簡易檢索 / 詳目顯示

研究生: 林倉億
Lin, TSang-Yi
論文名稱: 台灣原生闊葉樹種75種的光合作用性狀及其耐陰性
Photosynthetic Characteristics and Shade-tolerance of 75 Native Broadleaf Tree Species in Taiwan
指導教授: 郭耀綸
Kuo, Yao-Lun
學位類別: 碩士
Master
系所名稱: 農學院 - 森林系所
Department of Forestry
畢業學年度: 109
語文別: 中文
論文頁數: 49
中文關鍵詞: 暗呼吸率光補償點光合潛力耐陰性等級台灣原生樹種
外文關鍵詞: dark respiration, light compensation point, photosynthetic capacity, shade-tolerance level, Taiwan native tree species
DOI URL: http://doi.org/10.6346/NPUST202100039
相關次數: 點閱:19下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 瞭解樹種的耐陰性對苗木培育或造林樹種選擇都很重要。本研究目的為測定臺灣75種原生闊葉樹種的光合潛力、光飽和點、光補償點及暗呼吸率等4項生理參數,並藉各樹種光合潛力判斷其耐陰性等級,增加臺灣原生樹種的耐陰性資料庫。本研究於屏東科技大學森林系苗圃、達仁林場、林試所蓮華池及恆春研究中心測定75種臺灣原生闊葉樹種的光合作用性狀。供測樹種中包括台灣特有種19種,受脅類別分屬於極危、瀕危、易危者分別有5、6及9種。於雨季期間上午7:00至11:00以攜帶式光合作用測定系統(LI-6400)進行測定,測定時將CO2 濃度控制在400 μl L-1。研究結果發現,此75 樹種的光合潛力範圍在8.7~37.1 μmol CO2 m-2 s-1 之間;光飽和點在960~1860 μmol photon m-2s-1;光補償點分布在9.2~36.8 μmol photon m-2s-1 之間;暗呼吸率範圍在0.95~3.09 μmol CO2 m-2s-1。其中光合潛力最高者為蘭嶼鐵莧,最低者為早田氏柃木。此75樹種依據其光合潛力,參考Kuo and Yeh (2015)的分級標準,得知先驅樹種有6種,陽性樹種有12種,中等耐陰樹種21種,耐陰樹種21種,極耐陰樹種15種。供試樹種的光合潛力分別與光飽和點、光補償點或暗呼吸率間皆呈極顯著正相關,今後可藉較易測得的光補償點或暗呼吸率初步判斷其耐陰性等級。本研究也發現樹種的光補償點或暗呼吸率在乾、雨兩季間具有顯著差異。本研究新增臺灣原生闊葉樹種75 種的耐陰性名錄,可供育林、園林植栽、樹種空間配置、林下經濟應用樹種選擇之參考。

    Understanding the shade-tolerance of a tree species is critical for nursery practices and species selection in forestations. The objective of this study was to measure the photosynthetic capacity, light saturation point, light compensation point, and dark respiration of 75 native broadleaf tree species of Taiwan. Furthermore, the photosynthetic capacity would be used to determine the shade-tolerance level of each tree species and added valuable information to shade-tolerance database of Taiwan native tree species. The experiments were conducted in the nursery of Department of Forestry, National Pingtung University of Science and Technology, as well as in Tajen Experimental Forest Station, Lianhuachi and Hengchun Research Center of Taiwan Forestry Research Institute. In total, the photosynthetic characteristics of 75 tree species were measured. Among them, 19 species were endemic species of Taiwan, while 5, 6, and 9 species were Critically Endangered, Endangered, and Vulnerable species, respectively. From 7 to 11 am of each experimental day during the raining season, a LI-6400 portable photosynthesis system was employed to take the photosynthetic measurements of tested species with CO2 concentration maintained at 400 μl L-1. Results showed that, the photosynthetic capacity of the 75 species was in the range of 8.7 ~ 37.1 μmol CO2 m-2 s-1, light saturation point in the range of 960 ~ 1860 μmol photon m-2s-1, light compensation point in the range of 9.2 ~ 36.8 μmol photon m-2s-1, and dark respiration in the range of 0.95~3.09 μmol CO2 m-2s-1. Among them, Acalypha caturus had the highest while Eurya hayatae had the lowest photosynthetic capacity. According to the shade-tolerance classifying criteria by Kuo and Yeh (2015), there were 6 pioneer species, 12 shade intolerant species, 21 mid-tolerant species, 21 shade tolerant species, and 15 very shade tolerant species among the 75 tested species. The photosynthetic capacity of each tested species was positively correlated to light saturation point, light compensation point, and dark respiration, respectively. Thus, the more accessible measurements of light compensation point and dark respiration could be used to determine the shade-tolerance level of a species. This research also found that light compensation point or dark respiration of a species showed significant difference between dry and rainy season. The newly added data of shade-tolerance of these 75 native broadleaf tree species could serve as a reference for silvicultural practices, urban arboriculture, spatial allocation of tree species, and under-canopy economic use.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VII
    表目錄 VII
    壹、 前言 1
    貳、 文獻回顧 3
    一、 植物的光合作用性狀 3
    二、 陽葉與陰葉光合作用性狀的差異 3
    三、 乾季及雨季水分差異影響光合作用 4
    四、 樹種之耐陰性與演替位階的關係 4
    五、 判斷樹種耐陰性的方法 6
    參、 材料與方法 9
    一、 試驗地概述試 9
    二、 試驗樹種 9
    三、 供試樹種光合作用性狀測定 12
    四、 樹種間光合潛力、光飽和點、光補償點及暗呼吸率的相關性 14
    五、 同一樹種乾季與雨季光補償點及暗呼吸率測定 14
    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VII
    表目錄 VII
    壹、 前言 1
    貳、 文獻回顧 3
    一、 植物的光合作用性狀 3
    二、 陽葉與陰葉光合作用性狀的差異 3
    三、 乾季及雨季水分差異影響光合作用 4
    四、 樹種之耐陰性與演替位階的關係 4
    五、 判斷樹種耐陰性的方法 6
    參、 材料與方法 9
    一、 試驗地概述試 9
    二、 試驗樹種 9
    三、 供試樹種光合作用性狀測定 12
    四、 樹種間光合潛力、光飽和點、光補償點及暗呼吸率的相關性 14
    五、 同一樹種乾季與雨季光補償點及暗呼吸率測定 14

    肆、 結果 16
    一、 供試樹種的光合作用性狀 16
    (一) 先驅及陽性物種 16
    (二) 中等耐陰樹種 18
    (三) 耐陰樹種 18
    (四) 極耐陰樹種 21
    二、 同一樹種乾季與雨季光補償點及暗呼吸率之比較 22
    三、 供試樹種光合潛力、光飽和點、光補償點及暗呼吸率間之關係 23
    伍、 討論 25
    一、 樹種耐陰性分類 25
    二、 耐陰性與演替位階 26
    三、 以光補償點、光飽和點及暗呼吸率計算光合潛力之可行性 27
    四、 乾、雨季對光補償點及暗呼吸率的影響 30
    五、 最大淨光合作用率測定考量 31
    六、 預測種耐陰性 32
    七、 樹種耐陰等級的應用 33
    陸、 結論 35
    參考文獻 36
    附錄 43

    巫建成、林佑儒、柳婉郁 (2020) 林下經濟作物之成本效益評估。林業研究季刊 42(2): 105-118。
    林文智、郭耀綸 (2007) 山胡椒、光葉柃木及錐果櫟樹苗的生長與生理對不同光環境的反應。作物、環境與生物資訊 4: 297-306。
    胡元瑋、許俊凱、郭礎嘉、曾喜育、曾彥學 (2016) 台灣中部暖溫帶老齡常綠闊葉林的植群動態。林業研究季刊 38(3): 123-136。
    柯蓉靜 (2017) 藉葉綠素螢光技術判斷光合作用率達最大值之葉片。國立屏東科技大學森林系論文,50頁。
    陳盈如、顏佩翎、周富三、陳永修、葉辰影、陳育涵等 (2019) 高雄六龜山區臺灣山茶鮮葉之化學成分與抗氧化活性。中華林學季刊 52(3): 135-145。
    陳海琳 (2011) 臺灣原生闊葉樹種七十種之光合作用潛力研究。國立屏東科技大學森林系論文,44頁。
    翁曉燕、陸慶、蔣德安 (2001) 水稻Rubisco活化酶在調節Rubisco活性和光合日變化中的作用。中國水稻科學 15(1): 35-40。
    張善誌 (2013) 臺東縣達仁林場植群生態研究。國立屏東科技大學森林系論文,59頁。
    郭耀綸 (2000) 南仁山熱帶低地雨林白榕冠層及林下植物的光合作用。台灣林業科學 15(3): 351-363。
    郭耀綸、尤國霖、楊月玲、王相華 (2007) 颱風擾動對臺灣南部墾丁森林林下光量及六種樹苗生長的影響。臺灣林業科學 22(4): 367-380。
    郭耀綸、范開翔、黃慈薇、李彥屏、吳惠綸、蔡瑞芬 (2004) 臺灣三十種闊葉樹陽葉氣體交換潛力之研究。臺灣林業科學 19(4): 375-386。
    郭耀綸、楊月玲、吳祥鳴 (1999) 墾丁熱帶森林六種樹苗生長性狀及光合作用對光量的可塑性。臺灣林業科學 14(3): 255-273。
    楊宜穎 (2019) 藉光合作用性狀判斷30種臺灣原生闊葉樹種的耐陰性。國立屏東科技大學森林系論文,47頁。
    廖天賜、張安邦、翁仁憲 (2002) 遮陰對大葉楠與香楠苗木光合作用及生理之影響。林業研究季刊 24(1): 1-10。
    臺灣植物紅皮書編輯委員會 (2017) 2017臺灣維管束植物紅皮書名錄。行政院農業委員會特有生物研究保育中心、行政院農業委員會林務局、臺灣植物分類學會,192頁。
    薛崧、汪沛洪、許大全、李立人 (1992) 水分脅迫對冬小麥CO2 同化作用的影響。植物生理與分子生物學學報 18(1): 1-7。
    Björkman, O. (1981) Responses to different quantum flux densities. p.57-107 .In: Lange, O. L., P. S. Nobel, C. B. Osmond, and H. Zeigler (eds.) Physiological of Plant Ecology. Springer, New York.
    Chazdon, R. L., and N. Fetcher (1984) Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. Journal of Ecology 72: 553-564.
    Craine, J. M., and P. B. Reich (2005) Leaf-level light compensation points in shade-tolerant woody seedlings. The New Phytologist 166(3): 710-713.
    Craven, D., D. Dent, D. Braden, M. S. Ashton, G. P. Berlyn and J. S. Hall (2011) Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management 261(10): 1643-1653.
    Feng, J., K. Zhao, D. He, S. Fang, T. Lee, and C. Chu et al.(2018) Comparing shade tolerance measures of woody forest species. PeerJ 6: e5736.
    Goldstein, G., L. S. Santiago, P. I. Campanello, G. Avalos, Y. J. Zhang, and M. Villagra (2016) Facing shortage or excessive light: How tropical and subtropical trees adjust their photosynthetic behavior and life history traits to a dynamic forest environment. P.319-336 In: Goldstein, G., and , L. S. Santiago (eds.) Tropical Tree Physiology. Springer, Switzerland.
    Gravel, D., C. D. Canham, M. Beaudet, and C. Messier (2010) Shade-tolerance, canopy gaps and mechanisms of coexistence of forest trees. Oikos 119: 475-484.
    Guimarães, Z. T. M., V. A. H. F. Dos Santos, W. L. P. Nogueira, N. O de Almeida Martins, and M. J. Ferreira (2018) Leaf traits explaining the growth of tree species planted in a Central Amazonian disturbed area. Forest Ecology and Management 430: 618-628.
    He, P., I. J. Wright, S. Zhu, Y. Onoda, H. Liu, and R. Li et al. (2019) Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytologist: 223(2) 607-618.
    Hernández, G. G., K. Winter, and M. Slot (2020) Similar temperature dependence of photosynthetic parameters in sun and shade leaves of three tropical tree species. Tree Physiology 40(5): 637-651.
    Hieke, S. C., M. Menzel, and P. Ludders (2002) Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis). Tree Physiology 22(17): 1249-1256.
    Hu, W. H., X. H Yan, Y. A Xiao., J. J. Zeng., H. J. Qi., and J. O. Ogweno (2013) 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae 150: 232-237.
    Humbert, L., D. Gagnon, D. Kneeshaw, and C. Messier (2007) A shade tolerance index for common understory species for northeastern America. Ecological Indicators 7: 195-207.
    Janse‐Ten Klooster, S. H., E. J. Thomas, and F. J. Sterck (2007) Explaining interspecific differences in sapling growth and shade tolerance in temperate forests. Journal of Ecology 95(6): 1250-1260.
    Kenzo, T., Y. Inoue, M. Yoshimura, M. Yamashita, A. Tanaka-Oda, and T. Ichie (2015) Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia 177(1): 191-202.
    Kitajima, K. (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shaed tolerance of 13 tropical trees. Oecologia 98: 419-428.
    Kuo, Y. L., and C. L. Yeh (2015) Photosynthetic capacity and shade tolerance of 180 native broadleaf tree species in Taiwan. Taiwan Journal of Forest Science 30(4): 229-243.
    Lambers, H., and H. Poorter (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187-261.
    Lambers, H., F. S. Chapin, and T. L. Pons (1998) Plant Physiological Ecology. Spring-Verlag, New York. 540 pp.
    Larcher, W. (1995) Physiological Plant Ecology. Springer, Berlin. 506 pp
    Larcher, W. (2003) Physiological Plant Ecology. 4th edn. Springer, New York. 514 pp.
    Lienard J., I. Florescu, and N. Strigul (2015) An appraisal of the classic forest succession aradigm with the shade tolerance index. PLoS ONE 10(2): e0117138.
    Luo, Z., H. Guan, X. Zhang, and N. Liu (2017) Photosynthetic capacity of senescent leaves for a subtropical broadleaf deciduous tree species Liquidambar formosana Hance. Scientific reports 7(1): 1-9.
    Oliva, M. A., K. N. Kuki, M. S. Mielke, M. C. Ventrella, M. F. Galvão, and L. R. Pinto (2015) Key leaf traits indicative of photosynthetic plasticity in tropical tree species. Trees 29(1): 247-258.
    Olsen, R. T., J. M. Ruter, and M. W. Rieger (2002) Photosynthetic responses of container-grown Illicium L. taxa to sun and shade. Journal of the American Society for Horticultural Science 127(6): 919-924.
    Reich, P. B., I. J. Wright, J. Cavender-Bares, J. M. Craines, and J. Oleksyn et al. (2003) The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164: 143-164.
    Schulze, E. D., E. Beck, and K. M. Hohenstein (2005) Environment as stress factor: stress physiology of plants. p.702. In: Schulze, E. D. (ed.) Plant Ecology. Springer, USA.
    Shivashankara, K. S., and C. K. Mathai (2000) Inhibition of photosynthesis by flowering in mango (Mangifera indica). A study by gas exchange methods. Scientia horticulturae 83: 205-212.
    Smith, D. M., B. C. Larson, M. J. Kelty, and P. M. S. Ashton (1997) The Practice of Silviculture. (9th). John Wiley and Sons, New York. 537pp
    Swaine, M. D., and T. C. Whitmore (1988) On the definition of ecological species groups in tropical rain forests. Plant Ecology 75: 81-86.
    Vu, J. C. V., L. H. Allen, and G. Bowes (1987) Drought stress and elevated CO2 effects on soybean ribulose bisphosphate carboxylase activity and canopy photosynthetic rates. Plant Physiology 83(3): 573-578.
    Valladares, F., and Ü. Niinemets (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237-257.
    Whitmore, T. C. (1989) Canopy gaps and the two major groups of forest trees. Ecology 70(3): 536-538.
    Wiliam, K. S., T. C. Vogelmann, and C. Critchley (2004) Background and objectives. p.12 In: Wiliam, K. S., T. C. Vogelmann, and C. Critchley (eds.) Photosynthetic Adaptation-chloroplast to Landscape. Springer, New York.
    Yin, D. S., and H. L. Shen (2016) Shade tolerance and the adaptability of forest plants in morphology and physiology: A review. Chinese Journal of Applied Ecology 27(8): 2687-2698.
    Yu, Z. C., X. T. Zheng, W. Lin, M. L. Cai, Q. L. Zhang, and C. L. Peng (2020) Different photoprotection strategies for mid- and late-successional dominant tree species in a high-light environment in summer. Environmental and Experimental Botany 171: 103927.
    Zhang, S., K. Ma, and L. Chen (2003) Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environmental and Experimental Botany 49: 121-133.
    Zhang, Q., T. J. Zhang, W. S. Chow, X. Xie, Y. J. Chen, and C. L. Peng (2015) Photosynthetic characteristics and light energy conversions under different light environments in five tree species occupying dominant status at different stages of subtropical forest succession. Functional Plant Biology 42(7): 609-619.
    特有生物研究保育中心 (2019) 臺灣野生植物資料庫,http://plant.tesri.gov.tw/plant106/index.aspx

    下載圖示
    QR CODE