簡易檢索 / 詳目顯示

研究生: 洪韶韓
Hung, Shao-Han
論文名稱: 施用不同比例稻殼生物炭及石灰搭配不同用量有機質肥料對土壤性質、落花生生育及產量之影響
Effects of Applying Different Ratios of Rice Husk Biochar and Lime with Different Amounts of Organic Fertilizers on the Soil Properties and the Growth and Yield of Peanut
指導教授: 王鐘和
Wang, Chong-Ho
學位類別: 碩士
Master
系所名稱: 農學院 - 農園生產系所
Department of Plant Industry
畢業學年度: 109
語文別: 中文
論文頁數: 169
中文關鍵詞: 土壤改良劑土壤肥力pH值土壤總體密度
外文關鍵詞: soil fertility, soil amendment, pH value, soil bulk density
DOI URL: http://doi.org/10.6346/NPUST202100033
相關次數: 點閱:65下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 落花生(Arachis hypogaea L.)為台灣中南部的重要經濟作物,同時也是少數台灣本地可充分供應的「食用油」來源,近年食安風波不斷,帶動國內花生油、花生的生產需求,同時也追求有機與健康的農產品。有機資材經由低氧高溫熱裂解,炭化後所產生之物質稱為「生物炭」。生物炭具有改善土壤理化性質,促進植株生長與提高作物產量的功能,其多孔隙之特性不但能保水與保肥,同時還能提供微生物棲息地。鹼性的石灰質材除了提升土壤pH值,間接增加土壤中養分的有效性,提升有益微生物活性,為酸性土壤改良方法中最經濟且效果最持久的策略。
    本試驗目的為藉由稻殼生物炭及石灰作為土壤改良劑,搭配有機質肥料用量探討對土壤性質、落花生生育及產量之影響。試驗採盆栽方式於2019年10月至2020年2月,在國立屏東科技大學永續農業研究農場的網室進行,試驗處理為施用不同量稻殼生物炭(0 %、2 %、4 % 與8 % (w/w))、不同量石灰(0.1 % 與 0.2 %(w/w))和不同量有機質肥料(含氮量為80 kg ha-1、160 kg ha-1、240 kg ha-1與 320 kg ha-1)。結果顯示隨著稻殼生物炭用量增加可顯著降低土壤總體密度,並增加土壤田間容水量,提高土壤pH值、EC值、有機質、Bray-1-P、交換性鉀、鈣與鎂含量,其中以交換性鉀含量提升效果最為明顯。施用有機質肥料之氮用量160 kg ha-1、240 kg ha-1與320 kg ha-1處理均顯著提高土壤理化性質,三個處理間則差異不顯著。植株乾物重則以石灰用量0.2 % 處理顯著高於其他處理,稻殼生物炭用量4 % 處理顯著高於其他稻殼生物炭處理,而施用8 % 稻殼生物炭用量處理則僅提高約1 %。
    施用苦土石灰可顯著提高土壤pH值、交換性鈣與鎂含量,顯著增加植體鎂濃度及鎂吸收量,對植株生育及產量則無顯著影響。有機質肥料之氮用量320 kg ha-1 之處理顯著提高植株乾物重。在8 % 稻殼生物炭處理用量,落花生籽實有較高的百粒重及收穫指數,總產量提高27 %,顯著高於對照組。施用稻殼生物炭增加始花期根部的N,顯著高於其他處理, 8 % 稻殼生物炭用量處理根部與地上部的P與K皆顯著高於其他處理,但收穫期地上部Ca顯著低於其他處理。綜合上述,增加稻殼生物炭、有機質肥料用量之應用的確能改善土壤理化性質,並以8 % 稻殼生物炭用量搭配有機質肥料之氮用量160 kg ha-1為最佳處理。

    Peanut(Arachis hypogaea L.)is an important economic crop in central and southern Taiwan, and it is also one of the few sources of "edible oil" that can be adequately supplied in Taiwan. In recent years, food safety disturbances have continued to drive domestic demand for peanut oil and peanut production, while also pursuing organic and healthy agricultural products. Organic materials are carbonized by low-oxygen and high-temperature thermal pyrolysis, which is called "biochar". Biochar has the functions of improving soil physical and chemical properties, promoting plant growth and increasing crop yield. Its porous properties can not only retain water and fertilizer, but also provide microbial habitat. Lime materials not only increase the pH of the soil, but also indirectly increase the availability of nutrients in the soil and increase the activity of beneficial microorganisms. This is the most economical and long-lasting strategy in acid soil improvement methods. The purpose of this experiment is to use rice husk biochar and lime as soil amendments, combined with the amount of organic fertilizer to explore the effects on soil properties, growth and yield of peanut.
    The experimental potting method was from October 2019 to February 2020 in the net room of the National Pingtung University of Science and Technology Sustainable Agriculture Research Farm. The experimental treatment was to apply different amounts of rice husk biochar(0 %, 2 %, 4 % and 8 %(w/w)), lime (0.1 % and 0.2 %(w/w))and organic fertilizers(nitrogen content of 80 kg ha-1, 160 kg ha-1, 240 kg ha-1 and 320 kg ha-1). The results showed that the increase in the amount of rice husk biochar can significantly reduce the bulk density of the soil, increase the soil moisture content in the field, and increase the soil pH, EC, organic matter, Bray-1-P, exchangeable potassium, calcium, and magnesium content. The effect of increasing exchangeable potassium content is the most obvious. The application of organic fertilizer with a nitrogen rate of 160 kg ha-1 , 240 kg ha-1, and 320 kg ha-1 significantly improves the physical and chemical properties of the soil, but there was no significant difference among the three treatments.. The dry weight of the plant was significantly higher than other treatments with a lime dosage of 0.2 %. The rice husk biochar dosage of 4 % was significantly higher than other rice husk biochar treatments, while the 8 % rice husk biochar dosage was only increased by about 1 %.
    The application of lime can significantly increase the soil pH value, exchangeable Ca and Mg content, significantly increase the Mg concentration and Mg absorption of the plant, but has no significant effect on plant growth and yield. The treatment of 320 kg ha-1 of organic fertilizer nitrogen significantly increased plant dry weight. At 8 % rice husk biochar treatment dosage, peanut seeds actually have a higher 100-grain weight and harvest index, and the total yield increased by 27 %, which was significantly higher than the control group. The application of rice husk biochar increased the N in the root at the initial flowering stage, which was significantly higher than other treatments. The P and K in the roots and shoots of the 8 % rice husk biochar treatment were significantly higher than those of other treatments, but the Ca in the shoots at harvest was significantly lower than that of other treatments. Based on the above, the application of increasing the amount of rice husk biochar and organic fertilizer can indeed improve the physical and chemical properties of the soil, and the best treatment is to use 8 % of the rice husk biochar with the organic fertilizer nitrogen amount of 160 kg ha-1.


    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 IX
    表目錄 X
    壹、 前言 1
    貳、 文獻回顧 3
    一、 落花生簡介 3
    二、 有機栽培的起源與介紹 6
    三、 生物炭簡介 9
    四、 石灰簡介 11
    五、 有機質肥料簡介 13
    六、 營養元素對作物生長之影響 16
    參、 材料與方法 20
    一、 供試土壤採集 20
    二、 生物炭製備 20
    三、 土壤孵育試驗 20
    四、 試驗設計 21
    五、 樣本分析項目及方法 31
    (一) 土壤分析 31
    1. 土壤質地 31
    2. 土壤總體密度 32
    3. 土壤田間容水量 32
    4. 酸鹼值(pH值) 32
    5. 電導度(EC值) 32
    6. 土壤有機質 32
    7. 土壤無機態氮 33
    8. 土壤Bray-1 磷 33
    9. 土壤交換性鉀、鈣和鎂 34
    (二) 植體分析 34
    1. 植體全氮之測定 34
    2. 植體全磷、鉀、鈣、鎂之測定 34
    (三) 有機質肥料分析 35
    1. pH值 35
    2. EC值 35
    3. 水分含量 35
    4. 有機質含量 35
    5. 全氮含量 35
    6. 全磷、鉀、鈣、鎂、鐵、錳、銅與鋅測定 35
    六、 統計分析 36
    肆、 結果與討論 37
    一、 稻殼生物炭及石灰用量對孵育試驗之土壤理化性質的影響 37
    (一) 稻殼生物炭用量對孵育試驗之土壤pH值的影響 37
    (二) 石灰用量對孵育試驗之土壤pH值的影響 40
    (三) 稻殼生物炭用量對孵育試驗之土壤EC值的影響 42
    (四) 石灰用量對孵育試驗之土壤EC值的影響 44
    二、 施用不同比例稻殼生物炭及石灰搭配不同用量有機質肥料對始花期土壤理化性質、植株生育性狀與植株營養元素之影響 46
    (一) 始花期土壤性質 46
    1. 不同處理對土壤總體密度的影響 46
    2. 不同處理對土壤田間容水量之影響 49
    3. 不同處理對始花期土壤pH值的影響 51
    4. 不同處理對始花期土壤EC值的影響 52
    5. 不同處理對始花期土壤有機質含量的影響 53
    6. 不同處理對始花期土壤有效磷含量的影響 56
    7. 不同處理對始花期土壤交換性鉀含量的影響 57
    8. 不同處理對始花期土壤交換性鈣含量的影響 58
    9. 不同處理對始花期土壤交換性鎂含量的影響 59
    10. 不同處理對始花期土壤總無機態氮含量的影響 62
    (二) 始花期植株生育性狀 66
    1. 不同處理對始花期植株生育性狀的影響 66
    2. 不同處理對始花期植株乾物重的影響 72
    3. 不同處理對始花期植株營養元素的影響 75
    4. 不同處理對始花期植株營養元素吸收量的影響 85
    三、 施用不同比例稻殼生物炭及石灰搭配不同用量有機質肥料對收穫期土壤理化性質、植株生育性狀、產量、收量構成因子與植株營養元素之影響 98
    (一) 收穫期土壤性質 98
    1. 不同處理對收穫期土壤pH值的影響 98
    2. 不同處理對收穫期土壤EC值的影響 99
    3. 不同處理對收穫期土壤有機質含量的影響 100
    4. 不同處理對收穫期土壤有效磷含量的影響 103
    5. 不同處理對收穫期土壤交換性鉀含量的影響 104
    6. 不同處理對收穫期土壤交換性鈣含量的影響 105
    7. 不同處理對收穫期土壤交換性鎂含量的影響 106
    8. 不同處理對收穫期土壤總無機態氮含量的影響 109
    (二) 收穫期植株生育性狀 113
    1. 不同處理對收穫期植株生育性狀的影響 113
    2. 不同處理對收穫期植株乾物重的影響 118
    3. 不同處理對收穫期植株營養元素的影響 121
    4. 不同處理對收穫期落花生產量及產量構成因子的影響 131
    四、 土壤pH值、EC值與植株產量之相關性比較 136
    伍、 結論 139
    陸、 參考文獻 140

    王銀波。1998。長期施用禽畜堆肥之影響。第一屆畜牧廢棄資源再生利用堆廣研究成果研討會論文集。第144-151頁。
    王鐘和。2000。堆肥施用策略。堆肥製造技術:農業試驗所特刊88: 191-209。
    王鐘和。2008。有機農田土壤肥力即時偵測技術研發與應用。有機作物栽培技術研討會專刊:農業試驗所特刊136: 39-46。
    王鐘和。2017。各類作物有機栽培土壤肥培管理技術。國立屏東科技大學農業推管委員會印行。農業推廣手冊;51。
    王鐘和。2018。有機農業的內涵與生產技術。臺中區農業改良場特刊 135: 107-123.
    王鐘和、陳滄海、陳文華、張萃瑛。2013。苦瓜及小胡瓜有機栽培綜合管理。國立屏東科技大學農業推管委員會印行。農業推廣手冊;48。
    台灣農業統計年報。2019。行政院農業委員會。
    行政院農業委員會。2020。肥料種類品目及規格。
    行政院標準檢驗局。2002。肥料檢驗技術及管理作業流程。
    李蘭帝。1996。大量植物樣本氮磷鉀之迅速測定法。農業研究15(2):1-5。
    林俊義。1999。台灣永續農業發展概況。永續農業作物合理化施肥技術專集。中華永續農業協會編印。第1-36頁。
    林家棻。1966。怎樣採集土壤樣本。台灣省農業試驗所編印。
    林傳琦。2002。我國有機農業之發展策略。作物有機栽培:農業試驗所特刊102: 7-15。
    林毓雯、王鐘和。2002。不同有機資材之分解與氮素礦化。行政院農業委員會農業試驗所-作物有機栽培102: 105-115。
    徐卉明。2002。有機質肥料不同施用量對溫室蔬菜生長與養分吸收的影響。國立台灣大學農業化學研究所碩士論文,台北,台灣。
    陳仁炫。2001。土壤酸性和石灰的施用。興大農業36: 8-13。
    陳仁炫。2005。有機質肥料品質及施肥技術。臺南區農業改良場技術專刊 132: 75-93。
    陳仁炫,2017。化學、有機質、微生物肥料,怎麼選?-摸透肥料的個性,對症下料。豐年雜誌 67(11): 36-40。
    陳仁炫、徐琳媛。2004。改良質材之表層施用對強酸性土壤剖面酸性及鈣有效性的影響。臺灣農業化學與食品科學 42(1): 52-60。
    陳仁炫、鍾仁賜、黃裕銘、鄒裕民、陳鴻基、吳正宗。2008。土壤與肥料分析手冊 (一) 土壤化學性質分析。中華土壤肥料學會。
    陳榮五。1999。台灣地區有機農業發展之回顧及展望。台中區農業改良場特刊41: 69-75。
    倪禮豐、鍾仁賜。2003。有機物對青梗白菜生長及其硝酸態氮濃度的影響。花蓮區農業改良場研究彙報 21: 57-65。
    莊作權、李英明、陳鴻基。1998。不同有機質材在不同土壤水分與溫度條件下之碳與氮之礦化作用。土壤與環境1(2): 135- 152。
    張明暉、簡宣裕、劉禎祺。2005。有機質肥料介紹。合理化施肥專刊:農業試驗所特刊121: 255-266。
    張庚鵬、李艷琪。2003。植物營養生理障礙診斷鑑定。植物重要防疫檢疫病害診斷鑑定技術研習會專刊2: 1-9。
    張珈錡、廖玉珠。2012。植物對硝酸態氮和銨態氮之吸收與利用。種苗科技專訊 76: 16-19。
    張淑賢。2000。本省現行植物測定方法。作物需肥診斷技術。行政院農業委員會農業試驗所。第53-54頁。
    張富洲、劉大江。1987。大、小粒型落花生品種之生長特性比較。中華農業研究36(4): 345-356。
    張愛華。2000。本省現行土壤測定方法。作物需肥診斷技術。行政院農業委員會農業試驗所。第9-26頁。
    黃伯恩。2002。合理化施肥之意義與重要性。作物合理化施肥研討會專刊: 1-4。
    曾俊偉、陳明杰。2016。淺談土壤孔隙與水資源涵養之關係。林業研究專訊 23 (6): 84-89。
    黃國禎、江介倫、黃彥凱、邱宏彬、黃瀞瑩。2009。老埤台地不同植生下土壤孔隙特性之研究。農業工程學報 55 (2): 81-94。
    黃裕銘。2000。有機質肥料的特性與應用。興大農業69: 27-32。
    黃裕銘。2002。有機農業之養分管理。作物有機栽培農民訓練-進階講習班,第55-73頁。
    黃瑞彰。2018。土壤健康與植物營養診斷。豐年雜誌67 (8): 86-91。
    黃維廷、張愛華、王鐘和、江志峰、簡宣裕、張明暉。2002。有機質肥料於果樹栽培上之應用。作物有機栽培:農業試驗所特刊102: 117-130。
    楊允聰。2005。糧食作物-落花生。台灣農家要覽。財團法人豐年社,第115-122頁。
    楊允聰、連大進。1999。落花生生產技術。落花生專輯。台南區農業改良場技術專刊98: 5-7。
    楊允聰、蔡承良。1999。落花生主要栽培品種。落花生專輯。台南區農業改良場技術專刊98: 2-5。
    楊秋忠。2010。土壤與肥料。農業世界叢書。台中,台灣。
    蔡精強。2009。台灣有機農業發展概況與前景。臺中區農業改良場特刊 96: 1-8。
    鍾仁賜。2004。有機栽培之土壤與肥料管理。有機栽培管理訓練班。花蓮區農業改良場,花蓮,臺灣。第51-62頁。
    鍾仁賜。2008。臺灣有機農業二十年—研究與實驗。土壤與環境11: 1-11。
    鍾仁賜、王俊文、王鐘和、王銀波。2014。施肥對不同生長期玉米生長與植物體中氮組成之影響。中華土壤肥料學會土壤與環境1(3): 209-226。
    羅秋雄。2005。作物施肥手冊。行政院農業委員會農糧署。第23-24頁。
    譚增偉、劉禎祺、陳桂暖。2005。土壤肥力與合理化施肥。合理化施肥專刊:農業試驗所特刊121: 43- 62。
    蘇匡基、鄭朝洲、李根。1968。落花生新品種台南選9號之育成。台南區農業改良場研究彙報 1: 6-10。
    蘇德銓。2004。番荔枝果園有機質肥料的合理化施肥。豐年半月刊53 (10): 37-39。

    Abalos, D., Z. Liang, P. Dörsch, and L. Elsgaard. 2020. Trade-offs in greenhouse gas emissions across a liming-induced gradient of soil pH: Role of microbial structure and functioning. Soil Biol. Biochem. 150: 108006.
    Abel, S., C.A. Ticconi, C.A. Delatorre. 2002. Phosphate sensing in higher plants. Physiol. Plant. 115: 1-8.
    Adams, F., and D.L. Hartzog. 1980. The nature of yield responses of florunner peanuts to lime. Peanut Sci. 7: 120-123.
    Adeoye, K.B., and L. Singh. 1985. The effect of bulk application of lime under two tillage depths on soil pH and crop yield. Plant Soil. 85:295-297.
    Agegnehu, G., A.K. Srivastava, and M.I. Bird. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl. Soil Ecol. 119: 156-170.
    Ahmad, M., A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, and Y.S. Ok. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 99: 19-33.
    Ahmad, W., B. Singh, F.A. Dijkstra, and R.C. Dalal. 2013. Inorganic and organic carbon dynamics in a limed acid soil are mediated by plants. Soil Biol. Biochem. 57: 549-555.
    Al-Kaisi, M.M., X. Yin, and M.A. Licht. 2005. Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric. Ecosyst. Environ. 105 (4): 635-647.
    Ani, J.U., and P.K. Baiyeri. 2008. Impact of poultry manure and harvest season on juice quality of yellow passion fruit (Passiflora edulis var. flavicarpa Deg.) in the sub-humid zone of Nigeria. Fruits. 63 (4): 239-247.
    Anjos, J.T., and D.L. Rowell. 1987.The effect of lime on phosphorus adsorption and barley growth in three acid soils. Plant Soil. 103: 75-82.
    Asai, H., B.K. Samson, H.M. Stephan, K. Songyikhangsuthor, K. Homma, Y. Kiyono, Y. Inoue, T. Shiraiwa, and T. Horie. 2009. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res., 111: 81-84.
    Awad, Y.M., S.S. Lee, K.-H. Kim, Y.S. Ok, and Y. Kuzyakov. 2018. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: effects of biochar, oyster shells, and polymers. Chemosphere, 198: 40-48.
    Awasthi, M.K., Q. Wang, H. Huang, R. Li, F. Shen, A.H. Lahori, P. Wang, D. Guo, Z. Guo, S. Jiang, and Z. Zhang. 2016. Effect of biochar amendment on greenhouse gas emission and bio-availability of heavy metals during sewage sludge co-composting. J. Clean. Prod. 135: 829-835.
    Aye, N.S., P.W.G. Sale, and C.X. Tang. 2016. The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils. Biol. Fertil. Soils. 52: 697-709.
    Bagyalakshmi, B., P. Ponmurugan, and A. Balamurugan. 2017. Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian Tea plantation soil. Biocatal. Agric. Biotechnol. 12: 116-124.
    Baishya, K. 2015. Impact of agricultural chemicals application on soil quality degradation a review. Int. J. Sci. Technol. Manage. 4 (1): 220-228.
    Bal, S.C., R.K. Nayak, and S.K. Sahu. 2009. Effect of major nutrients (NPK) and lime on growth, yield and quality of mango cv Latsundari grown in acid lateritc soil of Bhubaneswar, Orissa. Environ. Ecol. 27: 1175-1177.
    Bandyopadhyay, K.K., A.K. Misra, P.K. Ghosh, and K.M. Hati. 2010. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil and Tillage Res. 110: 115-125.
    Barrow, N.J. 1984. Modeling the effects of pH on phosphate sorption by soils. J. Soil Sci. 35: 283-297.
    Barrow, N.J. 2017. The effects of pH on phosphate uptake from the soil. Plant Soil. 410: 401-410.
    Bauer, A. and A. L. Black. 1994. Quantification of the effects of soil organic matter content on soil productivity. Soil. Sci. Soc. Amer. J. 58:193.
    Beckie, H.J., and H. Ukrainetz. 1996. Lime-amended acid soil has elevated pH 30 years later. Can. J. Soil Sci. 76: 59-61.
    Bes, C., and M. Mench. 2008. Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ. Pollut. 156 (3): 1128-1138.
    Bitzer, C. C. and J. T. Sims. 1988. Estimating the availability of nitrogen in poultry manure through laboratory and field studies. J. Environ. Qual. 17: 47-54.
    Blamey, F.P.C., and J. Chapman. 1982. Soil amelioration effects on peanut growth, yield and quality. Plant Soil. 65: 319-334.
    Bolan, N., A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M.B. Kirkham, and K. Scheckel. 2014. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? J. Hazard. Mater. 266: 141-166.
    Bolan, N.S., D.C. Adriano, and D. Curtin. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv. Agron. 78: 215-272.
    Boussadia, O., K. Steppe, H. Zgallai, E.H.S. Ben, M. Braham, R. Lemeur, and L.M. Van. 2010. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci. Hortic. 123: 336-342.
    Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soil. Soil Sci. 59: 39-45.
    Brennan, R.F., M.D.A. Bolland, and J.W. Bowden. 2004. Potassium deficiency, and molybdenum deficiency and aluminium toxicity due to soil acidification, have become problems for cropping sandy soils in south-western Australia. Aust. J. Exp. Agric. 44 (10): 1031-1039.
    Cai, A., M. Xu, B. Wang, W. Zhang, G. Liang, E. Hou, and Y. Luo. 2019. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 189: 168-175.
    Cakmak, I., and A.M. Yazici. 2010. Magnesium: a forgotten element in crop production. Better Crops 94: 23-25.
    Carafoli, E., and M. Crompton. 1978. The regulation of intracellular calcium. Curr. Top. Membr. Transp. 10: 151-216.
    Carassay, L., D. Bustos, A. Golberg, and E. Taleisnik. 2012. Tipburn in salt- affected lettuce (Lactuca sativa L.) plants results from local oxidative stress. J. Plant Physiol. 169 (3): 285-293.
    Carlson, A., and E. Jaenicke. 2016. Changes in retail organic price premiums from 2004 to 2010. United States Department of Agriculture, Economic Research Report Number 209.
    Chan, K.Y., and D.P. Heenan. 1999. Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Sci. Soc. Am. J. 63: 1841-1844.
    Chan, K.Y. and Z. Xu. 2009. Biochar: nutrient properties and their enhancement. Biochar Environ. Manag. Sci. Technol. 1: 67-84.
    Chang, C.S., and J.M. Sung. 2004. Nutrient uptake and yield responses of peanuts and rice to lime and fused magnesium phosphate in an acid soil. Field Crops Res. 89: 319-325.
    Chanjuan, Li. and B. Zhang. 2018. Effect of exogenous calcium on growth, nutrients uptake and plasmamembrane H+-ATPase and Ca2+-ATPase activities in soybean (Glycine max) seedlings under simulated acid rain stress. Ecotox. Environ. Saf. 165: 261-269.
    Chatrath, A., P.K. Mandal, and M. Anuradha. 2000. Effect of secondary salinization on photosynthesis in Fodder Oat (Avena sativa L.) genotypes. Agro. Crop Sci. 184: 13-16.
    Chaudhary, M.I., J.J. Adu-Gyamfi, H. Saneoka, N.T. Nguyen, R. Suwa, S. Kanai, H.A. El-Shemy, D.A. Lightfoot, and K. Fujita. 2008. The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiol. Plant 30: 537-544.
    Chen, C.Y.O., and J.B. Blumberg. 2008. Phytochemical composition of nuts. Asia Pac. J. Clin. Nutr. 17: 329-332.
    Chen, W., Y. Teng, Z. Li, W. Liu, W. Ren, Y. Luo, and P. Christiea. 2018. Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of south China. Appl. Soil Ecol. 128:23-34.
    Chen, X., D. Zeng, Y. Xu, and X. Fan. 2018. Perceptions, risk attitude and organic fertilizer investment: evidence from rice and banana farmers in Guangxi, China. Sustainability 10: 3715.
    Choudhary, M., S.C. Panday, V.S. Meena, S. Singh, R.P. Yadav, D. Mahanta, et al. 2018. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agr. Ecosyst. Enviro. 257: 38-46.
    Cowan, J.A. 2002. Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals, 15: 225-235.
    Cramer, G.R., A. Lauchli, and V.S. Polito. 1985. Displacement of Ca2+ by Na+ from plasmalemma of root cells. Plant Physiol. 79 : 207-211.
    Crawford, N., and B. Forde. 2002. Molecular and developmental biology of inorganic nitrogen nutrition E. Meyerowitz, C. Somerville (Eds.), Arabidopsis Book, American Society of Plant Biologists, Rockville, MD.
    Cunha, M.D.S., I.H.L. Cavalcante, A.C. Mancin, F.G. Albano, and A.S. Marques. 2015. Impact of humic substances and nitrogen fertilising on the fruit quality and yield of custard apple. Acta Sci. Agron. 37: 211-218.
    Dabbert, S., A.M. Häring, and R. Zanoli. 2004. Organic Farming. Policies and Prospects. Zed, London.
    Daly, K., D. Styles, S. Lalor, and D.P. Parede. 2015. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. Eur. J. Soil Sci. 66 (4): 792-801.
    Daniel, J.L.P., M.C. Santos, M. Zopollatto, P. Huhtanen, and L.G. Nussio. 2013. A data-analysis of lime addition on the nutritive value of sugarcane in Brazil. Anim. Feed Sci. Technol. 184: 17-23.
    Diana, U., A.P. Tomczak, Z. Farrah, S. Walter, and L.A. Pardo. 2014. Potassium channels in cell cycle and cell proliferation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 (1638): 20130094.
    Dong, X., B.P. Singh, G. Li, Q. Lin, and X. Zhao. 2019. Biochar increased field soil inorganic carbon content five years after application. Soil Tillage Res. 186: 36-41.
    Doran, J.W., and M.R. Zeiss. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15: 3-11.
    During, C., B.L.J. Jackson, and C.B. Dyson. 1984. Lime effects on hill country: 2. Relation of soil moisture, pH, and aluminium values with pasture yield. N. Z. J. Agric. Res. 27: 531-535.
    Eigenberg, R.A., J.W. Doran, J.A. Nienaber, R.B. Ferguson, and B.L. Woodbury. 2002. Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Agr. Ecosyst. Environ. 88: 183-193.
    Ericksen, P.J., J.S.I. Ingram, and D.M. Liverman. Food security and global environmental change: emerging challenges. 2009. Environ. Sci. Policy. 12: 373-377.
    Fang, M., and J.W. Wong. 1999. Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting. Environ. Pollut. 106: 83-89.
    Fang, Z., J.C. Bouwkamp, and T. Solomos. 1998. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J. Exp. Bot. 49: 503-510.
    FAOSTAT. 2015. http://faostat3.fao.org/compare/E(accessed 7.24.15).
    Farina, M. P. and W. P. Channon. 1988. Acid-subsoil amelioration. I. A comparison of several mechanical procedures. Soil Sci. Soc. Am. J. 52: 169-175 .
    Fierer, N., and R.B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA, 103 : 626-631.
    Food and Agriculture Organization of the United Nations (FAO). 2017. Strategic Work of FAO for Sustainable Food and Agriculture.
    Food and Agriculture Organization of the United Nations (FAO). 2017. The State of Food and Agriculture 2017. Leveraging Food Systems for Inclusive Rural Transformation.
    Food and Agriculture Organization of the United Nations (FAO) & Organization for Economic Co-operation and Development (OECD). 2019. Background Notes on Sustainable, Productive and Resilient Agro-Food Systems: Value Chains, Human Capital, and the 2030 Agenda. A Report to the G20 Agriculture Deputies July 2019.
    Gatch, E.W., and L.J. du Toit. 2017. Limestone-mediated suppression of fusarium wilt in spinach seed crops. Plant Dis. 101: 81-94.
    Gavili, E., A.A. Moosavi, and A.A.K. Haghighi. 2019. Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Ind. Crops Prod. 128: 445-454.
    Gee, G.W. and J.W. Bauder. 1986. Particle-size analysis. In A. Klute et al., (eds) Methods of Soil Analysis. Part I, 2nd edition Agronomy. 9:404-408. ASA, Madison, Wisconsin.
    Gérard, F. 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils - a myth revisited. Geoderma. 262: 213-226.
    Ghazali, M. F., Ketut Wikantika, Agung Budi Harto, and Akihiko Kondoh. 2019. Generating soil salinity, soil moisture, soil pH fromsatellite imagery and its analysis. Information Processing in Agriculture 22: 2214-3173.
    Glab,T., J. Palmowska, T. Zaleski, and K. Gondek. 2016. Effect of biochar application on soil hydrological properties and physicalquality of sandy soil. Geoderma 281: 11-20.
    Glab, T., A. Zabinski, U. Sadowska, K. Gondek, M. Kopec, M. Mierzwa–Hersztek, and S. Tabor. 2018. Effects of co-composted maize, sewage sludge, and biochar mixtures onhydrological and physical qualities of sandy soil. Geoderma 315:27-35.
    Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol. Fert. Soils 35: 219-230.
    Godfray, H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, and C. Toulmin. 2010. Food security: the challenge of feeding 9 billion people. Science 327: 812-818.
    Gomiero, T. 2018. Food quality assessment in organic vs. conventional agricultural produce:Findings and issues. Appl. Soil Ecol. 123: 714-728.
    Gomiero, T., M.G. Paoletti, and D. Pimentel. 2008. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 27: 239-254.
    Gomiero, T., D. Pimentel, and M.G. Paoletti. 2011a. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30: 95-124.
    Gomiero, T., D. Pimentel, and M.G. Paoletti. 2011b. Is there a need for a more sustainable agriculture? Crit. Rev. Plant Sci. 30: 6-23.
    Goulding, K.W.T. 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage. 32: 390-399.
    Gout, E., F. Rebeille, R. Douce, and R. Bligny. 2014. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. U. S. A. 111: 4560-4567.
    Gray, C.W., S.J. Dunham, P.G. Dennis, F.J. Zhao, and S.P. McGrath. 2006. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Pollut. 142 (3):5 30-539.
    Greenberg, A.E., J.J. Conners, and D. Jenkins. 1982. Standard Methods for the Examination of Water and Wastewater. 15th de., Amer. Pub. Health Assoc., Washington D.C. p.543-558.
    Hansen, V.H. Hauggaard-Nielsen, C.T. Petersen, T.N. Mikkelsen, and D. Muller-Stover. 2016. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res. 161: 1-9.
    Harholt, J., A. Suttangkakul, and H. Vibe Scheller. 2010. Biosynthesis of pectin. J. Plant Physiol. 153 (2): 384-395.
    Hati, K.M., K.G. Mandal, A.K. Misra, P.K. Ghosh, and K.K. Bandyopadhyay. 2006. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresour Technol 97: 2182-2188.
    Hauggaard-Nielsen, H., M. Gooding, P. Ambus, G. Corre-Hellou, Y. Crozat, C. Dahlmann, A. Dibet, P. von Fragstein, A. Pristeri, M. Monti, and E.S. Jensen. 2009. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions. Nutr. Cycl. Agroeco. 85: 141-155.
    Haynes, R.J. 1982. Effects of liming on phosphate availability in acid soils – a critical review. Plant Soil. 68: 289-308.
    Haynes, R.J., and R. Naidu. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51: 123-137.
    He, L., X. Lu, J. Tian, Y. Yang, B. Li, J. Li, and S. Guo. 2012. Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Sci. 10: 42.
    He, Y.B., D.Y. Huang, Q.H. Zhu, S. Wang, S.L. Liu, H.B. He, H.H. Zhu, and X. Chao. 2017. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar. Ecotoxicol. Environ. Saf. 136: 135-141.
    Helyar, R., and W.M. Porter. 1989. “Soil acidification, its measurement and processes involved.”, In Robson, A.D. (ed.). Soil acidity and plant growth. Academic Press Australia, Sydney, AUS, p. 61-100.
    Herridge, D., M. Peoples, and R. Boddey. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311: 1-18.
    Hirschi, K. 2004. The calcium conundrum. Both versatile nutrient and specific signal. J. Plant Physiol. 136 (1): 2438-2442.
    Hole, D.G., A.J. Perkins, J.D. Wilson, I.H. Alexander, P.V. Grice, and A.D. Evans. 2005. Does organic farming benefit biodiversity? Biol. Conserv. 122 (1): 113-130.
    Holland, J.E., P.J. White, M.J. Glendining, K.W.T. Goulding, and S.P. McGrath. 2019. Yield responses of arable crops to liming – an evaluation of relationships between yields and soil pH from a long‐term liming experiment. Eur. J. Agron. 105: 176-188.
    Houlton, B.Z., Y.P. Wang, P.M. Vitousek, and C.B. Field. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454: 327-330.
    Hu, H., and Y. Yang. 2015. Research on farmers' chemical fertilizers use based on resources substitution. J. Agro Tech. Econ. 3: 84-91.
    Hussain, R.M. 2017. The Effect of phosphorus in nitrogen fixation in legumes. Agric. Res. Technol. Open Access J. 5 (1): 12-14.
    IFOAM (International Foundation for Organic Agriculture), 2016. The World of OrganicAgriculture 2016. Research Institute of Organic Agriculture (FiBL) and IFOAM−Organics International (Available online:).
    IFOAM (International Movement of Organic Agriculture Movements). 2017. Principles of Organic Agriculture. (Available online:).
    Inal, A., A. Gunes, F. Zhang, and I. Cakmak. 2007. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiol. Biochem. 45, 350-356.
    Jiang, Y., and B. Huang. 2001. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool‐season grasses. J. Exp. Bot. 52: 341-349.
    Jones, J.B. 2002.Soil pH, liming, and liming materials. Agronomic handbook management of crops, soils and their fertility (1st ed.), CRC Press, Washington DC p. 237-251.
    Jones, J.P., and S.S. Woltz. 1972. Effect of soil pH and micronutrient amendments on Verticillium and Fusarium wilt of tomato. Plant Dis. Rep., 56: 151-153.
    Jones, J.P., and S.S. Woltz. 1975. Effect of liming and nitrogen source on Fusarium wilt of cucumber and watermelon. Proc. Fla. State Hortic. Soc., 85: 200-203.
    Joseph, S. D., M. Camps-Arbestain, Y. Lin, P. Munroe, C. H. Chia, J. Hook, L. van Zwieten, S. Kimber, A. Cowie, B.P. Singh, J. Lehmann, N. Foidl, R. J. Smernik, and J. E. Amonette. 2010. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 48 (7): 501-515.
    Karley, A.J., P.J. White. 2009. Moving cationic minerals to edible tissues: potassium magnesium, calcium. Curr. Opin. Plant Biol. 12: 291-298.
    Kennedy, N., E. Brodie, J. Connolly, and N. Clipson. 2004. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environ. Microbiol. 6: 1070-1080.
    Khadem, A., and F. Raiesi. 2019. Response of soil alkaline phosphatase to biochar amendments: Changes in kinetic and thermodynamic characteristics. Geoderma 337: 44-54.
    Khan, S.A., R.L. Mulvaney, and T.R. Ellsworth. 2014. The potassium paradox: implications for soil fertility, crop production and human health. Renew. Agric. Food Syst. 29: 3-27.
    King, J.C., J. Blumberg, L. Ingwersen, M. Jenab, and K.L. Tucker. 2008. Tree nuts and peanuts as components of a healthy diet. J. Nutr. 138: 1736-1740.
    Knudsen, O., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. In A. L. Page et al. (ed.) Method of soil analysis. Part II, 2nd edition. Agronomy. P. 225-246.
    Kunhikrishnan, A., R. Thangarajan, N.S. Bolan, Y. Xu, S. Mandal, D.B. Gleeson, B. Seshadri, M. Zaman, L. Barton, C. Tang, J. Luo, R. Dalal, W. Ding, M.B. Kirkham, and R. Naidu. 2016. Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv. Agron. 139: 1-71.
    Lairon, D. 2009. Nutritional quality and safety of organic food. A review. Agron. Sustain. Dev. 30(1): 33-41.
    Lal. R. 2015. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 70: 55-62.
    Lampkin, N., C. Foster, S. Padel, and P. Midmore. 1999. The Policy and Regulatory Environment for Organic Farming in Europe. Organic Farming in Europe: Economics and Policy 1. Universitat Hohenheim, Stuttgart.
    Lampkin, N. and M. Measures. 2001. Organic Farm Management Handbook: Organic Farming Research Unit. Institute of Rural Studies, University of Wales, Aberystwyth.
    Langmeier, M., E. Frossard, M. Kreuzer, P. Mäder, D. Dubois, and A. Oberson. 2002. Nitrogen fertilizer value of cattle manure applied on soils originating from organic and conventional farming systems. Agronomie 22: 789-800.
    Legesse, H., N. Dechassa, S. Gebeyehu, G. Bultosa, and F. Mekbib. 2017. Yield and leaf nutrient concentrations of common bean genotypes as influenced by aluminium toxicity under acidic soils. J. Biosci. Agric. Res. 12 (1): 1003-1015.
    Lehmann, J. 2007. Bio-energy in the black. Front. Ecol. Environ. 5 (7): 381-387.
    Lehmann, J. and M. Rondon. 2006. Bio-char soil management on highly weathered soils in the humid tropics. Biological Approaches to Sustainable Soil Systems, CRC Press. 517-529.
    Lehmann, J. and S. Joseph. 2015. Biochar for Environmental Management: Science, Technology and Implementation. Routledge.
    Lehmann, J., Y. Kuzyakov, G. Pan, and S.O. Yong. 2015. Biochars and the plant-soil interface. Plant Soil. 359: 1-5.
    Leifeld, J., and L. Menichetti. 2018. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun., 9: 1-7.
    Li, B., Y. Wang, Z. Zhang, B. Wang, A.E. Eneji, L. Duan, Z. Li, and X. Tian. 2012. Cotton shoot plays a major role in mediating senescence induced by potassium deficiency. J. Plant Physiol. 169: 327-335.
    Li, L., S. Cheng, H. Fang, G. Yu, M. Xu, Y. Wang, X. Dang, and Y. Li. 2015. Effects of nitrogen environment on transfer and accumulation of soil organic carbon in alpine meadows on Qing-Tibetan Plateau. Acta Pedol. Sin. 52: 183-193.
    Li, Q.S., L.K. Wu, J. Chen, A.K. Muhammad, X.M. Luo, and W.X. Lin. 2016. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping. J. Integr. Agric. 15 (1): 101-110.
    Li, S., Y. Duan, T. Guo, P. Zhang, P. He, A. Johnston, and A. Shcherbakov. 2015. Potassium management in potato production in Northwest region of China. Field Crop. Res. 174: 48-54.
    Li, Y., S. Hu, J. Chen, K. Muller, Y. Li, W. Fu, Z. Lin, and H. Wang. 2018. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J. Soils Sediments. 18 (2): 546-563.
    Liao, P., L. Liu, Y.X. He, G. Tang, J. Zhang, Y.J. Zeng, Z.M. Wu, and S. Huang. 2020. Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system. Acta Agronomica Sin. 46: 84-92.
    Liao, P., S. Huang, N.C. van Gestel, Y.J. Zeng , Z.M. Wu, and K.J. van Groenigen. 2018. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Res. 216: 217-224.
    Liu, Li., Y. Wang, X. Yan, J. Li, N. Jiao, and S. Hu. 2017. Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture. Agr. Ecosystems and Environ. 237: 16-23.
    Liu, Y.X., H.H. Lyu, Y. Shi, Y.F. Wang, Z.K. Zhong, and S.M. Yang. 2015. Effects of biochar on soil nutrients leaching and potential mechanisms: A review. J. Appl. Ecol. 1: 304-310.
    Lu, C., X. Zhang, X. Chen, Y. Shi, J. Ma, M. Zhao, G. Chi, and B. Huang. 2010. Fixation of labeled (15NH4)2SO4 and its subsequent release in black soil of Northeast China over consecutive crop cultivation. Soil Tillage Res. 106 (2): 329-334.
    Lu, M., X. Zhou, Y. Luo, Y. Yang, C. Fang, J. Chen, and B. Li. 2011. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric. Ecosyst. Environ. 140 (1–2): 234-244.
    Lynch, D.H., R. Macrae, and R.C. Martin. 2011. The carbon and global warming potential impacts of organic farming: does it have a significant role in an energy constrained world? Sustainability 3: 322-362.
    Lynggaard, K. 2006. The Common Agricultural Policy and Organic Farming: An Institutional Perspective on Continuity and Change. CABI, Wallingford.
    Mader, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296: 1694-1697.
    Mandal, K.G., K.M. Hati, and A.K. Misra. 2009. Biomass yield and energy analysis of soybean production in relation to fertilizer-NPK and organic manure. Biomass. Bioenerg. 33: 1670-1679.
    Manisha B., P.B.S. Bhadoria, and S.C. Mahapatra. 2008. Growth, nitrogen fixation, yield and kernel quality of peanut in response to lime, organic and inorganic fertilizer levels. Bioresour. Technol. 99: 4675-4683.
    Mao, J., K. Zhang, and B. Chen. 2019. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Enviro. Pollut. 253: 779-789.
    Marks, E.A.N., S. Mattana, J.M. Alcañiz, E. Pérez-Herrero, and X. Domene. 2015. Gasifier biochar effects on nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year Mediterranean trial. Agric. Ecosyst. Environ. 215: 30-39.
    Marschner, B., and A.D. Nobel. 2000. Chemical and biological processes leading to the neutralisation of acidity in soil incubated with litter materials. Soil Biol. Biochem. 32: 805-813.
    Marschner. H. 2012. Marschner’s Mineral Nutrition of Higher Plants. Academic Press, New York.
    Marschner, P. 2012. Mineral Nutrition of Higher Plants. (3rd ed.), Elsevier 299-312.
    Martin, J.P. and D.D. Focht. 1977. Biological properties of soil. In Soils for management of organic. wastes. ed. by Elliott, L.F. et al. Madison, Wisconsin. USA. p.114-169.
    Masulili, A., W.H. Utomo, and M. Syechfani. 2010. Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J. Agr. Sci. 2 (1): 39.
    McLean, E.Q. 1982. Soil pH and lime requirement. In A.L. Page et al. (ed.) Method of soil analysis. Part 2. 2nd ed. ASA and SSSA Madison, W1. p. 119-224.
    Meriño-Gergichevich, C., M. Alberdi, A.G. Ivanov, and M. Reyes-Díaz. 2010. Al3+–Ca2+ interaction in plants growing in acid soils: Al-phytotoxicity response to calcareous amendments. J. Soil. Sci. Plant Nutr. 10: 217-243.
    Mia, S., J.W. van Groenigen, T.F.J. van de Voorde, N.J. Oram, T.M. Bezemer, L. Mommer, and S. Jeffery. 2014. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agr. Ecosyst. Environ. 191: 83-91.
    Mie, A., E. Kesse-Guyot, J. Kahl, E. Rembiałkowska, H. Raun Andersen, P. Grandjean, and S. Gunnarsson. 2016. Brussels. Human Health Implications of Organic Food and Organic Agriculture. European Parliament Research Service (EPRS), Belgium.
    Mukherjee, A., and R. Lal. 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3 (2): 313-339.
    Nayyar, H., T. Bainsb, and S. Kumara. 2005. Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ. Exp. Bot. 53: 39-47.
    Nava, G., A.R. Dechen, and G.R. Nachtigall. 2007. Nitrogen and potassium fertilization affect apple fruit quality in southern Brazil. Commun. Soil Sci. Plant Anal. 39: 96-107.
    Nian, H., S.J. Ahn, Z.M. Yang, and H. Matsumoto. 2003. Effect of phosphorus deficiency on aluminium-induced citrate exudation in soybean (Glycine max). Physiol. Plant 117: 229-236.
    Njoku, B.O., and W.O. Enwezor. 1991. Differential response of four cassava cultivars (Manihot esculenta) to liming of two acid soils in pot and field experiments. Field Crops. Res. 28: 163-172.
    Oldroyd, G.E., and R. Dixon. 2014. Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 26: 19-24.
    Omondi, E.C., M. Ridenour, C. Ridenour, and R. Smith. 2010. The effect of intercropping annual ryegrass with pinto beans in mitigating iron deficiency in calcareous soils. J. Sustain. Agric. 34: 244-257.
    Oosterhuis, D., D. Loka, E. Kawakami, and W. Pettigrew. 2014. The physiology of potassium in crop production. Adv. Agron. 126: 203-234.
    Oram, N.J., T.F. Voorde, G.J. Ouwehand, T.M. Bezemer, L. Mommer, S. Jeffery, and G.W.V. Groenigen. 2014. Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agric. Ecosyst. Environ. 191: 92-98.
    Paillet, Y., N. Cassagne, and J.J. Brun. 2010. Monitoring forest soil properties with electrical resistivity. Biol. Fertil. Soils 46: 451-460.
    Pang, J., J. Yang, H. Lambers, M. Tibbett, K.H. Siddique, and M.H. Ryan. 2015. Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiol. Plant. 154: 511-525.
    Paradelo, R., I. Virto, and C. Chenu. 2015. Net effect of liming on soil organic carbon stocks: A review. Agric. Ecosyst. Environ. 202: 98-107.
    Peng, M., C. Hannam, H. Gu, Y.M. Bi, and S.J. Rothstein. 2007. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J. 50: 320-337.
    Penn, C.J., and J.J. Camberato. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agric. 9: 120.
    Pettigrew, W.T. 1999. Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. Agron. J. 91: 962-968.
    Pettigrew, W.T. 2008. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133: 670-681.
    Pettigrew, W. 2003. Relationships between insufficient potassium and crop maturity in cotton. Agron. J. 95: 1323-1329.
    Pettigrew, W., and W. Meredith. 2008. Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J. Plant Nutr. 20: 531-548.
    Ponti, T.D., B. Rijk, and M.K. van Ittersum. 2012. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108: 1-9.
    Ponisio, L.C., L.K. M’Gonigle, K.C. Mace, J. Palomino, P. de Valpine, and C. Kremen. 2015. Diversification practices reduce organic to conventional yield gap. Proc. Royal Soc. B 282 (1799): 20141396.
    Post, J., T. Conradt, F. Suckow, V. Krysanova, F. Wechsung, and F.F. Hattermann. 2008. Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin. Hydrol. Sci. J. 53 (5): 1043-1058.
    Pranagal, J., P. Oleszczuk, D.T. Krojanska, P. Kraska, and K. Rozylo. 2017. Effect of biochar application on the physical properties of Haplic Podzol. Soil Tillage Res. 174: 92-103.
    Quilchano, C., T. Marañón, I.M. Pérez-Ramos, L. Noejovich, F. Valladares, and M.A. Zavala. 2008. Patterns and ecological consequences of abiotic heterogeneity in managed cork oak forests of Southern Spain. Ecol. Res. 23 (1): 127-139.
    Radcliffe, D.E., R.L. Clark and M.E. Sumner. 1986. Effect of gypsum and deep-rooting perennials on subsoil mechanical impedance. Soil Sci. Soc. Am. J. 50: 1566- 1569.
    Reddy, K.R., H.F. Hodges, and J.J. Varco. 2000. Potassium Nutrition of Cotton. Agricultural and Forestry Experiment Station (AFES) 1094: 1-10.
    Reeves, D.W. 1997. The role or soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till. Res. 43:131-167.
    Reganold, J.P., and J.M. Wachter. 2016. Organic agriculture in the twenty-first century. Nat. Plants 1: 1-8.
    Reganold, J.P., R.I. Papendick, and J.F. Parr. 1990. Sustainable agriculture. Sci. Am. 262: 112-120.
    Remans, T., P. Nacry, M. Pervent, T. Girin, P. Tillard, M. Lepetit, and A. Gojon. 2006. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol. 140: 909-921.
    Rigby, D., and D. Caceres. 2001. Organic farming and the sustainability of agricultural systems. Agric. Syst. 68 (1): 21-40.
    Rissler, H.M., E. Collakova, D. DellaPenna, J. Whelan, and B.J. Pogson. 2002. Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol. 128: 770-779.
    Romheld, V., and E.A. Kirkby. 2010. Research on potassium in agriculture: needs and prospects. Plant Soil 335: 155-180.
    Rockstrom, J., J. Williams, G. Daily, A. Noble, N. Matthews, L. Gordon,H. Wetterstrand, F. DeClerck, M. Shah, P. Steduto, C. de Fraiture, N. Hatibu,O. Unver, J. Bird, L. Sibanda, J. Smith. 2017. Sustainable intensification of agriculture forhuman prosperity and global sustainability, Ambio 46: 4-17.
    Rosenzweig, C., J. Elliott, D. Deryng, A.C. Ruane, C. Müller, A. Arneth, K.J. Boote,C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T.A.M. Pugh,E. Schmid, E. Stehfest, H. Yang, and J.W. Jones. 2014. Assessing agricultural risks of climatechange in the 21st century in a global gridded crop model intercomparison, Proc.Natl. Acad. Sci. 111: 3268-3273.
    Rukshana, F., C.R. Butterly, J.A. Baldock, J.M. Xu, and C. Tang. 2012. Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralization. Soil Biol. Biochem. 51: 35-43.
    Russenes, A.L., A. Korsaeth, L.R. Bakken, and P. Dörsch. 2016. Spatial variation in soil pH controls off-season N2O emission in an agricultural soil. Soil Biol. Biochem. 99: 36-46.
    Samaras, P., C.A. Papadimitriou, I. Haritou, and A.I. Zouboulis. 2008. Investigation of sewage sludge stabilization potential by the addition of fly ash and lime. J. Hazard. Mater. 154: 1052-1059.
    Samouëlian, A., I. Cousin, A. Tabbagh, A. Bruand, and G. Richard. 2005. Electrical resistivity survey in soil science: a review. Soil Tillage Res. 83: 173-193.
    Sardans, J. and J. Peñuelas. 2015. Potassium: a neglected nutrient in global change. Glob. Ecol. Biogeogr. 24: 261-275.
    Schaap, M.G., F.J. Leij, and M.T. Van Genuchten. 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251 (3–4): 163-176.
    Scharlemann, J.P.W., E.V.J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5: 81-91.
    Schulze, J., G. Temple, S.J. Temple, H. Beschow, and C.P. Vance. 2006. Nitrogen fixation by white lupin under phosphorus deficiency. Ann. Bot. 98: 731-740.
    Schulz, H., and B. Glaser. 2012. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 175 (3): 410-422.
    Scialabba, N.E.H., and M. Müller-Lindenlauf. 2010. Organic agriculture and climate change. Renew. Agric. Food Syst. 25: 158-169.
    Seufert, V., N. Ramankutty, and J.A. Foley. 2012. Comparing the yields of organic and conventional agriculture. Nature, 485: 229-232.
    Shanshan,W., and G. Zhang. 2013. The impact of off-farm employment on the agricultural carbon emission behavior of farmers. Resour. Sci. 9: 1855-1862.
    Shaul, O. 2002. Magnesium transport and function in plants: the tip of the iceberg. Biometals 15: 309-323.
    Šimek, M. and J.E. Cooper. 2002. The influence of soil pH on denitrification, progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci., 53: 345-354.
    Simon, E. 1987. Heavy metals in soils, vegetation development and heavy metal tolerance in plant populations from metalliferous areas. New Phytologist 81 (1): 175-188.
    Simonsson, M., A. Östlund, L. Renfjäll, C. Sigtryggsson, G. Börjesson, and T. Kätterer. 2018. Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments. Geoderma. 315: 208-219.
    Sims, J.R. and V.A. Haby. 1971. Simplified Colorimetric Determination of Soil Organic Matter. Soil Sci. 112 (2): 137-141.
    Singer, J. 2002. Species and nitrogen effect on growth rate, tiller density, and botanical composition in grass hay production. Crop Sci. 42 (1): 208-214.
    Slessarev, E.W., Y. Lin, N.L. Bingham, J.E. Johnson, Y. Dai, J.P. Schimel, and O.A. Chadwick. 2016. Water balance creates a threshold in soil pH at the global scale. Nature 540: 567-569.
    Solís-Dominguez, F.A., S.A. White, T.B. Hutter, M.K. Amistadi, R.A. Root, J. Chorover, and R.M. Maier. 2012. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species. Environ. Sci. Technol. 46 (2): 1019-1027.
    Sperrazza, J.M., and L.L. Spremulli. 1983. Quantitation of cation binding to wheat germ ribosomes: influences on subunit association equilibria and ribosome activity. Nucleic Acids Res. 11: 2665-2679.
    Steiner, C., B. Glaser, W.G. Teixeira, J. Lehmann, W.E.H. Blum, and W. Zech. 2008. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Plant Nutr. Fert. Sci. 171: 893-899.
    Stolz, M., M. Stolze, U. Hamm, M. Janssen, and M. Ruto. 2011. Consumer attitudes towards organic versus conventional food with specific quality attributes. NJAS – WAGEN J. LIFT SC. 58: 67-72.
    Storkey, J., S. Meyer, K.S. Still, and C. Leuschner. 2012.The impact of agricultural intensification and land-use change on the European arable flora. Proc. Royal Soc. B 279: 1421-1429.
    Stougaard, J. 2000. Regulators and regulation of legume root nodule development. Plant Physiol.124: 531-540.
    Stevenson, F.J. 1982. Organic forms of soil nitrogen. In: F.j. Stevenson (ed.) nitrogen in Agricultural soil. America Society of Agronomy-Soil Science Society of America, Madision, Wisconson, USA, p. 67-122.
    Sulieman, S., C. Van Ha, J. Schulze, and L.S.P. Tran. 2013. Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J. Exp. Bot. 64: 2701-2712.
    Sullivan, D. M., A. I. Bary, T. J. Nartea, E. A. Myrhe, C. G. Cogger, and S. C. Fransen. 2003. Nitrogen availability seven years after a high-rate food waste compost application. Compost Sci. Util.11 (3): 265-275.
    Sullivan, W.M., Z.C. Jiang, and R.J. Hull. 2000. Root morphology and its relationship with nitrate uptake in Kentucky bluegrass. Crop Sci. 40 (3): 765-772.
    Sumner, M.E. 1993. Gypsum and acid soils: the world scene. Adv. Agron. 51:1-32.
    Taiz, L., E. Zeiger, I.M. Mooler, and A. Murphy. 2014. Plant Physiology and Development (6th.ed). Oxford University Press. 761.
    Tana, Z., C.S.K. Lin, X. Ji, and T. J. Rainey. 2017. Returning biochar to fields: a review. Appl. Soil Ecol. 116 : 1-11.
    Taru, V.B., I.Z. Kyagya, S.I. Mshelia, and E.F. Adebayo. 2008. Economic efficiency of resource use in groundnut production in Adamawa state of Nigeria post primary schools management board yola, Adamawa state, Nigeria. World J. Agric. Sci. 4: 896-900.
    Tilman, D. 1999. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc. Natl. Acad. Sci. 96(11): 5995-6000.
    Tisdale, S.L., W.L. Nelson, and J.D. Beaton. 1985. Soil Fertility and Fertilizers, fourth ed. Mac Millan Publishing Company, New York.
    Tubiello, F.N., R. Biancalani, M. Salvatore, S. Rossi, G. Conchedda. 2016. A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 8: 1-13.
    Tuo, D., G. Gao, R. Chang, Z. Li, Y. Ma, S. Wang, C. Wang, and B. Fu. 2018. Effects of revegetation and precipitation gradient on soil carbon and nitrogen variations in deep profiles on the Loess Plateau of China. Sci. Total Environ. 626: 399-411.
    Tuomisto, H.L., I.D., Hodge, P. Riordan, and D.W. Macdonald. 2012. Does organic farming reduce environmental impacts?-A meta-analysis of European research. J. Environ. Manage. 112: 309-320.
    Turner, B.L., H. Lambers, L.M. Condron, M.D. Cramer, J.R. Leake, A.E. Richardson, and S.E. Smith. 2013. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil 367: 225-234.
    Usman, A.R.A., M.I. Al-Wabel, A.H. Abdulaziz, Y.S. Ok, A. Al-Harbi, M. Wahb-Allah, A.H. El-Naggar, M. Ahmad, A. Al-Faraj, and A. and Al- Omran. 2016. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere. 26 (1): 27-38.
    Vance, C.P. 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127: 390-397.
    Vance, C.P., and T.J. Chiou. 2011. Phosphorus focus editorial. Plant Physiol. 156: 987-988.
    Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157: 423-447.
    Veneklaas, E.J., H. Lambers, J. Bragg, P.M. Finnegan, C.E. Lovelock, W.C. Plaxton, C.A. Price, W.-R. Scheible, M.W. Shane, P.J. White, and J.A. Raven. 2012. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195: 306-320.
    Verbruggen, N., and C. Hermans. 2013. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368: 87-99.
    Verheijen, Frank G.A., A. Zhuravel, F.C.Silva, A. Amaro, M. Ben-Hur, and J.J.Keizer. 2019. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma. 347: 194-202.
    Verma, J.P., J. Yadav, and K.N. Tiwari. 2012. Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria in eastern Uttar Pradesh. Commun. Soil Sci. Plant Anal. 43: 605-621.
    Vitousek, P.M., and R.W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87-115.
    Vitousek, P.M., S. Porder, B.Z. Houlton, and O.A. Chadwick. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20: 5-15.
    Wang, C.Q. 2010. Exogenous calcium alters activities of antioxidant enzymes in Trifolium repens L. leaves under PEG-induced water deficit. J. Plant Nutr. 33: 1874-1885.
    Wang, Y., B. Li, M. Du, A.E. Eneji, B. Wang, L. Duan, Z. Li, and X. Tian. 2012. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J. Exp. Bot. 63: 5887-5901.
    Wang, N., H. Hua, A. Egrinya Eneji, Z. Li, L. Duan, and X. Tian. 2012. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J. Photochem. Photobiol. B: Bio. 110: 1-8.
    Wang, D., C. Li, S.J. Parikh, and K.M. Scow. 2019. Impact of biochar on water retention of two agricultural soils–A multi-scaleanalysis. Geoderma 340:185-191.
    Wezel, A., M. Casagrande, F. Celette, J. F. Vian, A. Ferrer, and J. Peigne. 2014. Agroecological practices for sustainable agriculture: a review. Agron. Sustainable Dev. 34: 1-20.
    White, P. 2003. Calcium in plants. Ann. Bot. 92 (4): 487-511.
    White, P.J. 2001. The Pathways of Calcium Movement to the Xylem. J. Exp. Bot. 52 (358): 891-899.
    Widowati, W., and A. Asnah. 2014. Biochar can enhance potassium fertilization efficiency and economic feasibility of maize cultivation. J. Agric. Sci. 2: 1916-9752.
    Wijler, J. and C.C. Delwiche. 1954. Investigations on the denitrifying process in soil. Plant Soil. 5: 155-169.
    Willer, H. and J. Lernoud. 2016. The World of Organic Agriculture. Statistics and Emerging Trends 2016. FiBL-IFOAM Report, FiBL, Frick, and IFOAM, Bonn.
    Xiang, G.H., X.Y. Lin, Y.S. Zhang, and G. Zhou. 2004. Effects of fertilization on nitrate accumulation in vegetable crops. Chin. J. Soil Sci. 2: 217-221.
    Xin, X., J. Zhang, A. Zhu, and C. Zhang . 2016. Effects of long-term (23 years) mineral fertilizer and compost fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Tillage Res. 156: 166-172.
    Xiong, F., F. Feng, Y. Guo, C. Jia, C. Chen, and Y. Lu. 2014. Effects of mixed application of different functional bacteria and organic fertilizer on vegetable growth and fertility properties of latosolic red earch. Guangdong Agr. Sci. 24 (7): 67-70.
    Xiu, Li., W. Zhang, Y. Sun, D. Wu, J. Meng, and W. Chen. 2019. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years. Catena 173:481-793.
    Xu, J.M., C. Tang, and Z.L. Chen. 2006. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol. Biochem. 38: 709-719.
    Xu, Y., Y. Zou, A.M. Husaini, J. Zeng, L. Guan, Q. Liu, and W. Wu. 2011. Optimization of potassium for proper growth and physiological response of Houttuynia cordata Thunb. Environ. Exp. Bot. 71: 292-297.
    Xun, W., W. Xiong, T. Huang, W. Ran, D. Li, Q. Shen, Q. Lie, and R. Zhang. 2016. Swine manure and quicklime have different impacts on chemical properties and composition of bacterial communities of an acidic soil. Appl. Soil Ecol. 100: 38-44.
    Yang, Z., S. Zheng, J. Nie, Y. Liao, and J. Xie. 2014. Effects of long-term winter planted green manure on distribution and storage of organic carbon and nitrogen in water-stable aggregates of reddish paddy soil under a double-rice cropping system. J. Integr. Agr. 13 (8): 1772-1781.
    Yao, F. X., M. C. Arbestain, S. Virgel, F. Blanco, J. Arostegui, J. A. Macia-Agullo, and F. Macías. 2010. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere 80: 724- 732.
    Yinghua, D., et al. 2016. Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems. Sci. Rep. 6: 33611.
    Yoshizawa, S., Tanaka, and M. Othata. 2007. Proliferation effect of aerobic microorganisms during composting of rice bran by addition of biomass charcoal, in Proceedings of the International Agrichar Conference, Terrigal NSW, Australia, May 2007, p.26.
    Yu, B., H. Gong, Y. Liu. 1998. Effects of calcium on lipid composition and function of plasma membrane and tonoplast vesicles isolated from roots of barley seedlings under salt stress. J. Plant Nutr. 21: 1589-1600.
    Zhang, C., and F. Kong. 2014. Isolation and identification of potassium- solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl. Soil Ecol. 82: 18-25.
    Zhang, H.M., B.R. Wang, M.G. Xu, and T.L. Fan. 2009. Crop yield and soil responses to long-term fertilization on a red soil in Southern China. Pedosphere. 19 (2): 199-207.
    Zhang, L., J. Jiang, N. Holm, and F. Chen. 2014. Mini-chunk biochar supercapacitors. J. Appl. Electrochem. 10: 1145-1151.
    Zhao, D., K. Raja Reddy, V.G. Kakani, J.J. Read, and G.A. Carter. 2003. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil 257: 205-218.
    Zhao, Li., H. Nan, Y. Kan, Xi. Xu, H. Qiu, and Xi. Cao. 2019. Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent. Environ. Polluti. 254:113-143.
    Zheng, X.B., J.B. Fan, J. Zhou, and Y.Q. He. 2016. Effects of combined application of biogas slurry and chemical fertilizer on soil nutrients and peanut yield in upland red soil. Acta Pedol. Sin. 53: 675-684.
    Zhong, W., T. Gu, W. Wang, B. Zhang, X. Lin, Q. Huang, and W. Shen. 2010. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil. 326:511-522.
    Zörb, C., M. Senbayram, and E. Peiter. 2014. Potassium in agriculture–status and perspectives. J. Plant Physiol. 9: 656-669.
    Zuo, Y. and F. Zhang. 2009. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agronomy. 1:63-71.
    Zuo, Y.M. and F.S. Zhang. 2008. Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil. Plant Soil. 306, 23-36.
    Zuo, Y.M., F.S. Zhang, X.L. Li, and Y.P. Cao. 2000. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil. 220, 13-25.

    下載圖示
    QR CODE