簡易檢索 / 詳目顯示

研究生: 阮氏明珠
Nguyen, Thi Minh Chau
論文名稱: 新穎萃取方法及複合萃取對木鱉果葉植化素及碳水化合物水解酶活性之影響
Effects of innovative non-thermal extraction methods on phytochemicals and carbohydrate-hydrolyzing enzymes inhibitory activities of Gac (Momordica cochinchinensis Spreng.) leaves
指導教授: 蔡碧仁
Tsai, Pi-Jen
學位類別: 碩士
Master
系所名稱: 國際學院 - 食品科學國際碩士學位學程
International Master's Degree Program in Food Science
畢業學年度: 109
語文別: 英文
論文頁數: 97
中文關鍵詞: 木鱉果葉α-澱粉酶抑制活性α-葡萄糖苷酶抑制活性超音波萃取高壓電場高壓處理
外文關鍵詞: Gac (Momordica cochinchinensis Spreng.) leaves, carbohydrate-hydrolyzing enzymes inhibitory activity, high voltage electric field
DOI URL: http://doi.org/10.6346/NPUST202000546
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 木鱉果(Momordica cochinchinensis Spreng.)屬於葫蘆科,其葉子在傳統醫學中具有許多用途,如抗真菌、抗發炎及促進傷口癒合。然而,迄今為止少有文獻探討木鱉果葉中植物營養素及其對於抑制造成高血糖之α-澱粉酶和α-葡萄糖苷酶之活性研究。本研究利用三種非熱加工,超音波萃取(UAE)、高壓靜電場(HVEF)、高壓處理(HPP),以及高壓靜電場結合超音波(HVU)及高壓處理結合超音波(HPU)萃取不同成熟度之木鱉果葉(嫩葉、成熟葉及老葉),藉由比色法探討其抑制碳水化合物水解酶之效果,再使用HPLC分析其中之植化素成分,最後利用主成分分析(PCA)探討成分之貢獻度。結果顯示,木鱉果嫩葉萃取物其具有最高的總酚、總類黃酮含量、α-澱粉酶及α-葡萄糖苷酶抑制活性。在不同萃取方法中,HVU及HPU萃取之嫩葉其具有最佳總酚含量(5200 mg GAE/100 g DW)、總類黃酮含量(620 mg QE/100 g DW),以及最佳抑制α-澱粉酶(42 %)和α-葡萄糖苷酶(38 %)之效果。經PCA分析後發現,香草酸及楊梅素對於α-澱粉酶及α-葡萄糖苷酶之抑制活性具有高貢獻度,其F值分別為24.42及18.01。經研究顯示,木鱉果葉萃取物可作為降低餐後高血糖症之藥品或食品補給品之天然原料,而HVU及HPU為較佳萃取方法,能有效萃取可抑制α-澱粉酶和α-葡萄糖苷酶之植化素成分。

    Gac (Momordica cochinchinensis Spreng.) leaves have been used in traditional medicine as anti-fungal, anti-inflammatory, and wound healer. However, information about phytonutrients of Gac leaves and their inhibitory activity against α-glucosidase and α-amylase is limited which can be used for hyperglycemia treatment. In this study, three emerging non-thermal extraction methods, including ultrasonic-assisted extraction (UAE), high voltage electric field (HVEF), high pressure processing (HPP), the combination of HVEF and UAE (HVU), and the combination of HPP and UAE (HPU) were used to extract Gac leaves with different degrees of maturity (young - YL, mature - ML and old - OL leaves). The phytochemicals of the extracts were identified by high performance liquid chromatography (HPLC) method and their inhibitory effects against carbohydrate-hydrolyzing enzymes were determined by colorimetric method. Next, principal component analysis (PCA) was used to assess variability as the most contributor in the dataset. The results were then compared to those of conventional extraction method (C). Results indicated that the YL extract exhibited the highest phytochemicals content (total phenolics content – TPC and total flavonoids content – TFC), α-glucosidase and α-amylase inhibitory activities in comparison with other samples. Among extraction methods, HVU and HPU treated YL samples showed the highest amounts of TPC (5200 mg GAE/100 g DW), TFC (620 mg QE/100 g DW) as well as the strongest α-glucosidase (38 %) and α-amylase (42 %) inhibitory effects. PCA results indicated that vanillic acid and myricetin had the most contributions to α-glucosidase and α-amylase inhibition ability with F-values of 24.42 and 18.01, respectively. This study showed that Gac leaves extract is a potential natural ingredient that can be used in drugs and food supplements to reduce postprandial hyperglycemia. Also, HVEF and HPP were found to be promising extraction technique for Gac leaves as they increased α-amylase and α-glucosidase inhibitory activities of the extract.

    摘要-I
    Abstract-III
    Acknowledgements-V
    Table of contents-VI
    List of tables-X
    List of figures-XI
    1. Introduction-1
    2. Literature review-3
    2.1 Characteristics of α-amylase and α-glucosidase-3
    2.1.1 α-Amylase characteristics-3
    2.1.2 α-Glucosidase characteristics-4
    2.2 α-Amylase and α-glucosidase inhibitors from plant-derived phenolic compounds-10
    2.2.1 Phenolic Acids-12
    2.2.2 Flavonoids-16
    2.2.3 Catechins-17
    2.2.4 Tannins-20
    2.2.5 Terpenoids-23
    2.3 Gac (Momordica cochinchinensis Spreng.)-31
    2.3.1 Characteristics and phytochemical compounds of Gac fruit-31
    2.3.2 Characteristics and phytochemical compounds of Gac leaves-35
    2.4 Innovative non-thermal extraction methods-37
    2.4.1 Ultrasonic-assisted extraction-37
    2.4.2 High-voltage electric field-39
    2.4.3 High pressure processing-40
    3. Materials and methods-44
    3.1 Plant materials-44
    3.2 Chemicals-44 -
    3.3 Equipment-45
    3.4 Experimental design-45
    3.5 Extraction procedure-46
    3.6 Conventional extraction-46
    3.7 Ultrasonic-assisted extraction-46
    3.8 High voltage electric field-48
    3.9 High pressure processing-48
    3.10 Combined extraction methods-48
    3.11 Chemical analysis of the extracts-48
    3.11.1 Determination of total phenolic content (TPC)-49
    3.11.2 Determination of total flavonoid content (TFC)-49
    3.11.3 Identification phenolic and flavonoid compounds using high performance liquid chromatography (HPLC)-49
    3.11.4 Determination of α-amylase inhibitory activity-50
    3.11.5 Determination of α-glucosidase inhibitory activity- 52
    3.11.6 Determination of superoxide dismutase (SOD)-like activity-52
    3.11.7 Determination of total chlorophyll content (TCC)-53
    3.12 Principle component analysis (PCA)-54
    3.13 Statistical analysis-54
    4. Results and discussion-55
    4.1 Effects of different maturity stages of Gac leaves using UAE method-55
    4.1.1 Effects of leaf maturity on physical properties-55
    4.1.2 Effects of leaf maturity on total phenolic content and total flavonoid content-55
    4.1.3 Effects of leaf maturity on carbohydrate-hydrolyzing enzymes inhibitory activity-57
    4.1.4 Phytochemicals in different maturity stages-60
    4.2 Effects of non-thermal extraction methods on extracts obtained from YL-64
    4.2.1 Effects on total phenolic and total flavonoid content- 64
    4.2.2 Effects on carbohydrate hydrolyzing enzymes inhibitory activity-66
    4.2.3 Effects on SOD-like activity-68
    4.2.4 Effects on total chlorophyll content-70
    4.2.5 HPLC analysis for the identification phytochemicals in Gac YL using different extraction methods-72
    4.3 Principal component analysis-76
    5. Conclusion-79
    References-80
    Bio-sketch of Author-98

    Aadil, R. M., X. A. Zeng, S. Jabbar, A. Nazir, A. A. Mann, M. K. I. Khan, and A. Ramzan. 2017. Quality evaluation of grapefruit juice by thermal and high pressure processing treatment. Pakistan Journal of Agricultural Research, 30(3):249-257.
    Abdallah, I. I., and W. J. Quax. 2017. A glimpse into the biosynthesis of terpenoids. Knowledge E Life Sciences:81-98.

    Abdulqader, A., F. Ali, A. Ismail, and N. Esa. 2018. Gac (Momordica cochinchinensis Spreng.) fruit and its potentiality and superiority in health benefits. Journal of Contemporary Medical Sciences, 4(4):179-186.

    Abeysekera, W. P. K. M., S. P. G. Arachchige, W. K. S. M. Abeysekera, W. D. Ratnasooriya, and H. M. U. I. Medawatta. 2019. Antioxidant and glycemic regulatory properties potential of different maturity stages of leaf of Ceylon Cinnamon (Cinnamomum zeylanicum Blume) in vitro. Evidence-Based Complementary and Alternative Medicine, 2019:1-10.

    Adhikari, B., S. K. Dhungana, M. W. Ali, A. Adhikari, I. D. Kim, and D. H. Shin. 2019. Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. Journal of the Saudi Society of Agricultural Sciences, 18(4):437-442.

    Ali, H., P. Houghton, and A. Soumyanath. 2006. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology, 107(3):449-455.

    Angmo, P., S. Chorol, D. Namgail, O. Chaurasia, and T. Stobdan. 2019. Effect of maturation on phenolics and flavonoids content of greenhouse-grown beet leaf. Pharmacognosy Journal, 11(5):1010-1013.

    Aoki, H., N. T. M. Kieu, N. Kuze, K. Tomisaka, and N. V. Chuyen. 2002. Carotenoid pigments in Gac fruit (Momordica cochinchinensis Spreng). Bioscience, Biotechnology, and Biochemistry, 66(11):2479-2482.

    Assefa, S. T., E.-Y. Yang, S.-Y. Chae, M. Song, J. Lee, M.-C. Cho, and S. Jang. 2020a. Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants, 9(1):1-17.

    Assefa, S. T., E. Y. Yang, S. Y. Chae, M. Song, J. Lee, M. C. Cho, and S. Jang. 2020b. Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants, 9(1):1-17.

    Azwanida, N. 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medical & Aromatic Plants, 4(196):1-6.

    Bakar, A. R. A., T. Manaharan, A. F. Merican, and S. B. Mohamad. 2018. Experimental and computational approaches to reveal the potential of Ficus deltoidea leaves extract as α-amylase inhibitor. Natural Product Research, 32(4):473-476.

    Bakare, R., O. Magbagbeola, O. Okunowo, and M. Green. 2011. Antidiarrhoeal activity of aqueous leaf extract of Momordica charantia in rats. Journal of Pharmacognosy and Phytotherapy, 3(1):1-7.

    Barba, F. J., L. R. Mariutti, N. Bragagnolo, A. Z. Mercadante, G. V. Barbosa-Canovas, and V. Orlien. 2017. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends in Food Science & Technology, 67:195-206.

    Bhandari, M. R., N. Jong-Anurakkun, G. Hong, and J. Kawabata. 2008. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb pakhanbhed (Bergenia ciliata, Haw.). Food Chemistry, 106(1):247-252.

    Bueno, P. S. A., C. G. Kato-Schwartz, D. de Souza Lima, A. Bracht, R. M. Peralta, and F. A. V. Seixas. 2019. In silico evaluation of condensed and hydrolysable tannins as inhibitors of pancreatic α-amylase. Journal of Molecular Modeling, 25(9):1-9.

    Burley, S. K., J. Jiang, and S. Ghosh. 2019. Alpha glucosidase. Retrieved on December 17, 2020, from the World Wide Web: https://pdb101.rcsb.org/global-health/diabetes-mellitus/drugs/alpha-glucosidase-inhibitors/alpha-glucosidase

    Cheng, C. W., L. Y. Chen, C. W. Chou, and J. Y. Liang. 2015. Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity. Journal of Photochemistry and Photobiology B: Biology, 148:262-267.

    Chu, Y. H., S. H. Wu, and J. F. Hsieh. 2014. Isolation and characterization of α-glucosidase inhibitory constituents from Rhodiola crenulata. Food Research International, 57:8-14.

    Chuyen, H. V., M. H. Nguyen, P. D. Roach, J. B. Golding, and S. E. Parks. 2014. Gac fruit (Momordica cochinchinensis Spreng.): a rich source of bioactive compounds and its potential health benefits. International Journal of Food Science & Technology, 50(3):567-577.

    Conforti, F., G. Statti, M. R. Loizzo, G. Sacchetti, F. Poli, and F. Menichini. 2005. In vitro antioxidant effect and inhibition of α-amylase of two varieties of Amaranthus caudatus seeds. Biological and Pharmaceutical Bulletin, 28(6):1098-1102.

    Damiri, G. R. M., A. Motamedzadegan, R. Safari, S. A. Shahidi, and A. Ghorbani. 2020. Evaluation of stability, physicochemical and antioxidant properties of extracted chlorophyll from Persian clover (Trifolium resupinatum L.). Journal of Food Measurement and Characterization:1-14.

    Do, T. V. T., L. Fan, W. Suhartini, and M. Girmatsion. 2019. Gac (Momordica cochinchinensis Spreng) fruit: A functional food and medicinal resource. Journal of Functional Foods, 62:103512.

    Dobrinčić, A., M. Repajić, I. E. Garofulić, L. Tuđen, V. Dragović-Uzelac, and B. Levaj. 2020. Comparison of different extraction methods for the recovery of olive leaves polyphenols. Processes, 8(9):1008.

    Ernst, H. A., L. L. Leggio, M. Willemoës, G. Leonard, P. Blum, and S. Larsen. 2006. Structure of the Sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31. Journal of Molecular Biology, 358(4):1106-1124.

    Fan, Y., Z. Li, L. Liu, and J. Xi. 2020. Combination of liquid-phase pulsed discharge and ultrasonic for saponins extraction from lychee seeds. Ultrasonics Sonochemistry, 69:105264.

    Franke, A. A., L. J. Custer, and S. P. Murphy. 2006. Momordica cochinchinensis Spreng.(gac) fruit carotenoids reevaluated. Journal of Food Composition and Analysis, 19(6-7):664-668.

    Ganesan, A., S. Natesan, P. G. Perumal, R. Vellayutham, K. Manickam, and N. Ramasamy. 2008. Anxiolytic, antidepressant and anti-inflammatory activities of methanol extract of Momordica charantia Linn leaves (Cucurbitaceae). Iranian Journal of Pharmacology and Therapeutics, 7(1):43-47.

    Ganessingh, V., R. Sahibdeen, and R. Maharaj. 2018. An evaluation of the impact of novel processing technologies on the phytochemical composition of fruits and vegetables. In: Phytochemicals: Source of Antioxidants and Role in Disease Prevention, Asao, T. & M. Asaduzzaman (Eds.). Intech Open, 189.

    Gao, H., Y. N. Huang, P. Y. Xu, and J. Kawabata. 2007. Inhibitory effect on α-glucosidase by the fruits of Terminalia chebula Retz. Food Chemistry, 105(2):628-634.
    Gomes, W. F., B. K. Tiwari, Ó. Rodriguez, E. S. de Brito, F. A. N. Fernandes, and S. Rodrigues. 2017. Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chemistry, 218:261-268.

    Hsieh, C. W., and W. C. Ko. 2008. Effect of high-voltage electrostatic field on quality of carrot juice during refrigeration. LWT, 41(10):1752-1757.

    Huynh, T., and M. H. Nguyen. 2020. Bioactive Compounds from Gac (Momordica cochinchinensis Lour. Spreng). Bioactive Compounds in Underutilized Fruits and Nuts:591-604.

    Ince, A. E., S. Sahin, and G. Sumnu. 2014. Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. Journal of Food Science and Technology, 51(10):2776-2782.

    Ishida, B. K., C. Turner, M. H. Chapman, and T. A. McKeon. 2004. Fatty acid and carotenoid composition of gac (Momordica cochinchinensis Spreng) fruit. Journal of Agricultural and Food Chemistry, 52(2):274-279.

    Jin, M., M. H. Shen, M. H. Jin, A. H. Jin, X. Z. Yin, and J. S. Quan. 2018. Hypoglycemic property of soy isoflavones from hypocotyl in Goto-Kakizaki diabetic rats. Journal of Clinical Biochemistry and Nutrition, 62(2):148-154.

    Jullian, C., S. Miranda, G. Zapata-Torres, F. Mendizábal, and C. Olea-Azar. 2007. Studies of inclusion complexes of natural and modified cyclodextrin with (+)catechin by NMR and molecular modeling. Bioorganic & Medicinal Chemistry, 15(9):3217-3224.

    Jun, X. 2013. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Critical Reviews in Food Science and Nutrition, 53(8):837-852.

    Jung, E. H., S. R. Kim, I. K. Hwang, and T. Y. Ha. 2007. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. Journal of Agricultural and Food Chemistry, 55(24):9800-9804.

    Kao, N. Y., Y. F. Tu, K. Sridhar, and P. J. Tsai. 2019. Effect of a high voltage electrostatic field (HVEF) on the shelf-life of fresh-cut broccoli (Brassica oleracea var. italica). LWT, 116:108532.

    Kha, T. C., M. H. Nguyen, P. D. Roach, S. E. Parks, and C. Stathopoulos. 2013. Gac fruit: nutrient and phytochemical composition, and options for processing. Food Reviews International, 29(1):92-106.

    Kubínova, R., R. Pořízková, A. Navrátilová, O. Farsa, Z. Hanáková, A. Bačinská, A. Čížek, and M. Valentová. 2014. Antimicrobial and enzyme inhibitory activities of the constituents of Plectranthus madagascariensis (Pers.) Benth. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(5):749-752.

    Kubola, J., and S. Siriamornpun. 2011. Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chemistry, 127(3):1138-1145.

    Lamanauskas, N., G. Pataro, Č. Bobinas, S. Šatkauskas, P. Viškelis, R. Bobinaitė, and G. Ferrari. 2016. Impact of pulsed electric field treatment on juice yield and recovery of bioactive compounds from raspberries and their by-products. Zemdirbyste-Agriculture, 103(1):83-90.

    Lan, H. Y., B. Zhao, Y. L. Shen, X. Q. Li, S. J. Wang, L. J. Zhang, and H. Zhang. 2019. Phytochemistry, pharmacological activities, toxicity and clinical application of Momordica cochinchinensis. Current Pharmaceutical Design, 25(6):715-728.

    Lee, D. Y., H. W. Kim, H. Yang, and S. H. Sung. 2017. Hydrolyzable tannins from the fruits of Terminalia chebula Retz and their α-glucosidase inhibitory activities. Phytochemistry, 137:109-116.

    Li, K., F. Yao, J. Du, X. Deng, and C. Li. 2018. Persimmon tannin decreased the glycemic response through decreasing the digestibility of starch and inhibiting α-amylase, α-glucosidase, and intestinal glucose uptake. Journal of Agricultural and Food Chemistry, 66(7):1629-1637.

    Li, Z., Y. Fan, and J. Xi. 2019. Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chemistry, 277:246-260.

    Lin, D., M. Xiao, J. Zhao, Z. Li, B. Xing, X. Li, M. Kong, L. Li, Q. Zhang, and Y. Liu. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10):1374.
    Linton, M., M. F. Patterson, and M. Patterson. 2000. High pressure processing of foods for microbiological safety and quality. Acta Microbiologica et Immunologica Hungarica, 47(2-3):175-182.

    Liu, C. E., W. J. Chen, C. K. Chang, P. H. Li, P. L. Lu, and C. W. Hsieh. 2017. Effect of a high voltage electrostatic field (HVEF) on the shelf life of persimmons (Diospyros kaki). LWT, 75:236-242.

    Liu, W. X., X. L. Cheng, X. H. Guo, X. R. Hu, F. Wei, and S. C. Ma. 2020. Identification of Calculus Bovis and its mixed varieties by ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS) combined with the principal component analysis (PCA) method. Journal of Pharmaceutical and Biomedical Analysis, 179:112979.

    Lo Piparo, E., H. Scheib, N. Frei, G. Williamson, M. Grigorov, and C. J. Chou. 2008. Flavonoids for controlling starch digestion: structural requirements for inhibiting human α-amylase. Journal of Medicinal Chemistry, 51(12):3555-3561.

    Lordan, S., T. J. Smyth, A. Soler-Vila, C. Stanton, and R. P. Ross. 2013. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry, 141(3):2170-2176.

    Luo, J. G., L. Ma, and L. Y. Kong. 2008. New triterpenoid saponins with strong α-glucosidase inhibitory activity from the roots of Gypsophila oldhamiana. Bioorganic & Medicinal Chemistry, 16(6):2912-2920.

    Ma, Y. Q., X. Q. Ye, Z. X. Fang, J. C. Chen, G. H. Xu, and D. H. Liu. 2008. Phenolic compounds and antioxidant activity of extracts from ultrasonic treatment of Satsuma mandarin (Citrus unshiu Marc.) peels. Journal of Agricultural and Food Chemistry, 56(14):5682-5690.

    Medina-Torres, N., T. Ayora-Talavera, H. Espinosa-Andrews, A. Sánchez-Contreras, and N. Pacheco. 2017. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(3):1-19.

    Meng, Y., A. Su, S. Yuan, H. Zhao, S. Tan, C. Hu, H. Deng, and Y. Guo. 2016. Evaluation of total flavonoids, myricetin, and quercetin from Hovenia dulcis Thunb. as inhibitors of α-amylase and α-glucosidase. Plant Foods for Human Nutrition, 71(4):444-449.

    Miao, M., H. Jiang, B. Jiang, Y. Li, S. W. Cui, and T. Zhang. 2014. Structure elucidation of catechins for modulation of starch digestion. LWT-Food Science and Technology, 57(1):188-193.

    Mogole, L., W. Omwoyo, and F. Mtunzi. 2020. Phytochemical screening, anti-oxidant activity and α-amylase inhibition study using different extracts of loquat (Eriobotrya japonica) leaves. Heliyon, 6(8):e04736.
    Moreira, S. A., E. M. Alexandre, M. Pintado, and J. A. Saraiva. 2019. Effect of emergent non-thermal extraction technologies on bioactive individual compounds profile from different plant materials. Food Research International, 115:177-190.

    Mugaranja, K. P., and A. Kulal. 2020. Alpha glucosidase inhibition activity of phenolic fraction from Simarouba glauca: An in-vitro, in-silico and kinetic study. Heliyon, 6(7):e04392.

    Mukherjee, A., A. Karmakar, and A. Barik. 2017. Bionomics of Momordica cochinchinensis fed Aulacophora foveicollis (Coleoptera: Chrysomelidae). Paper presented at the Proceedings of The Zoological Society, 70(1):81-87.

    Mukherjee, A., N. Sarkar, and A. Barik. 2014. Long-chain free fatty acids from Momordica cochinchinensis leaves as attractants to its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Journal of Asia-Pacific Entomology, 17(3):229-234.

    Mukherjee, A., N. Sarkar, and A. Barik. 2015. Momordica cochinchinensis (Cucurbitaceae) leaf volatiles: semiochemicals for host location by the insect pest, Aulacophora foveicollis (Coleoptera: Chrysomelidae). Chemoecology, 25(2):93-104.

    Munekata, P. E., C. Alcántara, T. Žugčić, R. Abdelkebir, M. C. Collado, J. V. García-Pérez, A. R. Jambrak, M. Gavahian, F. J. Barba, and J. M. Lorenzo. 2020. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Research International:109242.

    Nagarani, G., A. Abirami, and P. Siddhuraju. 2014. A comparative study on antioxidant potentials, inhibitory activities against key enzymes related to metabolic syndrome, and anti-inflammatory activity of leaf extract from different Momordica species. Food Science and Human Wellness, 3(1):36-46.

    Narita, Y., and K. Inouye. 2009. Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas α-amylase isozymes I and II. Journal of Agricultural and Food Chemistry, 57(19):9218-9225.

    Ng, Z. X., and A. N. See. 2019. Effect of in vitro digestion on the total polyphenol and flavonoid, antioxidant activity and carbohydrate hydrolyzing enzymes inhibitory potential of selected functional plant‐based foods. Journal of Food Processing and Preservation, 43(4):e13903.

    Ngamsuk, S., T. C. Huang, and J. L. Hsu. 2019. Determination of phenolic compounds, procyanidins, and antioxidant activity in processed Coffea arabica L. leaves. Foods, 8(9):389.

    Nguyen, V., M. Nguyen, Q. Tran, P. Thinh, L. Bui, T. Le, V. Le, and H. Linh. 2020. Effect of extraction solvent on total polyphenol content, total flavonoid content, and antioxidant activity of soursop seeds (Annona muricata L.). Materials Science and Engineering, 736(2):022063.

    Nile, S. H., and S. W. Park. 2014. Antioxidant, α‐glucosidase and xanthine oxidase inhibitory activity of bioactive compounds from maize (Zea mays L.). Chemical Biology & Drug Design, 83(1):119-125.

    Nutrizio, M., J. Gajdoš Kljusurić, Z. Marijanović, I. Dubrović, M. Viskić, E. Mikolaj, F. Chemat, and A. Režek Jambrak. 2020. The potential of high voltage discharges for green solvent extraction of bioactive compounds and aromas from rosemary (Rosmarinus officinalis L.)-computational simulation and experimental methods. Molecules, 25(16):3711.

    Ochir, S., M. Nishizawa, B. J. Park, K. Ishii, T. Kanazawa, M. Funaki, and T. Yamagishi. 2010. Inhibitory effects of Rosa gallica on the digestive enzymes. Journal of Natural Medicines, 64(3):275-280.

    Önal, S., S. Timur, B. Okutucu, and F. Zihnioğlu. 2005. Inhibition of α‐glucosidase by aqueous extracts of some potent antidiabetic medicinal herbs. Preparative Biochemistry and Biotechnology, 35(1):29-36.

    Oroian, M., F. Dranca, and F. Ursachi. 2020. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. Journal of Food Science and Technology, 57(1):70-78.

    Özcan, K. 2020. Antibacterial, antioxidant and enzyme inhibition activity capacities of Doronicum macrolepis (FREYN&SINT): An endemic plant from Turkey. Saudi Pharmaceutical Journal, 28(1):95-100.

    Papoutsis, K., J. Zhang, M. C. Bowyer, N. Brunton, E. R. Gibney, and J. Lyng. 2020. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry:128119.

    Patsilinakos, A., R. Ragno, S. Carradori, S. Petralito, and S. Cesa. 2018. Carotenoid content of Goji berries: CIELAB, HPLC-DAD analyses and quantitative correlation. Food Chemistry, 268:49-56.

    Pereira, E. d. S., J. R. Vinholes, T. M. Camargo, F. R. Nora, R. L. Crizel, F. Chaves, L. Nora, and M. Vizzotto. 2020. Characterization of araçá fruits (Psidium cattleianum Sabine): Phenolic composition, antioxidant activity and inhibition of α-amylase and α-glucosidase. Food Bioscience, 37:100665.

    Pitchakarn, P., S. Suzuki, K. Ogawa, W. Pompimon, S. Takahashi, M. Asamoto, P. Limtrakul, and T. Shirai. 2012. Kuguacin J, a triterpeniod from Momordica charantia leaf, modulates the progression of androgen-independent human prostate cancer cell line, PC3. Food and Chemical Toxicology, 50(3-4):840-847.

    Prasad, K. N., E. Yang, C. Yi, M. Zhao, and Y. Jiang. 2009. Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innovative Food Science & Emerging Technologies, 10(2):155-159.

    Proença, C., M. Freitas, D. Ribeiro, E. F. Oliveira, J. L. Sousa, S. M. Tomé, M. J. Ramos, A. M. Silva, P. A. Fernandes, and E. Fernandes. 2017. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1):1216-1228.

    Ramu, R., P. S. Shirahatti, F. Zameer, L. V. Ranganatha, and M. N. Prasad. 2014. Inhibitory effect of banana (Musa sp. var. Nanjangud rasa bale) flower extract and its constituents Umbelliferone and Lupeol on α-glucosidase, aldose reductase and glycation at multiple stages. South African Journal of Botany, 95:54-63.

    Rao, A. V., and L. G. Rao. 2007. Carotenoids and human health. Pharmacological Research, 55(3):207-216.
    Rasouli, H., S. M.-B. Hosseini-Ghazvini, H. Adibi, and R. Khodarahmi. 2017. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food & Function, 8(5):1942-1954.

    Ren, L., X. Qin, X. Cao, L. Wang, F. Bai, G. Bai, and Y. Shen. 2011. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein & Cell, 2(10):827-836.

    Rezende, Y. R. R. S., J. P. Nogueira, and N. Narain. 2017. Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agro-industrial acerola (Malpighia emarginata DC) residue. LWT, 85:158-169.

    Ricci, A., G. P. Parpinello, and A. Versari. 2018. Recent advances and applications of pulsed electric fields (PEF) to improve polyphenol extraction and color release during red winemaking. Beverages, 4(1):1-12.

    Rodsamran, P., and R. Sothornvit. 2019. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience, 28:66-73.

    Sales, P. M., P. M. Souza, L. A. Simeoni, P. O. Magalhães, and D. Silveira. 2012. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of Pharmacy & Pharmaceutical Sciences, 15(1):141-183.

    Sarkis, J. R., N. Boussetta, C. Blouet, I. C. Tessaro, L. D. F. Marczak, and E. Vorobiev. 2015. Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innovative Food Science & Emerging Technologies, 29:170-177.

    Sasidharan, S., Y. Chen, D. Saravanan, K. Sundram, and L. Y. Latha. 2011. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1):1-10.

    Šavikin, K., J. Živković, A. Alimpić, G. Zdunić, T. Janković, S. Duletić-Laušević, and N. Menković. 2018. Activity guided fractionation of pomegranate extract and its antioxidant, antidiabetic and antineurodegenerative properties. Industrial Crops and Products, 113:142-149.

    Shimada, A., H. Ueno, M. Inagaki, and H. Yoshimitsu. 2020. Comparative studies of the biological activities of selected herbal extracts and phenolic compounds isolated from Rosa gallica. Zeitschrift für Naturforschung C, 75(1-2):31-39.

    Shori, A. B. 2020. Proteolytic activity, antioxidant, and α-Amylase inhibitory activity of yogurt enriched with coriander and cumin seeds. LWT:109912.

    Shouqin, Z., Z. Junjie, and W. Changzhen. 2004. Novel high pressure extraction technology. International Journal of Pharmaceutics, 278(2):471-474.

    Sim, L., C. Willemsma, S. Mohan, H. Y. Naim, B. M. Pinto, and D. R. Rose. 2010. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. Journal of Biological Chemistry, 285(23):17763-17770.

    Singleton, V. L., and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3):144-158.

    Stephenie, S., Y. P. Chang, A. Gnanasekaran, N. M. Esa, and C. Gnanaraj. 2020. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. Journal of Functional Foods, 68:103917.

    Sui, X., Y. Zhang, and W. Zhou. 2016. In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. Journal of Functional Foods, 21:50-57.

    Sun, C., C. Zhao, E. C. Guven, P. Paoli, J. Simal‐Gandara, K. M. Ramkumar, S. Wang, F. Buleu, A. Pah, and V. Turi. 2020. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers, 1(1):18-44.

    Sun, L., and M. Miao. 2020. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Critical Reviews in Food Science and Nutrition, 60(4):541-555.

    Sun, L., F. J. Warren, and M. J. Gidley. 2019. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends in Food Science & Technology, 91:262-273.

    Sun, L. C., K. Sridhar, P. J. Tsai, and C. S. Chou. 2019. Effect of traditional thermal and high-pressure processing (HPP) methods on the color stability and antioxidant capacities of Djulis (Chenopodium formosanum Koidz.). LWT, 109:342-349.

    Swami, S., S. P. S. Khanuja, G. Longo, and D. D. Rakesh. 2008. Extraction technologies for medicinal and aromatic plants. Trieste: United Nations Industrial Development Organization and The International Center for Science and High Technology:200-266.

    Syahdi, R. R., R. Nadyana, R. H. Putri, R. Santi, and A. Mun’im. 2020. Application of green extraction methods to resveratrol extraction from peanut (Arachis Hypogaea L.) skin. International Journal of Applied Pharmaceutics, 12(1):38-42.

    Szwajgier, D., K. Borowiec, and K. Pustelniak. 2017. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients, 9(5):477.

    Tadera, K., Y. Minami, K. Takamatsu, and T. Matsuoka. 2006. Inhibition of α-glucosidase and α-amylase by flavonoids. Journal of Nutritional Science and Vitaminology, 52(2):149-153.

    Tan, Y., S. K. Chang, and Y. Zhang. 2017. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chemistry, 214:259-268.

    Tian, J., S. Muhammad, A. Chen, P. Chen, J. Wang, C. Yang, H. Yuan, and Z. Wang. 2019. An experimental study exploring the influencing factors for ultrasonic-assisted extraction of flavonoid compounds from leaves of Amorpha fruticosa L. Journal of Forestry Research, 30(5):1735-1741.

    Tien, P. G., F. Kayama, F. Konishi, H. Tamemoto, K. Kasono, N. T. K. Hung, M. Kuroki, S. E. Ishikawa, C. N. Van, and M. Kawakami. 2005. Inhibition of tumor growth and angiogenesis by water extract of Gac fruit (Momordica cochinchinensis Spreng). International Journal of Oncology, 26(4):881-889.

    Tindall, H. D. 1983. Vegetables in the tropics. In: Science in Horticulture series. The Macmillan Press LTD, 181-182.

    Tomsone, L., and Z. Kruma. 2019. Spectrophotometric analysis of pigments in horseradish by using various extraction solvents. Paper presented at the Foodbalt 2019:210-215.

    Tran, Q., T. Pham, H. Vu, D. Le, O. Tran, A. Ngo, T. Nguyen, B. Hoang, and S. Do. 2019. Research on some factors affecting extraction of chlorophyll from mulberry leaves (Morus alba). Materials Science and Engineering, 479(1):012004.

    Tuyen, C. K., M. H. Nguyen, and P. D. Roach. 2010. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98(3):385-392.

    Van Der Maarel, M. J., B. Van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2):137-155.

    Veiga, M., E. M. Costa, S. Silva, and M. Pintado. 2020. Impact of plant extracts upon human health: A review. Critical Reviews in Food Science and Nutrition, 60(5):873-886.

    Vilkhu, K., R. Mawson, L. Simons, and D. Bates. 2008. Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innovative Food Science & Emerging Technologies, 9(2):161-169.

    Vuong, L. T., S. R. Dueker, and S. P. Murphy. 2002. Plasma β-carotene and retinol concentrations of children increase after a 30-d supplementation with the fruit Momordica cochinchinensis (gac). The American Journal of Clinical Nutrition, 75(5):872-879.

    Wang, Z. B., H. Jiang, Y. G. Xia, B. Y. Yang, and H. X. Kuang. 2012. α-Glucosidase inhibitory constituents from Acanthopanax senticosus harm leaves. Molecules, 17(6):6269-6276.

    Wen, L., Z. Zhang, D.-W. Sun, S. P. Sivagnanam, and B. K. Tiwari. 2020. Combination of emerging technologies for the extraction of bioactive compounds. Critical Reviews in Food Science and Nutrition, 60(11):1826-1841.

    Whitcomb, D. C., and M. E. Lowe. 2007. Human pancreatic digestive enzymes. Digestive Diseases and Sciences, 52(1):1-17.

    Wu, L., L. Li, S. Chen, L. Wang, and X. Lin. 2020. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology, 247:117014.

    Xi, J. 2006. Effect of high pressure processing on the extraction of lycopene in tomato paste waste. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 29(6):736-739.

    Xiao, J., X. Ni, G. Kai, and X. Chen. 2013. A review on structure–activity relationship of dietary polyphenols inhibiting α-amylase. Critical Reviews in Food Science and Nutrition, 53(5):497-506.

    Xiong, Y., K. Ng, P. Zhang, R. D. Warner, S. Shen, H.-Y. Tang, Z. Liang, and Z. Fang. 2020. In vitro α-glucosidase and α-amylase inhibitory activities of free and bound phenolic extracts from the bran and kernel fractions of five sorghum grain genotypes. Foods, 9(9):1301.

    Yu, J. S., H. S. Roh, S. Lee, K. Jung, K. H. Baek, and K. H. Kim. 2017. Antiproliferative effect of Momordica cochinchinensis seeds on human lung cancer cells and isolation of the major constituents. Revista Brasileira de Farmacognosia, 27(3):329-333.

    Zhang, L., J. Li, S. Hogan, H. Chung, G. E. Welbaum, and K. Zhou. 2010. Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chemistry, 119(2):592-599.

    無法下載圖示 校外公開
    2025/12/22
    QR CODE