logistic regression analysis of the rainfall in different days before the occurrence of tilapia streptococcosis 53
    Table 12 API-ZYM result for isolate and reference strains of Nocardia seriolae 59
    Table 13 Sensitivities to antibiotic disks for strains isolated from diseased East Asian four finger threadfin and red snapper 59
    Table 14 Cumulative mortality (%) of red snapper with Nocardia seriolae 60

    朱鴻鈞 (2010) 全球漁業發展現況及未來趨勢分析兼論台灣漁業發展現況。臺灣經濟研究月刊33(3):47-52。
    施進票 (2015) 動物生產醫學整合平台之建構。農業資訊科技應用發展電子報34。2020年5月10日,取自:https://www.coa.gov.tw/office_ epaper/epaper/infoexplorer/online/36/003/Untitled-1.html。
    翁文才 (2004) 集相似度法建立智慧型魚病診斷輔助系統。碩士論文。國立雲林科技大學資訊管理系研究所。67頁。
    漁業統計年報。2020年5月10日,取自:https://www.fa.gov.tw/cht/ PublicationsFishYear/。
    鄧琢璽 (2010) 預測水產動物疾病之決策支援系統。碩士論文。國立屏東科技大學資訊管理系研究所。47頁。
    鄭金華 (2007) 無特定病原(SPF)白蝦繁養殖模式之開發與產業應用。農業生技產業季刊10:48-59。
    Allen W., J. Cruz, and B. Warburton (2017) How decision support systems can benefit from a theory of change approach. Environmental Management 59(6): 956–965.
    Amezcua M. D. R., D. L. Pearl, R. M. Friendship, and W. B. McNab (2010) Evaluation of a veterinary-based syndromic surveillance system. The Canadian Journal of Veterinary Research 74: 241-251.
    Ananda R. R., and K. P. Jithendran (2015) Aquaculture disease diagnosis and health management. Advances in Marine and Brackishwater Aquaculture 247–255.
    Bhowmick B., and M. Crumlish (2017) Aquaculture health management and biosecurity practices in south west of B angladesh. Bangladesh Journal of Veterinary Medicine 14(2): 263–269.
    Blaiotta G, O. Pepe, G. Mauriello, G. Villani, R. Andolfi, and G. Moschetti (2002) 16S–23S rDNA intergenic spacer region polymorphism of Lactococcus garvieae, Lactococcus raffinolactis and Lactococcus lactis as revealed by PCR and nucleotide sequence Analysis. Systematic and Applied Microbiology 25: 520–527.
    Bondad-Reantaso M. G., R. P. Subasinghe, J. R. Arthur, K. Ogawa, S. Chinabut, R. Adlard, Z. Tan, and M. Shariff (2005) Disease and health management in Asian aquaculture. Veterinary Parasitology 132 : 249–272.
    Bourgeosis D. T. (2014) Chapter 10: Information Systems Development. Information System for Business and Beyond 104-113. Retrieved January 25, 2020, from the World Wide Web: https://resources.saylor.org/wwwresources/archived/site/textbooks/Information%20Systems%20for%20Business%20and%20Beyond.pdf
    Brockmann D. (2017) Human mobility, networks and disease dynamics on a global scale. Diffusive Spreading in Nature, Technology and Society: 375–396, 2017.
    Brownstein J. S., C. C. Freifeld, and L. C. Madoff (2009) Digital disease detection — Harnessing the web for public health surveillance. New England Journal of Medicine 360(21):2153–2157.
    Brugere C., D. M. Onuigbo, and K. L. Morgan (2017) People matter in animal disease surveillance: Challenges and opportunities for the aquaculture sector. Aquaculture 467: 158–169.
    Brunner F.S., and C. Eizaguirre (2016) Can environmental change affect host/parasite-mediated speciation? Zoology. 119: 384–394.
    Carlson R. E., E. P. Baker, and R. E. Fuller (1995) Immunological assessment of hybrid striped bass at three culture temperatures. Fish & Shellfish Immunology 5(5): 359–373.
    Carpenter T. E. (2001) Methods to investigate spatial and temporal clustering in veterinary epidemiology. Preventive Veterinary Medicine 48(4): 303–320.
    Chen J., Y. Li, W. Wang, L. Xia, Z. Wang, S. Hou, J. Huang, and Y. Lu. (2018) Transcriptome analysis of immune-related gene expression in hybrid snakehead (Channa maculata♀×Channa argus♂) after challenge with Nocardia seriolae. Fish & Shellfish Immunology 81: 476-484.
    Chou C. C., M. C. Lin, F. J. Su, and M. M. Chen (2019) Mutation in cyl operon alters hemolytic phenotypes of Streptococcus agalactiae. Infection, Genetics and Evolution 67: 234–243.
    Chu C., P. Y. Huang, H. M. Chen, Y. H. Wang, I. A. Tsai, C. C. Lu, and C. C. Chen (2016) Genetic and pathogenic difference between Streptococcus agalactiae serotype Ia fish and human isolates. BMC Microbiol 16: 175.
    Cockcroft P. D., and M. A. Holmes (2003) Handbook of Evidence-based Veterinary Medicine. Blackwell Publishing Ltd, Great Britain. 210pp.
    Corsin F, M. Georgiadis, K. L. Hammell, and B. Hill (2014) Guide for aquatic animal health surveillance. The World Organisation for Animal Health. Retrieved July 10, 2020, from the World Wide Web: https://www.oie.int/doc/ged/d6714.pdf
    Covello V. T., and M. W. Merkhofer (1993) Introduction to Risk Assessment. In: Risk Assessment Methods. Springer, Boston, MA. 34pp.
    Donaldson A. I., J. H. Sorensen, D. K. J. Mackay, and C. O. Jensen (1999) An integrated model to predict the atmospheric spread of foot-and-mouth disease virus. Epidemiology and Infection. 124: 577-590.
    Dorea F. C., J. Sanchez, and C. W. Revie (2011) Veterinary syndromic surveillance: Current initiatives and potential for development. Preventive Veterinary Medicine 101: 1-17.
    Dredze M. (2012) How social media will change public health. IEEE Intelligent Systems 27(4): 81–84.
    Duan Y., J. S. Edwards, and M. X. Xu (2005) Web-based expert systems: benefits and challenges. Information & Management 42(6): 799–811.
    Dufour B. (1999) Technical and economic evaluation method for use in improving infectious animal disease surveillance networks. Veterinary Research 30: 27-37.
    Dunham I. M. (2015) Big Data: A revolution that will transform how we live, work, and think. The AAG Review of Books 3(1): 19–21.
    Elkesh, A., K. P. L. Kantham, A. P. Shinn, M. Crumlish, and R. H. Richards (2012). Systemic nocardiosis in a Mediterranean population of cultured meagre, Argyrosomus regius Asso (Perciformes: Sciaenidae). Journal of Fish Diseases 36: 141–149.
    Eybpoosh S., A. A. Haghdoost, E. Mostafavi, A. Bahrampour, K. Azadmanesh, and F. Zolala (2017) Molecular epidemiology of infectious diseases. Electronic Physician 9(8): 5149–5158.
    FAO (2016) The State of World Fisheries and Aquaculture 2016 : Contributing to food security and nutrition for all. Rome. 200pp.
    FAO (2019) FAO and Denmark Ministry of Environment and Food – Danish Veterinary and Food Administration. Tackling antimicrobial use and resistance in pig production: lessons learned from Denmark. Rome. 52pp.
    Ferguson H. W., V. S. St John, C. J. Roach, S. Willoughby, C. Parker, and R. Ryan (2000) Caribbean reef fish mortality associated with Streptococcus iniae. Vet Record. 147: 662– 664.
    Fineberg H.V., and M. E. Wilson (2009) Epidemic science in real time. Science 324:987.
    Forsman P., A. Tilsaia-Timisjarvi, and T. Alatossava (1997) Identification of staphylococcal and streptococcal causes of bovine mastitis using 16S-23S rRNA spacer regions. Microbiology 143(11): 3491–3500.
    Georgiadis M. P., I. A. Gardner, R. P. Hedrick (2001) The role of epidemiology in the prevention, diagnosis, and control of infectious diseases of fish. Preventive Veterinary Medicine 48 : 287–302.
    Ginsberg J., M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Brilliant (2009) Detecting influenza epidemics using search engine query data. Nature 457: 1012–1014.
    Good C. M., M. A. Thorburn, C. S. Ribble, and R. M. W. Stevenson (2010) A prospective matched nested case–control study of bacterial gill disease outbreaks in Ontario, Canada government salmonid hatcheries. Preventive Veterinary Medicine 95(1-2): 152–157.
    Gorder P. F. (2010) Computational epidemiology. Computing in Science & Engineering 12: 4-6.
    Guisande C., A. Manjarres-Hernández, P. Pelayo-Villamil, C. Granado-Lorencio, I. Riveiro, A. Acuna, E. Prieto-Piraquive, E. Janeiroe , J. M. Matias, C. Pattif, B. Pattif, S. Mazzolaf, S. Jimenezg, V. Duque, and F. Salmeronh (2010) IPez: An expert system for the taxonomic identification of fishes based on machine learning techniques. Fisheries Research 102(3): 240–247.
    Hassan A. A., I. U. Khan, and C. Lammler (2003) Identification of Streptococcus dysgalactiae strains of lancefield’s group C, G and L by polymerase chain reaction. Journal of Veterinary Medicine Series B 50: 161–165.
    Helbing D., D. Brockmann, T. Chadefaux, K. Donnay, U. Blanke, O. Woolley-Meza, M. Moussaid, A. Johansson, J. Krause, S. Schutte, and M. Perc (2014) Saving human lives: What complexity science and information systems can contribute. Journal of Statistical Physics 158(3): 735–781.
    Hoinville L. J., L. Alban, J. A. Drewe, J. C. Gibbens, L. Gustafson, B. Haler, and K. D. C. Stark (2013) Proposed terms and concepts for describing and evaluating animal-health surveillance systems. Preventive Veterinary Medicine 112(1-2): 1–12.
    Hoshina T. S. T., and Y. Morimoto (1958) A Streptococcus pathogenic to fish. Journal of the Tokyo University of Fisheries 44: 57–68.
    Hossain M., J. Y. Song. S. I. Kitamura, S. J. Jung, and M. J. Oh (2008) Phylogenetic analysis of lymphocystis disease virus from tropical ornamental fish species based on a major capsid protein gene. Journal of Fish Diseases 31 : 473-479.
    Ismail N. I. A., M. N. A. Amal, S. Shohaimi, M. Z. Saad, and S. Z. Abdullah (2016) Associations of water quality and bacteria presence in cage cultured red hybrid tilapia, Oreochromis niloticus×O. mossambicus. Aquaculture Reports 4: 57–65.
    Jalvingh A.W., M. Nielen, A. A. Dijkhuizen, and R. S. Morris (1995) EpiMAN: Decision support system for contagious animal disease control. IFAC Proceedings 28(4): 97–102.
    Jarp J., and E. Karlsen (1997) Infectious salmon anaemia (ISA) risk factors in sea-cultured Atlantic salmon Salmo salar. Diseases of Aquatic Organisms 28: 79-86.
    Jensen M. A., J. A. Webster, and N. Straus (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Applied and Environmental Microbiology 59: 945–952.
    Karvonen A., P. Rintamaki, J. Jokela, and E. T. Valtonen (2010) Increasing water temperature and disease risks in aquatic systems: Climate change increases the risk of some, but not all, diseases. International Journal for Parasitology 40: 1483–1488.
    Kayansamruaj P., N. Pirarat, I. Hirono, and C. Rodkhum (2014) Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Vet Microbiol. 172: 265–271.
    Kitao T. (1993) Streptococcal infections. p.196-210. In: Inglis V., R. J. Roberts, and N. R. Bromage. Bacterial Disease of Fish. Blackwell Press, London.
    Kosmider R, L. Kelly, S. Evans, and G. Gettinby (2006) A stastistical system for detecting Salmonella outbreaks in British livestock. Epidemiology and Infection 134: 952-960.
    LaFrentz B.R., C. A. Lozano, C. A. Shoemaker, J. C. Garcia, D. H. Xu, M. Lovoll, and M. Rye (2016) Controlled challenge experiment demonstrates substantial additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae. Aquaculture 458: 134-139, 2016.
    Lazur A. M., C. E. Cichra, and C. Watson (2019) The use of lime in fish ponds. FA38 p.1-3. UF/IFAS Extension - UNIVERSITY of FLORIDA.
    Leblond A., P. Hendrikx, and P. Sabatier (2007) West nile virus outbreak detection using syndromic monitoring in horses. Vector Borne Zoonotic Disease 7: 403-410.
    Li N., R.Wang, J. Zhang, Z. Fu, and X. Zhang (2009) Developing a knowledge-based early warning system for fish disease/health via water quality management. Expert Systems with Applications 36(3): 6500–6511.
    Lia D., Z. Fua, and Y.Duanb (2002) Fish-Expert: a web-based expert system for fish disease diagnosis. Expert Systems with Applications 23 : 311–320.
    Lia S. H. (2005) Expert system methodologies and applications - a decade review from 1995 to 2004. Expert Systems with Applications 28: 93–103.
    Liao I. C., T. S. Huang, W. S. Tsai, C. M. Hsueh, S. L. Chang, and E. M. Leano (2004) Cobia culture in Taiwan: current status and problems. Aquaculture 237(1-4): 155–165.
    Liao P. C., P. C. Wang, and S. C. Chen (2010) Development of aquaculture and animal disease diagnosis and treatment and drug assistance system. Agric Biotechnol Ind Q. 22: 34–43.
    Lober W. B., B. T. Karras, M. M. Wagner, J. M. Overhage, A. J. Davidson, H. Fraser, L. J. Trigg, K. D. Mandl, J. U. Espino, and F. C. Tsui (2002) Roundtable on bioterrorism detection: information system-based surveillance. American Medical Informatics Association 9: 105-115.
    Mandl K. D. , J. M. Overhage, M. M. Wagner, W. B. Lober, P. Sebastiani, F. Mostashari, J. A. Pavlin, P. H. Gesteland, T. Treadwell, E. Koski, L. Hutwagner, D. L. Buckeridge, R. D. Aller, and S. Grannis (2004) Implementing syndromic surveillance: a practical guide informed by the early experience. American Medical Informatics Association 11: 141-150.
    Marathe M. V., and N. Ramakrishnan (2013) Recent advances in computational epidemiology. IEEE Intelligent Systems, 28(4): 96–101.
    Marcogliese D. J. (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Revue scientifique et technique (International Office of Epizootics) 27 (2): 467-484.
    Mellannby R. J. , R. K. Stevenson, M. E. Jerrtage, R. A. S. White, and J. M. Dobson (2002) Long-term outcome of 56 dogs with nasal tumours treated with four doses of radiation at intervals seven days. Vet Record 151 : 253-257.
    Michel C., G. Tixier, and M. Mevel (1984) Evaluation of the protective activity and economic efficacy of vaccines for fish. In: de Kinkelin, P. (Ed.), Proceedings of the Symposium on Fish Vaccination. Office International des Epizooties, Paris, 75-96.
    Mishra A., G. H. Nam, J. A. Gim, H. E. Lee, A. Jo, and H. S. Kim (2018) Current challenges of streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Molecules and Cells 41(6): 495-505.
    Mohan C. V., and J. Delamare-Deboutteville (2019) Biosecurity in tilapia production. A Presentation at The World Organisation for Animal Health (OIE) held the 4th Global Conference on Aquatic Animal Health from 2 to 4 April 2019, in Santiago, Chile.
    Morris R. S. (1995) The epidemiological approach to animal health - building on strong foundations. Preventive Veterinary Medicine 25 : 77-92.
    Nadelhoffer E. (2019) 10 Best Practices for Building Effective Dashboards. Tableau Desktop 1-14. Retrieved May 15, 2020, from the World Wide Web:http://17.datavizday.by/upload/whitepapers/10%20Best%20Practices%20for%20Building%20Effective.pdf
    Ndong D., Y. Y. Chen, Y. H. Lin, B. Vaseeharan, and J. C. Chen (2007) The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish Shellfish Immunol. 22 :686–694.
    Okocha R. C., I. O. Olatoye, and O. B. Adedeji (2018) Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Reviews 39(1).
    Opiyo M. A., E. Marijani, P. Muendo, R. Odede, W. Leschen, and H. Charo-Karisa (2018) A review of aquaculture production and health management practices of farmed fish in Kenya. International Journal of Veterinary Science and Medicine 6(2): 141-148.
    Ortega C., J. L. Muzquiz, A. Fernandez, I. Ruiz, I. D. Blas, M. C. Simon, and J. L. Alonso (1996) Water quality parameters associated with Aeromonas spp-affected hatcheries. Veterinary Research 27(6):553-60.
    Ortega C., J. L. Muzquiz, J. Docando, E. Planas, J. L. Alonso, and M. C. Simon (1995) Ecopathology in aquaculture: Risk factors in infectious disease outbreak. Veterinary Research 26(1): 57-62.
    Peeler E. J., A. G. Murray, A.Thebaul, E. Brun, A. Giovaninni, and M. A. Thrush (2007) The application of risk analysis in aquatic animal health management. Preventive Veterinary Medicine 81 : 3–20.
    Peeler E. J., and N. G. Taylor (2011) The application of epidemiology in aquatic animal health -opportunities and challenges. Veterinary Research 42(1): 94.
    Plumb J. A., and L. A. Hanson (2010) Tilapia Bacterial Diseases. p.445-463. In: Plumb J. A., and L. A. Hanson. Health Maintenance and Principal Microbial Diseases of Cultured Fishes. Wiley-Blackwell.
    Poovorawan Y. (2014) Epidemic of avian influenza A (H7N9) virus in China. Pathogens and Global Health 108(4): 169–170.
    Porta M. (2014) A dictionary of epidemiology. 6th ed. Oxford University Press, New York. 112pp.
    Pulkkinen K., L. R. Suomalainen, A. F. Read, D. Ebert, P. Rintamaki, and E. T. Valtonen (2009) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proceedings of the Royal Society B: Biological Sciences 277(1681): 593–600.
    Sackett D., S. E. Straus, S. W. Richardson, and W. Rosenberg (2002) Evidence-Based Medlicine: How to Practice and Teach EBM. Churchill Livingstone, Edinburgh.
    Sadilek A., H. Kautz, and V. Silenzio (2012) Modeling spread of disease from social interactions. Proceedings of the sixth AAAI international conference on weblogs and social media (ICWSM’12).
    Salama N., amd A. Murray (2011) Farm size as a factor in hydrodynamic transmission of pathogens in aquaculture fish production. Aquaculture Environment Interactions 2(1): 61–74.
    Salathe M., M. Kazandjieva, J. Lee, P. Levis, M. Feldman, and J. Jones (2010) A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences 107(51): 22020–22025.
    Salman M.D. (2003) Animal Disease Surveillance and Survey Systems. Iowa State Press, Iowa. 222pp.
    Shephard R. W. (2006) The development of a syndromic surveillance system for the extensive beef cattle producing regions of australia. PhD Dissertation University of Sidney, Australia.
    Shoemaker C. A., J. J. Evans, and P. H. Klesius (2000) Density and dose: factors affecting mortality of Streptococcus iniae infected tilapia (Oreochromis niloticus). Aquaculture 188: 229–235.
    Sittig D. F., A. Wright, and B. Middleton (2016) Clinical decision support: a 25 year retrospective and a 25 year vision. Yearbook of Medical Informatics 25(S 01):S103–S116.
    Soltani M., E. Pirali Kheirabadi, A. Taheri Mirghaed, A. Zargar, S. Mohamadian, S. H. Roohollahi, and M. Zakian (2015) Study on Streptococcosis and Lactococcosis outbreaks in rainbow trout farms in Fars and Lorestan Provinces. Veterinary Microbiology 11: 49–58.
    Soltani M., E. Pirali Kheirabadi, A.Taheri Mirkahead, S. H. Shafie, S. Mohamadian, and S. H. Roholahi (2013) Molecular study of Streptococcosis/Lactococcosis distribution in farmed rainbow trout in Charmahal–va-Bakhteyari and Kohgiloyeh-va- Boyerahmad Provinces, Iran. Iranian Journal of Epidemiology 9: 59–68.
    Stege H., F. Bager, E. Jacobsen, and A. Thougaard (2003) VETSTAT—the Danish system for surveillance of the veterinary use of drugs for production animals. Preventive Veterinary Medicine 57(3): 105–115.
    Subasinghe R. P. (2005) Epidemiological approach to aquatic animal health management: opportunities and challenges for developing countries to increase aquatic production through aquaculture. Preventive Veterinary Medicine 67 : 117–124.
    Tavares G. C., A. F. Carvalho, F. L. Pereira, C. P. Rezende, V. A. C. Azevedo, C. A. GLeal, and H. C. P. Figueiredo (2018) Transcriptome and proteome of fish-pathogenic Streptococcus agalactiae are modulated by temperature. Frontiers in Microbiology 9: 2639.
    Thrusfield M. (2005) The scope of epidemiology. p.26-28. In : Veterinary epidemiology. 3rd ed. Blackwell Science Ltd, Great Britain.
    Tung C. P., T. Y. Lee, Y. C. E. Yang, and Y. J. Chen (2009) Application of genetic programming to project climate change impacts on the population of Formosan Landlocked Salmon. Environmental Modelling & Software 24(9): 1062–1072.
    Tung M. C., S. C. Chen, and S. S. Tsai (1985) General septicemia of streptococcal infection in cage cultured tilapia, Tilapia mossambica, in Southern Taiwan. COA Fish Ser. 4: 95–105.
    Vergneau G. C., and S. Larrat (2017) Evidence-based advances in aquatic animal medicine. Veterinary Clinics of North America: Exotic Animal Practice 20(3): 839–856.
    Vu-Khac, H., V. Q. Duong, S. C. Chen, T. H. Pham, T. T. Nguyen, and T. T. Trinh (2016) Isolation and genetic characterization of Nocardia seriolae from snubnose pompano Trachinotus blochii in Vietnam. Diseases of Aquatic Organisms 120(2): 173–177.
    Wagner M. M., F. C. Tsui, J. U. Espino, V. M. Dato, D. F. Sittig, R. A. Caruana, L. F. McGinnis, D. W. Deerfield, M. J. Druzdzel, and D. B. Fridsma (2001) The emerging science of very early detection of disease outbreaks. Public Health Management Practice 7: 51-59.
    Wang J., D. O. Lu, B. Jiang, H. L. Luo, G. L. Lu, and A. X. Li (2018) The effect of intermittent hypoxia under different temperature on the immunomodulation in Streptococcus agalactiae vaccinated Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunology 79: 181–192.
    Wang P. C., S. D. Chen. M. A. Tsai. Y. J. Weng. S. Y. Chu. R. S. Chern, and S. C. Chen (2009) Nocardia seriolae infection in the three striped tigerfish, Terapon jarbua (Forsskal). Journal of Fish Diseases 32 : 301-310.
    Wang, F., X. G. Wang, C. Liu, O. Q. Chang, Y. Y. Feng, L. Jiang, and K. B. Li (2017b) Transparent Tiger barb Puntius tetrazona, a fish model for in vivo analysis of nocardial infection. Veterinary Microbiology 211: 67–73.
    Wang, F., X. Wang, C. Liu, O. Q. Chang, Y. Feng, L. Jiang, and K. Li (2017a). Nocardia seriolae infection in cultured jade perch, Scortum barcoo. Aquaculture International 25: 2201–2212.
    Wang, G. L., Y. J. Xu, S. Jin, J. L. Zhu, and S. P. Yuan (2007). Nocardiosis in snakehead, Ophiocephalus argus Cantor. Aquaculture 270: 54–60.
    Wang, P. C., S. D. Chen, M. A. Tsai, Y. J. Weng, S. Y. Chu, R. S. Chern, and S. C. Chen (2009) Nocardia seriolae infection in the three striped tigerfish, Terapon jarbua (Forsskal). Journal of Fish Diseases 32: 301–310.
    Watanabe W. O., T. M. Losordo, K. Fitzsimmons, and F. Hanley (2002) Tilapia production systems in the Americas: Technological advances, trends, and challenges. Reviews in Fisheries Science 10(3-4): 465–498.
    Wurts W. A., and M. P. Masser (2013) Liming Ponds for Aquaculture. SRAC Publication No. 4100: 1-5. Retrieved May 10, 2020, from the World Wide Web: http://colorado.agrilife.org/files/2011/08/4100fs_8.pdf
    Zeldis D., and S. Prescott (2000) Fish disease diagnosis program — problems and some solutions. Aquacultural Engineering 23(1-3): 3–11.
    Zhu F., W. H. Twan, L. C. Tseng, S. H. Peng, and J. S. Hwang (2019) First detection of white spot syndrome virus (WSSV) in the mud shrimp Austinogebia edulis in Taiwan. Scientific Reports 9(1).
    Zlotkin A., A. Eldar, C. Ghittino, and H. Bercovier (1998a) Identification of Lactococcus garvieae by PCR. Journal of Clinical Microbiology 36: 983 – 985.
    Zlotkin A., H. Hershko, and A. Eldar (1998b) Possible transmission of Streptococcus iniae from wild fish to cultured marine fish. Applied and Environmental Microbiology 64: 4065–4067.

    無法下載圖示 校外公開
    2025/11/19
    QR CODE