簡易檢索 / 詳目顯示

研究生: 許子淳
Hsu, Tzu-Chun
論文名稱: 二氧化碳濃度提高對不同耐陰性樹種苗木光合作用性狀之影響
Effects of Elevated CO2 Concentration on the Photosynthetic Characteristics in Seedlings of Different Shade-tolerant Tree Species
指導教授: 郭耀綸
Kuo, Yau-Lun
學位類別: 碩士
Master
系所名稱: 農學院 - 森林系所
Department of Forestry
畢業學年度: 109
語文別: 中文
論文頁數: 61
中文關鍵詞: 大氣CO2濃度垂直剖面CO2低光環境光合作用CO2反應光合作用CO2利用效率
外文關鍵詞: ambient CO2 concentration, CO2 vertical profile, low light environment, photosynthetic CO2 response, photosynthetic CO2 use efficiency
DOI URL: http://doi.org/10.6346/NPUST202100022
相關次數: 點閱:15下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 森林林床上方因土壤呼吸釋出較高濃度的CO2,可顯著提高苗木的淨光合作用率,有利於幼齡樹苗在低光環境長期存活。然而,陽性樹苗在森林內受限於光資源不足,縱使土壤呼吸提高大氣CO2濃度,也無法令其淨光合作用率由負值轉變為正值。為瞭解此生態現象,本研究在屏科大森林系苗圃,選定不同耐陰等級的天然更新樹苗,測定光合作用CO2利用效率(CUE)及光補償點隨CO2濃度提高之變化,探討陽性樹苗為何無法存活於CO2濃度較高的低光環境。
    本研究第一項試驗測定試驗地林床上方大氣CO2濃度的基本資料,結果發現林床上方隨著高度增加,CO2濃度會逐漸降低。林床表面於7:00之年平均大氣CO2濃度為500 μl L-1,在高度100 cm處則降至456 μl L-1,且由清晨至下午,CO2濃度會逐漸降低。在季節方面以夏季CO2濃度最高,冬季顯著最低。第二項試驗測定五類耐陰等級各3種樹苗的光合作用CO2反應,得知極耐陰樹苗的CO2補償點顯著最高,但CO2飽和點及CO2飽和淨光合作用率均以先驅樹種顯著最高。第三項試驗測定上述15樹種苗木的CUE,結果發現光量≦60 μmol photon m-2 s-1的條件下,中等耐陰、耐陰與極耐陰三類樹苗的CUE會顯著高於先驅及陽性樹種苗木。在光量≧90 μmol photon m-2 s-1的條件下,先驅及陽性樹種苗木的CUE則會顯著高於另三類耐陰等級者。本研究第四項試驗探討陽性樹苗要在什麼光量及CO2濃度組合條件下,其淨光合作用率才會由負值轉變為正值。結果發現極耐陰樹種苗木,在光量10 μmol photon m-2 s-1的條件下,於CO2濃度420 μl L-1時即可令其淨光合作用率由負值轉變為正值。相反的,先驅及陽性樹種苗木則要當光量提高至20 μmol photon m-2 s-1,於CO2濃度≧480 μl L-1時,其淨光合作用率才會呈現正值。
    綜上所述,在森林冠層鬱閉的低光林下環境,較耐陰的樹苗具有較高的CO2利用效率,因此可有效利用土壤呼吸自然釋出的較高濃度CO2資源。相反的,先驅及陽性樹種苗木則需要有更高的光資源或更高的CO2資源,才能使其淨光合作用率由負值轉為正值。

    Higher CO2 concentrations released by soil respiration atop the forest floor could significantly increase the net photosynthetic rates of seedlings, which benefit the long-term survival of young seedlings under low light environment. Yet for shade-intolerant seedlings, their net photosynthetic rates could not be turned from negative to positive under limited light resources even with the CO2 elevated by soil respiration. To investigate the reason why shade-intolerant species being unable to survive in high CO2 concentrations but low light environment, this study measured the variations of CO2 use efficiency (CUE) and light compensation point as CO2 concentrations enriched for natural recruits selected from various shade-tolerant classes. The experiment was conducted in the nursery of Department of Forestry, National Pingtung University of Science and Technology.
    The first experiment was to establish the vertical profile of CO2 concentrations atop the forest floor. Results showed that CO2 concentrations would gradually decrease with the heights ascended. The average ambient CO2 concentration at 7 AM was 500 μl L-1 at the forest floor, and decreased to 456 μl L-1 at 100 cm above the forest floor. The CO2 concentration would also gradually decrease from dawn to evening, higher in summer and lower in winter. The second experiment was to measure the photosynthetic CO2 responses of 3 species each from the 5 shade-tolerant classes. Results showed that seedlings of very shade-tolerant species had the highest CO2 compensation points, while pioneer species showed the highest CO2 saturation point and net photosynthetic rate at CO2 saturation point. The third experiment measured the CUE of the 15 species. Results showed that, when light intensity was ≦ 60 μmol photon m-2 s-1, the CUE of mid shade-tolerant seedlings, shade-tolerant seedlings, and very shade-tolerant seedlings were significantly higher than that of pioneer species and shade-intolerant species; when light intensity was ≧ 90 μmol photon m-2 s-1, the CUE of pioneer species and shade-intolerant species were significantly higher than that of the other 3 classes. The fourth experiment measured various combination of light intensity and CO2 concentration, investigated combination that would turned the net photosynthetic rate of shade-intolerant species from negative to positive. Results showed that under the condition of 10 μmol photon m-2 s-1 light intensity, the net photosynthetic rate would be turned to positive while ambient CO2 concentration enriched to 420 μl L-1. However, the net photosynthetic rates of pioneer species and shade-intolerant species could turn positive only when the light intensity reached to 20 μmol photon m-2 s-1 and CO2 concentration ≧ 480 μl L-1.
    In conclusion, under dense forest low-light environments, those seedlings with higher shade-tolerant ability would show higher CUE, and could use the higher ambient CO2 concentration elevated by soil respiration more efficiently. On the other hand, seedlings of pioneer and shade-intolerant species required higher light and CO2 resources to turn their net photosynthetic rates from negative to positive.

    摘要 I
    Abstract III
    目錄 V
    圖表目錄 VII
    壹、前言 1
    貳、文獻回顧 3
    一、大氣二氧化碳濃度時間及空間變化 3
    (一) 工業革命後大氣二氧化碳濃度之變化 3
    (二) 土壤呼吸對森林內二氧化碳濃度之影響 4
    (三) 森林內二氧化碳濃度在垂直剖面及時間上的變化 4
    二、大氣二氧化碳濃度提高對植物生理及生長之影響 5
    (一)大氣二氧化碳濃度提高對植物光合作用之影響 6
    (二)二氧化碳濃度提高對C3和C4植物光合作用及生長之影響 6
    (三)不同耐陰等級樹苗對二氧化碳濃度提高之反應 8
    參、材料與方法 9
    一、試驗地概述及試驗樹種 9
    二、林床1 m內大氣二氧化碳濃度動態變化測定 11
    三、光合作用二氧化碳反應測定 12
    四、二氧化碳濃度及光量提高對樹苗淨光合作用率之促進 13
    (一)樹苗光合作用二氧化碳利用效率測定 13
    (二) 樹苗光補償點、暗呼吸率及淨光合作用率由負值轉為正值之測定 14
    五、統計分析 15
    肆、結果 16
    一、林床上方不同高度大氣二氧化碳濃度之日變化及季節變化 16
    (一) 林床不同高度大氣二氧化碳濃度之梯度變化 16
    (二) 林床上方一年四季大氣二氧化碳濃度變化比較 17
    (三) 林床不同高度及林外四季平均大氣二氧化碳濃度之比較 18
    二、不同耐陰等級樹苗光合作用二氧化碳反應之比較 20
    (一)光合作用二氧化碳補償點) 20
    (二)光合作用二氧化碳飽和點 20
    (三)二氧化碳飽和淨光合作用率及淨光合作用率增加比例 21
    三、不同耐陰等級樹苗在不同光量與二氧化碳濃度級光合作用性狀之改變 25
    (一)由低光至高光不同耐陰等級樹苗光合作用二氧化碳利用效率比較 25
    (二)不同耐陰等級樹苗淨光合作用率由負值轉正值所需光量或二氧化碳濃度之比較 31
    (三) 不同耐陰等級樹苗光補償點及暗呼吸率隨二氧化碳濃度提高之變化 34
    伍、討論 35
    一、林床上方不同高度大氣二氧化碳濃度之日變化及季節變化 35
    二、不同耐陰等級樹苗光合作用二氧化碳反應之比較 38
    三、不同耐陰等級樹苗在不同光量條件光合作用二氧化碳利用效率之改變 41
    四、林床較高二氧化碳濃度對不同耐陰等級樹苗生長及生存之影響 44
    陸、結論 47
    參考文獻 48
    附錄 58

    圖表目錄
    圖1 毛柿林下大氣CO2濃度測定地點。 11
    圖2 測定林內不同高度大氣CO2濃度的設施及儀器 11
    圖3 林床不同高度四季大氣CO2濃度之日變化。 16
    圖4 林床表面不同季節7:00大氣CO2濃度比較。 17
    圖5 五類耐陰等級樹苗乾季與雨季CO2補償點、CO2飽和點、光飽和光合作用率及CO2濃度由400 μl L-1提升至飽和點時淨光合作用率增加比例之比較。 24
    圖6 五類耐陰等級各一種樹苗淨光合作用率隨CO2濃度提高之變化樣式。 25
    表1 供試15樹種苗木學名、耐陰等級、天然更新苗生長處相對光量及樹苗高度 10
    表2 相同時間離地不同高度間大氣CO2濃度之比較 18
    表3 林內及水泥地離地不同高度大氣CO2濃度比較 19
    表4 供試15樹種間於雨季之CO2補償點、飽和點、飽和淨光合作用率及淨光合作用率增加比例的比較 22
    表5 供試15樹種間於乾季之CO2補償點、飽和點、飽和淨光合作用率及淨光合作用率增加比例的比較 23
    表6 在10~80光量級CO2濃度由400增至500 μl L-1處理下供試15樹種淨光合作用率提高之斜率的比較 26
    表7 在50~100光量級CO2濃度由400增至500 μl L-1處理下供試15樹種淨光合作用率提高之斜率的比較 28
    表8 五類耐陰等級樹苗間在不同光量級CO2利用效率的比較 29
    表9不同光量級五類耐陰等級樹苗間淨光合作用率隨CO2濃度改變之斜率的比較 30

    表10 山黃麻及福木在同一光量級CO2濃度由400提高至500 μl L-1時淨光合作用率之比較 31
    表11 供試15樹種在不同低光條件下淨光合作用率由負值轉變成正值所需之CO2濃度 33
    表12 同一耐陰等級樹苗在六級CO2濃度下光補償點或暗呼吸率之比較 34
    附表1林內三處夏季大氣CO2濃度動態變化、相對濕度及溫度之平均值 58
    附表2 不同耐陰等級樹苗乾季及雨季光合作用CO2反應測定時之氣孔導度平均值 61

    王海珍、韓路、徐雅麗、牛建龍 (2014) 胡楊異形葉光合作用對光強與CO2濃度的響應。植物生態學報 38(10): 1099-1109。
    任博、李俊、同小娟、母艷梅、孟平、張勁松 (2018) 太行山南麓栓皮櫟和刺槐光合作用─CO2響應模擬。應用生態學報 29(1): 1-10。
    郭耀綸、尤國霖、楊月玲、王相華 (2007) 颱風擾動對台灣南部墾丁森林林下光量及六種樹苗生長的影響。台灣林業科學 22(4): 367-380。
    黃紅英、竇新永、孫蓓育、鄧斌、吳國江、彭長連 (2009) 兩種不同生態型痲瘋樹夏季光合特性的比較。生態學報 29(6): 2861-2867。
    蔣高明、韓興國、林光輝 (1997) 大氣CO2濃度升高對植物的直接影響─國外十餘年來模擬實驗研究之主要手段及基本結論。植物生態學報 21(6): 489-502。
    鄭鈞謄 (2001) 南仁山低地雨林二氧化碳濃度的動態變化及其對林床幼苗光合作用的影響。國立屏東科技大學森林系碩士論文,83頁。
    鄭鈞謄、郭耀綸 (2004) 南仁山森林內的二氧化碳濃度梯度及其對林下小苗光合作用的影響。台灣林業科學 19(2): 143-152。
    龔春梅、寧蓬勃、王根軒、梁宗鎖 (2009) C3和C4植物光合途徑的適應性變化和進化。植物生態學報 33(1): 206-221。
    AbdElgawad, H., G. Zinta, G. T. S. Beemster, I. A. Janssens, and H. Asard (2016) Future climate CO2 levels mitigate stress impact on plants: increased defense or decreased challenge? Frontiers in Plant Science 2(7): 556.
    Ainsworth, E. A., and S. P. Long (2005) What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165(2): 351-372.
    Ainsworth, E. A., and A. Rogers (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment 30(3): 258- 270.
    Allen Jr, L. H., V. G. Kakani, J. C. V. Vu, and K. J. Boote (2011) Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology 168(16): 1909-1918.
    Ballantyne, A. P., C. B. Alden, J. B. Miller, P. P. Tans, and J. W. C. White (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488(7409): 70-72.
    Barnola, J. M., D. Raynaud, Y. S. Korotkevicht, and C. Lorius (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329(6138): 408-414.
    Beverly, E. L., G. R. Michael, and M. A. Peter (2008) Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biology 5(2): 169-182.
    Carey, J. C., J. Tang, P. H. Templer, K. D. Kroeger, T. W. Crowther, and A. J. Burton et al. (2016) Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences 113(48): 13797-13802.
    Ceulemans, R., and M. Mousseau (1994) Tansley Review No. 71 Effects of elevated atmospheric CO2 on woody plants. New Phytologist 127(3): 425-446.
    Chanda, A., A. Akhand, S. Manna, S. Dutta, I. Das, and S. Harza (2013) Spatial variability of atmosphere-biosphere CO2 and H2O exchange in selected sites of Indian Sundarbans during summer. Tropical Ecology 54(2): 167-178.
    Davidson, E. A., A. D. Richardson, K. E. Savage, and D. Y. Hollinger (2006) A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce‐dominated forest. Global Change Biology 12(2): 230-239.
    de Araújo, A. C., B. Kruijt, A. D. Nobre, A. J. Dolman, M. J. Waterloo, and E. J. Moors et al. (2008) Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient. Ecological Applications 18(6): 1406-1419.
    dosAnjos L., M. A. Oliva, K. N. Kuki, M. S. Mielke, M. C. Ventrella, and M. F. Galvão et al. (2015) Key leaf traits indicative of photosynthetic plasticity in tropical tree species. Trees 29: 247-258.
    Epron, D., L. Farque, É. Lucot, and P. M. Badot (1999) Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content. Annals of Forest Science 56(3): 221-226.
    Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J. M. Barnola, and V. I. Morgan (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research 101: D2.
    Feigenwinter, C., C. Bernhofer, U. Eichelmann, B. Heinesch, M. Hertel, D. Janous et al. (2008) Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agricultural and Forest Meteorology 148(1): 12-24.
    Feigenwinter, C., M. Molder, A. Lindroth, and M. Aubinet (2010) Spatiotemporal evolution of CO2 concentration, temperature, and wind field during stable nights at the Norunda forest site. Agricultural and Forest Meteorology 150(5): 692-701.
    Goulden, M. L., A. M. S. McMillan, G. C. Winston, A. V. Rocha, K. L. Manies, and J. W. Harden et al. (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology 17(2): 855-871.
    Goulden, M. L., S. D. Miller, H. R. da Rocha, M. C. Menton, H. C. de Freitas, and A. D. E. S. Figueira et al. (2004) Diel and seasonal patterns of tropical forest CO2 exhange. Ecological Applications 14(4): 42-54.
    Hanson, P. J., N. T. Edwards, C. T. Garten, and J. A. Andrews (2000) Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48: 115-146.
    Hättenschwiler, S. T., and C. H. Körner (2000) Tree seedling responses to in situ CO2‐enrichment differ among species and depend on understorey light availability. Global Change Biology 6(2): 213-226.
    Hayek, M. N., R. Wehr, M. Longo, L. R. Hutyra, K. Wiedemann, and J. W. Munger et al. (2018) A novel correction for biases in forest eddy covariance carbon balance. Agricultural and Forest Meteorology 250-251(15): 90-101.
    Hopkins, F., M. A. Gonzalez-Meler, C. E. Flower, D. J. Lynch, C. Czimczik, and J. Tang et al. (2013) Ecosystem-level controls on root‐rhizosphere respiration. New Phytologist 199(2): 339-351.
    Kallarackal, J., and T. J. Roby (2012) Responses of trees to elevated carbon dioxide and climate change. Biodiversity and Conservation 21(5): 1327-1342.
    Kang, M., B. L. Ruddell, C. Cho, J. Chun, and J. Kim (2017) Identifying CO2 advection on a hill slope using information flow. Agricultural and Forest Meteorology 232: 265-278.
    Kao, W. Y., Y. S. Chiu, and W. H. Chen (2000) Vertical profiles of CO2 concentration and δ13C values in a subalpine forest of Taiwan. Botanical Bulletin of Academia Sinica 41: 213-218.
    Kerstiens, G. (1998) Shade-tolerance as a predictor of responses to elevated CO2 in trees. Physiologia Plantarum 102(3): 472-480.
    Kerstiens G. (2001) Meta-analysis of the interaction between shade-tolerance, light environment and growth response of woody species to elevated CO2. Acta Oecologica 22(1): 61-69.
    Kitao, M., T. Hida, N. Eguchi, H. Tobita, H. Utsugi, and A. Uemura et al. (2016) Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2. Plant Biology 18(S1): 22-27.
    Körner, C. (2015) Paradigm shift in plant growth control. Current Opinion in Plant Biology 25: 107-114.
    Koyama, K., and S. Takemoto (2014) Morning reduction of photosynthetic capacity before midday depression. Scientific Reports 4: 4389.
    Kubiske, M. E., and K. S. Pregitzer (1996) Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiology 16(3): 351-358.
    Kukumägi, M., I. Ostonen, P. Kupper, M. Truu, I. Tulva, and M. Varik et al. (2014) The effects of elevated atmospheric humidity on soil respiration components in a young silver birch forest. Agricultural and Forest Meteorology 194: 167-174.
    Kuo, Y. L., and C. L. Yeh (2015) Photosynthetic capacity and shade tolerance of 180 native broadleaf tree species in Taiwan. Taiwan Journal of Forest Science 30(4): 229-243.
    Kutsch, W. L., O. Kolle, C. Rebmann, A. Knohl, W. Ziegler, and E. D. Schulze (2008) Advection and resulting CO2 exchange uncertainty in a tall forest in central Germany. Ecological Applications 18(6): 1391-1405.
    Lei, L., W. Xiao, L. Zeng, J. Zhu, Z. Huang, and R. Cheng et al. (2018) Thinning but not understory removal increased heterotrophic respiration and total soil respiration in Pinus massoniana stands. Science of The Total Environment 621(15): 1360-1369.
    Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J. M. Barnola, and U. Siegenthaler et al. (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453(7193): 379-382.
    Mathur, S., L. Jain, and A. Jajoo (2018) Photosynthetic efficiency in sun and shade plants. Photosynthetica 56(1): 354-365.
    Mielnicka, P., W. A. Dugas, K. Mitchell, and K. Havstad (2005) Long-term 28 measurements of CO2 flux and evapotranspiration in a Chihuahuan desert grassland. Journal of Arid Environments 60(3): 423-436.
    Monastersky, R. (2013) Global carbon dioxide levels near worrisome milestone. Nature 497(7447): 13-14.
    Monnin, E., A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffe, and T. F. Stocker et al. (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291(5501): 112-114.
    Montagnani, L., G. Manca, E. Canepa, E. Georgieva, and M. Acosta (2009) A new mass conservation approach to the study of CO2 advection in an alpine forest. Journal of Geophysical Research 114: D7.
    Pales, J. C., and C. D. Keeling (1965) The concentration of atmospheric carbon dioxide in Hawaii. Journal of Geophysical Research 70(24): 6053-6076.
    Parker, G. G., D. R. Fitzjarrald, and I. C. G. Sampaio (2019) Consequences of environmental heterogeneity for the photosynthetic light environment of a tropical forest. Agricultural and Forest Meteorology 278: 107661.
    Parr, C. L., C. E. R. Lehmann, W. J. Bond, W. A. Hoffmann, and A. N. Andersen (2014) Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in Ecology and Evolution 29(4): 205-213.
    Piao, S., S. Sitch, P. Ciais, P. Friedlingstein, P. Peylin, and X. Wang et al. (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology 19(7): 2117-2132.
    Pokorný, R., I. Tomášková, and M. V. Marek (2013) Response of Norway spruce root system to elevated atmospheric CO2 concentration. Acta Physiologiae Plantarum 35(6): 1807-1816.
    Portes, M. T., D. S. C. Damineli, R. V. Ribeiro, J. A. F. Monteiro, and G. M. Souza (2010) Evidence of higher photosynthetic plasticity in the early successional Guazuma ulmifolia Lam. compared to the late successional Hymenaea courbaril L. grown in contrasting light environments. Brazilian Journal of Biology 70(1): 75-83.
    Pregitzer, K., W. Loya, M. Kubiske, and D. Zak (2006) Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 148(3): 503-516.
    Pumpanen, J., H. Ilvesniemi, L. Kulmala, E. Siivola, H. Laakso, and P. Kolari et al. (2008) Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Science Society of America Journal 72(5): 1187-1196.
    Reef, R., K. Winter, J. Morales, M. F. Adame, D. L. Reef, and C. E. Lovelock (2014) The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities. Physiologia Plantarum 154(3): 358-368.
    Rubino, M., D. M. Etheridge, D. P. Thornton, R. Howden, C. E. Allison, and R. J. Francey et al. (2019) Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica. Earth System Science Data 11(2): 473-492.
    Sage, R. F. (2004) The evolution of C4 photosynthesis. New Phytologist 161(2): 341-370.
    Sharkey, T. D. (1998) Estimating the rate of photorespiration in leaves. Physiologia Plantarum 73(1): 147-152.
    Smith, A. R., M. Lukac, R. Hood, J. R. Healey, F. Miglietta, and D. L. Godbold (2013) Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytologist 198(1): 156-168.
    Smith, K. A. (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factor and biological processes. European Journal of Soil Science 54(4): 779-791.
    Temme, A. A., J. C. Liu, J. van Hal, W. K. Cornwell, J. H.C. Cornelissen, and R. Aerts (2017) Increases in CO2 from past low to future high levels result in “slower” strategies on the leaf economic spectrum. Perspectives in Plant Ecology, Evolution and Systematics 29: 41-50.
    Thoning, K. W., P. P. Tans, and W. D. Komhyr (1989) Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974-1985. Journal of Geophysical Research 94(D6): 8549-8565.
    Valladares, F., L. Laanisto, Ü. Niinemets, and M. A. Zavala (2016) Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecology and Diversity 9(3): 237-251.
    van Straaten, O., E. Veldkamp, and M. D. Corre (2011) Simulated drought reduces soil CO2 efflux and production in a tropical forest in Sulawesi, Indonesia. Ecosphere 2(10): 1-22.
    Wang, D., S. A. Heckathorn, X. Wang, and S. M. Philpott (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169(1): 1-13.
    Xu, L., D. D. Baldocchi, and J. Tang (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles 18(4): 1-10.
    Xu, Z., H. Shimizu, S. Ito, Y. Yagasaki, C. Zou, and G. Zhou et al. (2013) Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta 239(2): 421-435.
    Xu, Z., H. Shimizu, Y. Yagasaki, S. Ito, Y. Zheng, and G. Zhou (2013) Interactive effects of elevated CO2, drought, and warming on plants. Journal of Plant Growth Regulation 32(4): 692-707.
    Xu, Z., Y. Jiang, and G. Zhou (2015) Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Frontiers in Plant Science 10(6): 701.
    Yang, J., and C. Wang (2006) Partitioning soil respiration of temperate forest ecosystems in northeastern China. Acta Ecologica Sinica 26(6): 1640-1646.
    Ye, Z. P. (2007) A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 45(4): 637-640.
    Zeng, X., W. Zhang, H. Shen, J. Cao, and X. Zhao (2014) Soil respiration response in different vegetation types at Mount Taihang, China. Catena 116: 78-85.
    Zribi, L., F. Mouillot, F. Gharbi, J. M. Ourcival, and B. Hanchi (2015) Warm and fertile sub-humid conditions enhance litterfall to sustain high soil respiration fluxes in a Mediterranean cork oak forest. Forests 6(9): 2918-2940.

    NOAA, National Oceanic and Atmospheric Adminstration, Earth System Research Laboratory, Global Monitoring Division. (2020) Trends in atmospheric carbon dioxide: global monthly mean CO2. Washington, DC: (Eds.) Dlugokencky, E. J., and P. Tans. Retrieved December 14, 2020, from the World Wide Web: https://www.esrl.noaa.gov/gmd/ccg
    g/trends/global.html

    下載圖示
    QR CODE