簡易檢索 / 詳目顯示

研究生: 羅莉
Rolissa Aleanor Ballantyne
論文名稱: 飼糧中蛋白質、胺基酸平衡與添加有機酸與否之交互作用對肉 雞生長性能及產熱之影響
Interactive Effect of Dietary Protein Level, Amino Acid Balance and Organic Acid Supplementation on Growth Performance, Digestibility and Heat Production of Broilers
指導教授: 夏良宙
Liang Chou Hsia
李嘉偉
Jai-Wei Lee
學位類別: 碩士
Master
系所名稱: 國際學院 - 熱帶農業暨國際合作系
Department of Tropical Agriculture and International Cooperation
畢業學年度: 109
語文別: 英文
論文頁數: 147
中文關鍵詞: 胺基酸有機酸精胺酸二氧化碳產熱量離胺酸甲烷
外文關鍵詞: amino acid, arginine, carbon-dioxide, heat production, lysine, methane, organic acid
DOI URL: http://doi.org/10.6346/NPUST202100045
相關次數: 點閱:30下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本試驗針對飼糧中蛋白質濃度、胺基酸平衡與否和添加有機酸對肉雞生長性能、消化率和產熱量之間的交互作用做了一系列試驗。試驗一旨在探討低蛋白飼糧(Crude protein, CP)中胺基酸平衡與否(Balanced amino acids, BAA/ Unbalanced amino acids, UBAA)對肉雞之影響。處理組為UBAA之組別及額外添加0.13% 離胺酸、0.29% 甲硫胺酸、0.10% 羥丁胺酸維持平衡之BAA組別。生長性能的資料收集包括平均日增重(Average daily gain, ADG)、平均日攝食量(Average daily feed intake, ADFI)以及飼料效率(Feed efficiency, FE,飼料/體增重)。結果顯示,各處理組的平均日攝食量均無顯著差異(P> 0.05)。對照組的ADG顯著低於BAA組(P< 0.001)。 組別之間的CP消化率、能量利用及FE均有差異顯著(P< 0.01)平衡胺基酸組別的肉雞產熱量顯著低於不平衡胺基酸組別(P< 0.05)。
    試驗二旨在探討BAA、UBAA和混合酸(Organic acid, OA)配製的高CP和低CP飼糧之間的交互作用。試驗二亦探討了在低CP的情況下,有機酸能否增強消化率並達到最佳性能。此試驗共用96隻一日齡雛肉雞並以(2 x 2 x 2)多因子設計逢機分配為CP組(高或低)、AA組(BAA或UBAA)以及OA組別(有或無)。結果指出,高CP組的ADFI、ADG及FE均顯著高於低CP組 (P<0.001) 。BAA組顯著改善攝食量(P< 0.01)、ADG和FE(P< 0.001)。飼料中添加有機酸的組別攝食量和ADG均比未添加有機酸的組別較高的趨勢,但未達到顯著性(P> 0.05)。此外,CP 與 AA組別間存在顯著性的(P< 0.001)交互作用,飼糧中低CP 與 BAA組別顯著提升ADFI、ADG與FE。當肉雞處理組為高CP 與 BAA飼糧時,ADFI有降低之趨勢。另外,AA和OA之間的相互作用代表了BAA x OA的處理改善了肉雞的生產性能。低CP 並添加有機酸組會比UBAA組別得到更好的生長性能。 餵飼低CP和BAA組別對礦物質的消化率顯著高於(P< 0.001)其他組別。BAA組對磷、鎂、鈣、鉀和錳的消化率顯著高於UBAA組(P< 0.001)。有機酸顯然能改善部分礦物質的消化率。本研究結果表明,AA與低CP的結合為肉雞所提供的營養與CP飼料無異。此外,飼料添加有機酸會在飼料中含有BAA和高CP的情況下更有助益。不僅能提升肉雞消化營養的能力,亦能改善生長性能。
    試驗三測定不同濃度之離胺酸及精胺酸對肉雞生產性能和產熱量(Heat production, HP)交互作用的影響。本試驗配方為18.2% 的CP搭配三種不同濃度的離胺酸和精胺酸。十隻成熟的肉雞以3 x 3多因子設計分別給予不同比列之離胺酸和精胺酸。離胺酸含量分別爲低(0.99%)、中(1.10%)和高(1.21%);精胺酸含量分別為低(1.207%)、中(1.327%)和高(1.448%)。測定項目為ADFI,ADG和FE。二氧化碳(CO2)與甲烷(CH4)的產熱量(HP)在24小時内測定的數值。結果表明,在不同的生長階段飼餵不同濃度的離胺酸和精胺酸對肉雞的生產性能有影響。較高的離胺酸濃度可顯著提高(P< 0.001)ADFI、ADG和FE。反之,在二週齡飼餵高含量精胺酸將顯著降低ADFI和ADG(P< 0.01)。此趨勢在整個實驗中保持一致。飼餵高濃度精胺酸搭配中等濃度離胺酸以及中等濃度精胺酸搭配高濃度離胺酸均能顯著提升攝食量、ADG和FE。另一方面,高濃度精胺酸搭配高濃度離胺酸以及高濃度精胺酸搭配低濃度離胺酸會產生拮抗作用,進而對肉雞的整體性能產生負面影響。
    試驗結果顯示中等與高含量離胺酸可以提升肉雞的生長性能。CO2的產生會在高濃度離胺酸搭配高濃度精胺酸的情況下顯著提升(P< 0.01)。CH4在不同離胺酸及精胺酸比例下並無顯著影響。此外,HP會隨著離胺酸濃度增加有所提升。結果進一步表明,CO2產量在夜間和清晨(18:00-6:00)有顯著增加(P< 0.001)後,HP也隨著增加。從上午6:00至中午12:00,CO2產量顯著下降(P< 0.001)。結果表明,較高濃度離胺及精胺酸會提升CO2和HP。一天中不同時間點亦會影響肉雞產生的熱量和氣體的總產量。離胺酸及精胺酸間的相互作用對CO2有顯著性影響且能提升HP(P< 0.001)。因此,飼料中提供平衡胺基酸可以改善肉雞的生產性能及減少溫室氣體的排放。

    A series of experiments were conducted to determine the interactive effect of dietary protein level, amino acid balance and organic acid supplementation on growth performance, digestibility and heat production of broilers. The effects of low dietary crude protein (CP) level with balanced amino acids (BAA) and unbalanced amino acids (UBAA) were first evaluated. Two dietary treatments included: a control group with an UBAA profile; and a treatment group with a BAA profile containing, Lys (0.13%), methionine (Met) (0.29%) and threonine (Thr) (0.10 %). Performance parameters included average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (FE, feed/gain). The results indicated that there was no significant (P>0.05) difference in ADFI for birds fed both diets. However, broilers fed the UBAA diet had a significantly lower ADG (P<0.001) than broilers fed the BAA diet. Digestibility of CP, energy utilization and FE were significantly different (P<0.01). Broilers had significantly lower (P<0.05) heat production in the low protein diet balanced with amino acids.
    The second experiment, investigated the interaction between high and low CP diets formulated with BAA, UBAA, and organic acid (OA). The experiment further aimed to determine whether acid can enhance digestibility and attain optimum performance at reduced CP levels. A total of 96 day-old broiler chickens were randomly assigned to CP levels (high and low), AA levels (BAA and UBAA), and OA levels (with and without) in a 2 x 2 x 2 factorial arrangement. Results showed that high CP levels significantly increased ADFI, ADG, and improved FE (P<0.001) rather than LCP diets. Balanced amino acids improved feed intake (P<0.01), ADG, and FE (P<0.001). Higher feed intake and ADG was observed when organic acid was supplemented in the diet but not significant when compared to diets without organic acid treatment (P>0.05).
    A significant (P<0.001) interaction between CP x AA levels was observed, whereby, LCP x BAA increased ADFI, ADG and FE. The ADFI was subsequently reduced when broilers consumed HCP x BAA diets. Furthermore, the interaction between AA and OA indicated that BAA x OA improved the productive performance of broilers. Similarly, HCP x OA enhanced the performance of broilers compared to broilers fed LCP x OA and UBAA x OA diets. Digestibility of mineral compounds were significant higher (P<0.001) for diets of LCP and BAA. In the BAA treatment, the digestibility of P, Mg, Ca, K, and Mn was significantly higher (P<0.001) in comparison to the UBAA treatment. Organic acid supplementation improved the digestibility of some mineral compounds. The present findings indicate that balancing AA to a low CP diet can provide broilers with an equivalent supply of nutrients similar to a HCP diet to achieve optimum performance. Moreover, dietary OA supplementation is seemingly more effective in diets containing BAA and HCP, thus enhancing broilers' ability to digest nutrients, and improve their growth performance.
    The final experiment was conducted to determine the effects of different dietary lysine, arginine level and amino acid balance on broilers performance and heat production (HP). The experiment was based on diets formulated with three levels of lysine and arginine with a fixed concentration of 18.2 % crude protein (CP). A total of ten mature broilers were assigned to dietary treatments of different lysine and arginine ratios in a 3 x 3 factorial design. The diets included lysine: low (0.99%), medium (1.10%) and high (1.21%); and arginine: low (1.207%), medium (1.327%) and high (1.448%), respectively. The analyzed parameters for performance were ADFI, ADG, and FE. Carbon dioxide (CO2), methane (CH4) heat production (HP) were measured over 24 hours. Results indicated a variation in the performance of broilers fed different concentrations of lysine and arginine at different growth stages. A higher concentration of lysine significantly (P<0.001) increased ADFI, ADG, and improved FE. Conversely, broilers fed diets containing high arginine concentrations had a significantly lower (P<0.01) ADFI and ADG at week 2 which remained consistent throughout the experiment. Broilers fed high Arg x medium Lys; and medium Arg x high Lys had a significantly higher feed intake, ADG, and improved FE. On the other hand, the interaction between high Lys x high Arg; and high Arg x low Lys diets resulted in antagonism, which negatively affected the overall performance of broilers.
    The results suggest that the dietary supply of lysine in medium and high ratios can optimize broilers' growth performance. Carbon dioxide production was significant (P<0.01) in the higher lysine and arginine concentrations. There was no significant impact for CH4 production at the different lysine and arginine ratios. Increasing the lysine concentrations concurrently increased the HP. Results further revealed that the production CO2 was significantly (P<0.001) higher during the night time and early morning (18:00-6:00), followed by increased HP. The CO2 levels tended to decrease significantly (P<0.001) from 6:00-12:00 noon. The results demonstrate that higher concentrations of lysine and arginine increase CO2 and HP, and the time of day influenced the total production of heat and gas emitted by broilers. The interaction between lysine x arginine ratios was significantly different (P<0.001) for CO2 and higher HP. Therefore, the balancing of amino acids can improve broiler performance and produce less GHG emissions, rather than unbalanced amino acid diets.

    摘要 I
    Abstract IV
    ACKNOWLEDGMENTS VIII
    LIST OF TABLES XV
    LIST OF FIGURES XVIII
    LIST OF ABBREVIATIONS XX
    CHAPTER 1 1
    1. Introduction 1
    1.1 Background 1
    1.2 Research Objectives 4
    CHAPTER 2 6
    2. Literature Review 6
    2.1. Amino acids 6
    2.1.1 Functional amino acids 6
    2.2 Amino acid requirement in broiler nutrition 6
    2.2.1 Importance of amino acids in broiler 7
    2.2.2 Amino acids and protein accretion 7
    2.2.3 Amino acids as antioxidants 8
    2.3 The ideal protein concept 9
    2.4 Interactions among amino acids 10
    2.4.1 Amino acid deficiency 10
    2.4.2 Imbalance effect in broilers 11
    2.4.3 Antagonism of amino acid 11
    2.4.4 Lysine and Arginine 12
    2.5 Interaction of Energy and Amino Acids 14
    2.5.1 Impact of feed intake and body composition 14
    2.6 Interaction between protein levels and amino acid 16
    2.6.1 High Protein and Amino Acids 16
    2.6.2 Low protein and amino acids 17
    2.7 Factors affecting the digestibility of amino acid 19
    2.7.1 Feed Intake and Digestibility of amino acids 19
    2.7.2 Age of broilers 19
    2.7.3 Sex and Environmental Temperature 20
    2.7.4 Plasma Amino Acids Impact on Feed Intake 20
    2.7.5 Heat stress 21
    2.7.6 Protein sources 22
    2.7.7 Feed Processing Technique 23
    2.8 Improving the digestibility of broilers 24
    2.8.1 Organic acids supplementation 24
    2.8.2 Phytase supplementation 25
    2.9 Theromoneutral zone for broilers 26
    2.9.1 Amino acids and the thermal environment 27
    2.10. Heat production and its effect on feed intake 28
    2.10.1 Heat production and amino acids 29
    2.10.2 Heat production and energy level 30
    2.11 Reduction of Nitrogen Excretion 31
    CHAPTER 3 33
    3.1 Introduction 34
    3.1.1 Objectives 35
    3.2 Materials and Methods 35
    3.2.1 Location 35
    3.2.2 Experimental animals 35
    3.2.3 Experimental Diet 35
    3.2.4 Housing and management 36
    3.2.5 Chemical analysis 36
    3.2.6 Determination of Dry Matter 36
    3.2.7 Determination of Ash 36
    3.2.8 Determination of Crude Protein 37
    3.2.9 Determination of Macro and Micro Minerals 38
    3.2.10 Statistical Analysis 39
    3.3 Results and Discussion 41
    3.5 Conclusion 47
    CHAPTER 4 48
    4. Interaction Between Dietary Protein Level, Amino Acid Balance and Organic Acid Supplementation on Growth Performance of Broilers 48
    4.1 Introduction 49
    4.2. Objectives 50
    4.3 Materials and Methods 51
    4.3.1 Location 51
    4.3.2 Experimental animals 51
    4.3.3 Experimental Diet 51
    4.3.4 Housing and management 51
    4.3.5 Chemical analysis 52
    4.3.6 Determination of Dry Matter and Ash 52
    4.3.7 Determination of Ash 52
    4.3.8 Determination of Crude Protein 52
    4.3.9 Statistical Analysis 53
    4.4 Results and Discussion 57
    4.5 Conclusions 83
    CHAPTER 5 84
    5. Interactions and effects between different lysine and arginine densities on growth performance and heat production of broilers 84
    5.1 Introduction 86
    5.1.1 Objectives 86
    5.2.2 Materials and Methods 87
    5.2.3 Location 87
    5.2.4 Experimental animals 87
    5.2.5 Experimental Diet 87
    5.2.6 Housing and management 87
    5.2.7 Chemical analysis 88
    5.2.8 Determination of Dry Matter and Ash 88
    5.2.9 Determination of Ash 88
    5.2.10 Determination of Crude Protein 88
    5.2.11 Statistical Analysis 89
    5.3 Results and Discussion 93
    5.4 Conclusion 112
    REFERENCES 113
    APPENDICES 134

    1. Abayomi, O.O., A.O. Ruth, M.S. Bala, and M.F. Twibi. 2016. A Multi-Criteria Proximal Bundle-based Optimization Approach to Chick-Mash Feed Formulation. Research & Reviews: Journal of Agriculture and Allied Sciences, 5 (1):26-33.
    2. Abd El-Hack, M., M. Alagawany, M. Arif, M. Emam, M. Saeed, M.A Arain, F.A. Siyal, A. Patra, S. S. Elnesr, and R.U. Khan. 2018. The Uses of Microbial Phytase as A Feed Additive in Poultry Nutrition – A Review. Annals of Animal Science, 18 (3): 639-658.
    1. Abdel-Fattah, S.A., M.H. EI-Sanhoury, N.M. EI-Mednay and F. Abdel-Azeem. 2008. Thyroid activity of broiler chicks fed supplemental organic acids. International Journal of Poultry Science, 7 (3) :215–222.
    3. Abdel-Maksoud, A., F. Yan, S. Cerrate, C. Coto, Z. Wang, and P.W. Waldroup. 2010. Effect of Dietary Crude Protein, Lysine Level and Amino Acid Balance on Performance of Broilers 0 to 18 Days of Age. International Journal of Poultry Science, 9 (1): 21-27.
    4. Adedokun, S. A., O. Adeola, C. M. Parsons, M. S. Lilburn, and T. J. Applegate. 2008. Standardized Ileal Amino Acid Digestibility of Plant Feedstuffs in Broiler Chickens and Turkey Poults Using a Nitrogen-Free or Casein Diet. Poultry Science, 87 (12): 2535-2548.
    2. Adil, S., T. Banday, G. A. Bhat, M. S. Mir and M. Rehman. 2010. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Veterinary Medicine International, 2010, 479485.
    3. Afsharmanesh M, and J. Pourreza. 2005. Effect of calcium, citric acid, ascorbic acid, vitamin D3 on the efficacy of microbial phytase in broiler starters fed wheat-based diets on performance, bone mineralization and ileal digestibility. International Journal of Poultry Science, 4 (6):418–424.
    5. Afsharmanesh, M. and J. Pourreza. 2005. Effects of Calcium, Citric Acid, Ascorbic Acid, Vitamin D3 on the Efficacy of Microbial Phytase in Broiler Starters Fed Wheat-Based Diets I. Performance, Bone Mineralization and Ileal Digestibility. International Journal of Poultry Science, 4 (6): 418-424.
    6. Aftab, U., M. Ashraf and Z. Jiang. 2006. Low protein diets for broilers. World’s Poultry Science Journal, 62 (4): 688-701.
    7. Aletor, V.A., I.I. Hamid, E. Nieb, and E. Pfeffer. 2000. Low-Protein Amino Acid-Supplemented Diets in Broiler Chickens: Effects on Performance, Carcass Characteristics, Whole-Body Composition and Efficiencies of Nutrient. Journal of the Science of Food and Agriculture, 80 (5): 547-554.
    8. Ao, Z., A. Kocher, and M. Choct. 2012. Effects of Dietary Additives and Early Feeding on Performance, Gut Development and Immune Status of Broiler Chickens Challenged with Clostridium perfringens. Asian-Australasian Journal of Animal Sciences, 25 (4): 541-551.
    9. Applegate, T.J. Factors Affecting Feed Intake – What do we know? In: Proceeding of the Arkansas. Nutrition Conference. The Poultry Federation; Rogers, Arkansas, USA. 2012.
    10. Applegate, T.J., and R. Angel. 2008. Protein and Amino Acid Requirements for Poultry Feed Management. Purdue University Roselina Angel – University of Maryland, College Park.
    11. Austic, R. E, and M. C. 1971. Nesheim. Arginine, Ornithine and Proline Metabolism of Chicks: Influence of Diet and Heredity. Journal of Nutrition 101(10): 1403-1413.
    12. Austic, R.E. and R.L. Scott. 1975. Involvement of Food Intake in the Lysine-Arginine Antagonism in Chicks. Journal of Nutrition, 105 (9): 1122-1131.
    13. Baker D.H., D.E. Becker, H.W. Norton, A.H. Jensen, and B.G. Harmon. 1969. Lysine imbalance of corn protein in the growing pig. Journal of Animal Science, 28 (1): 23-26.
    14. Baker, D.H. 2009. Advances in Protein-Amino Acid Nutrition of Poultry. Amino Acids, 37 (1):29-41.
    15. Baker, D.H., and Y. Han. 1994. Ideal Amino Acid Profile for Chicks During the First Three Weeks Post-hatching. Poultry Science, 73 (9): 1441-1447.
    16. Balnave, D., and Barke, J. 2002. Re-Evaluation of the Classical Dietary Arginine:Lysine Interaction for Modern Poultry Diets: A Review. World's Poultry Science Journal, 58 (3): 275-289.
    17. Bautista-Ortega, J., and C. A. Ruiz-Feria. 2010. L-arginine and Antioxidant Vitamins E and C Improve the Cardiovascular Performance of Broiler Chickens Grown under Chronic Hypobaric Hypoxia. Poultry Science. 89 (10): 2141-2146.
    18. Belloir, P., B. Méda, W. Lambert, E. Corrent, H. Juin, M. Lessire, and S. Tesseraud. 2017. Reducing the CP Content in Broiler Feeds: Impact on Animal Performance, Meat Quality and Nitrogen Utilization. Animal: An International Journal of Animal Bioscience, 11 (11): 1881-1889.
    19. Bergeron, A. N., J.W. Boney, and J. S. Moritz. 2018. The Effects of Diet Formulation and Thermal Processes Associated with Pelleting on 18-Day Broiler Performance and Digestible Amino Acid Concentration. Journal of Applied Poultry Research, 27(4): 540-549.
    20. Beski, S.S., R.A. Swick, and P.A. Iji. 2015. Specialized Protein Products in Broiler Chicken Nutrition: A Review. Animal Nutrition, 1 (2): 47 – 53.
    21. Bol, S., and E.M. Bunnik. 2015. Lysine Supplementation is not Effective for the Prevention or Treatment of Feline Herpesvirus 1 Infection in Cats: A Systematic Review. BMC Veterinary Research,11(284):1-14.
    22. Boorman, K. N. 1971. The Renal Reabsorption of Arginine, Lysine and Ornithine in the Young Cockerel (Callus domesticas). Comparative Biochemistry and Physiology Part A: Physiology, 39(1): 29–38.
    23. Borges, S.A., A. V., Fischer da Silva, and A. Maiorka. Acid-Base Balance in Broilers. Worlds Poultry Science Journal, 63 (1): 73-81.
    24. Bregendahl, K., J.L. Sell and D.R. Zimmerman. 2002. Effect of Low-Protein Diets on Growth Performance and Body Composition of Broiler Chicks. Poultry Science, 81 (8): 1156-1167.
    25. Bryden, W.L., and X. Li. 2010. Amino Acid Digestibility and Poultry Feed Formulation: Expression, Limitations and Application. Revista Brasileira De Zootecnia, 39 (Supp.): 279-287.
    26. Brzoska, F, B. Sliwinski, and O. Michalik-Rutkowska. 2013. Effect of Dietary Acidifier on Growth, Mortality, Post-Slaughter Parameters and Meat Composition of Broiler Chickens. Annals of Animal Science, 13(1): 85-96.
    27. Bungo T., J. Shiraishi, and S. Kawakami. 2011. Hypothalamic Melanocortin System on Feeding Regulation in Birds: A Review. Journal of Poultry Science. 48 (1):1-13.
    4. Carew, L.B., K. G. Evarts, and F. A. Alster, 1997. Growth and plasma thyroid hormone concentrations of chicks fed diet deficient in essential amino acids, Poultry Science, 76 (10):1398–1404.
    5. Chowdhury, R., K. M. Islam, M.J. Khan, M.R. Karim, M.N. Haque, M. Khatun, and G.M Pesti. 2009. Effect of citric acid, avilamycin, and their combination on the performance, tibia ash, and immune status of broilers. Poultry science, 88 (8): 1616–1622.
    28. Cloft, S.E., S.J. Rochell, K.S. Macklin, and W.A. Dozier. 2019. Effects of Pre-starter and Starter Diets Varying in Amino Acid Density given to Broiler Chickens that Received Coccidiosis Vaccination at Hatch. Poultry Science, 98 (10): 4878-4888.
    29. D’Mello, J.P.F. 1994. Responses of Growing Poultry to Amino Acids. Pages, 205–244. In: D’mello, J.P.F. (Ed.) Amino Acids in Farm Animal Nutrition. Cab International, Wallingford, Uk.
    30. Dari, R.L., A.M. Penz Jr., A.M. Kessler and H.C. Jost. 2005. Use of Digestible Amino Acids and the Concept of Ideal Protein in Feed Formulation for Broilers. Journal of Applied Poultry Research, 14: 195‒203.
    31. De Souza, L.F., L.P. Espinha, E. A. Almeida, R. Lunedo, R. L. Furlan, and M. Macari. 2016. How Heat Stress (Continuous or Cyclical) Interferes with Nutrient Digestibility, Energy and Nitrogen Balances and Performance in Broilers. Livestock Science, 192:39–43.
    32. Dehghani-Tafti, N., and R. Jahanian. 2016. Effect of Supplemental Organic Acids on Performance, Carcass Characteristics, and Serum Biochemical Metabolites in Broilers Fed Diets Containing Different Crude Protein Levels. Animal Feed Science and Technology, 211 (1): 109-116.
    33. Deschepper, K., G. De Groote. 1995. Effect of Dietary Protein, Essential and Non-Essential Amino Acids on the Performance and Carcase Composition of Male Broiler Chickens. British Poultry Science. 36 (2):229-245.
    34. Dittoe, D.K., S.C. Ricke and A.S. Kiess. 2018. Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease. Frontiers in Veterinary Science, 5: 216.
    35. D'Mello, J.P.F. 2003. Amino Acids in Animal Nutrition (2nd Edition), CABI Press, London, UK.
    36. D'Mello, J.P.F. and D. Lewis. 1970. Amino Acid Interactions in Chick Nutrition. 1. The Interrelationship Between Lysine and Arginine. British Poultry Science 11(3): 299–311.
    37. Dorigam, J. C. P., N. K. Sakomura, A. Sünder, C. Wecke. 2015. A Comparison of Two Approaches for Determining the Optimum Dietary Amino Acid Ratios of Fast-Growing Broilers. In: Nutritional Modelling for Pig and Poultry, Volume 1, pages, 283-296. Wallingford, UK: CAB International.
    38. Doumit, M.E. D.R. Cook, and R.A. Merkel. 1993. Fibroblast Growth Factor, Epidermal Growth Factor, Insulin-Like Growth Factors, and Platelet-Derived Growth Factor-BB Stimulate Proliferation of Clonally Derived Porcine Myogenic Satellite Cells. Journal of Cellular Physiology, 157 (2):326-332.
    39. Dozier III, W. A., C. J. Price, M. T. Kidd, A. Corzo, J. Anderson, and S. L. Branton. 2006. Growth Performance, Meat Yield, and Economics of Broilers Fed Diets Varying in Metabolizable Energy from Thirty to Fifty-Nine Days of Age. Journal of Applied Poultry Research, 15 (3): 367-382.
    40. Dozier, W.A. III, C.J. Price, M.T. Kidd, A. Corzo, J. Anderson, and S.L. Branton. 2006. Growth Performance, Meat Yield, and Economic Responses of Broilers Fed Diets Varying in Metabolizable Energy from Thirty to Fifty-Nine Days of Age. Journal of Applied Poultry Research. 15:367-382.
    41. Dozier, W.A. III, M.T. Kidd, and A. Corzo. 2008. Dietary Amino Acid Responses of Broiler Chickens. Journal of Applied Poultry Research, 17 (1): 157-167.
    42. Drew, M.D., N.A. Syed, B.G. Goldade, B. Laarveld, A.G. Van Kessel. 2004. Effects of Dietary Protein Source and Level on Intestinal Populations of Clostridium perfringens in Broiler Chickens. Poultry Science, 83 (3): 414-420.
    43. Emami, N.K., A. Golian, D.D. Rhoads, and M.D. Mesgaran. 2017. Interactive Effects of Temperature and Dietary Supplementation of Arginine or Guanidinoacetic Acid on Nutritional and Physiological Responses in Male Broiler Chickens. British Poultry Science, 58(1): 87 - 94.
    44. Emmert, J. L., and D. H. Baker. 1997. Use of the Ideal Protein Concept for Precision Formulation of Amino Acid Levels in Broiler Diets. Journal of Applied Poultry Research, 6 (4): 462-470.
    45. Filho, D.F., P. Rosa, B.S. Vieira, M. Macari, and R.L. Furlan. 2005. Protein Levels and Environmental Temperature Effects on Carcass Characteristics, Performance, and Nitrogen Excretion of Broiler Chickens from 7 to 21 Days of Age. Revista Brasileira de Ciência Avícola, 7 (4): 247-253.
    46. Fleck, A. 1980. Protein Metabolism after Surgery. Proceedings of the Nutrition Society, 39(2): 125-132.
    47. Furlan, R.L., D.E. de, Faria Filho, P.S., Rosa, and M. Macari. 2004. Does Low-Protein Diet Improve Broiler Performance Under Heat Stress Conditions? Brazilian Journal of Poultry Science, 6 (2), 71-79.
    48. Garriga, C. R., R. Hunter, C. Amat, J.M. Planas, M.A. Mitchell, and M. Moretó, 2006. Heat Stress Increases Apical Glucose Transport in the Chicken Jejunum. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290 (1): 195-201.
    49. Geraert, P. A., J. C. F. Padilha, and S. Guillaumin. 1996. Metabolic and Endocrine Changes Induced by Chronic Heat Exposure in Broiler Chickens: Growth Performance, Body Composition and Energy Retention. British Journal of Nutrition, 75:195–204.
    50. Gheisari, A. A., M. Heidari, R. K. Kermanshahi, M. Togani, S. Saraeian. 2007. Effect of Dietary Supplementation of Protected Organic Acids on Ileal Microflora and Protein Digestibility in Broiler Chickens. Pages 519–522. In: Proceedings of the 16th European Symposium on Poultry Nutrition. Strasbourg, France.
    51. Gheisari, H.R., K. Asasi, I. Mostafa and E. Mohsenifard. 2015. Effect of Different Levels of Dietary Crude Protein on Growth Performance, Body Composition of Broiler Chicken and Low Protein Diet in Broiler Chicken. International Journal of Poultry Science, 14 (5): 285-292.
    52. Giannenas, I., C.P. Papaneophytou, E. Tsalie, I. Pappas, E. Triantafillou, D.Tontis, and G. Kontopidis. 2014. Dietary Supplementation of Benzoic Acid and Essential Oil Compounds Affects Buffering Capacity of the Feeds, Performance of Turkey Poults and their Antioxidant Status, pH in the Digestive Tract, Intestinal Microbiota and Morphology. Asian-Australasian Journal of Animal Sciences, 27(2): 225 - 236.
    53. Gous, R. M. and T. R. Morris. 2005. Nutritional Intervention in Alleviating the Effects of High Temperature in Broiler Production. World Poultry Science. 61 (3): 463-475.
    54. Greco, E., A. Winquist, T.J. Lee, S. Collins, Z. Lebovic, T. Zerbe-Kessinger, and A.J. Mihan. 2017. The Role of Source of Protein in Regulation of Food Intake, Satiety, Body Weight and Body Composition. Journal of Nutritional Health & Food Engineering, 6 (6): 186-193.
    55. Greco, E., A., Winquist, T.J. Lee, S. Collins, Z. Lebovic, T. Zerbe-Kessinger, and A.J. Mihan, A.J. 2017. The Role of Source of Protein in Regulation of Food Intake, Satiety, Body Weight and Body Composition. Journal of Nutritional Health & Food Engineering, 6 (6):186-193.
    56. Guillaume, J. and J. D. Summers. 1970. Influence of Amino Acid Excess on Energy Utilization in the Growing Chick. Canadian Journal of Animal Science, 50 (2): 355-362.
    57. Harper A. E. (1958). Balance and Imbalance of Amino Acids. Annals of the New York Academy of Sciences, 69 (5), 1025–1041.
    58. Harper, A. E. 1956. Amino Acid Imbalances, Toxicities and Antagonisms. Nutrition Reviews, 14 (8):225-227.
    59. Harper, A. E., N.J. Benevenga, and R. M. Wohlhueter. (1970). Effects of Ingestion of Disproportionate Amounts of Amino Acids. Physiological Reviews, 50(3), 428–558.
    60. Harrison, P. C, and H. V. Biellier, 1969. Physiological Response of Domestic Fowl to Abrupt Changes of Ambient Air Temperature. Poultry Science. 48 (3): 1034-1045.
    61. Havenstein, G.B., P.R. Ferket, and M.A. Qureshi. 2003. Growth, Livability, and Feed Conversion of 1957 versus 2001 Broilers when Fed Representative 1957 and 2001 Broiler Diets. Poultry Science, 82 (10) 1500-1508.
    62. Heat Stress in Poultry-Solving the Problem. DEFRA (Department for Environment Food and Rural Affairs, UK) 2005. Retrieved on Aug. 8, 2019, from the World Wide Web: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69373/pb10543-heat-stress-050330.pdf
    63. Henry, Y., B. Seve, Y. Colleaux, P. Gainer, C. Saligault, and P. Jego. 1992. Interactive Effects of Dietary Levels of Tryptophan and Protein on Voluntary Feed Intake and Growth Performance in Pigs, in Relation to Plasma Amino Acids and Hypothalamic Serotonin. Journal of Animal Science. 70 (6):1873–1887.
    6. Hernández, F., V. García, J. Madrid, J. Orengo, P. Catalá, and M.D. Megías. 2006. Effect of formic acid on performance, digestibility, intestinal histomorphology and plasma metabolite levels of broiler chickens. British Poultry Science, 47(1): 50–56.
    7. Hilliar, M., G. Hargreave, C.K. Girish, R. Barekatain, S.-B. Wu, and R.A. Swick. 2020. Using crystalline amino acids to supplement broiler chicken requirements in reduced protein diets, Poultry Science, 99 (3): 1551-1563.
    64. Hott, J. M., N. P. Buchanan, S. E. Cutlip, and J. S. Moritz. 2008. The Effect of Moisture Addition with a Mold Inhibitor on Pellet Quality, Feed Manufacture, and Broiler Performance. Journal of Applied Poultry Research, 17 (2):262–271.
    65. Ishihbashi, T. and Y. Ohta. 1999. Recent Advances in Amino Acid Nutrition for Efficient Poultry Production – Review. Animal Science, 12 (8): 1298-1309.
    8. Johnson, C.A., T. Duong, R.E. Latham, R.B. Shirley, and J.T. Lee. 2020. Increasing amino acid density improves growth performance and processing yield in Cobb 700 × MV broilers, Journal of Applied Poultry Research, 29 (2): 465-478.
    66. Jones, J.D. 1964. Lysine-Arginine Antagonism in the Chick. Journal of Nutrition, 84 (4): 313–321.
    67. Jones, J.D., S.J. Petersburg, and P.C. Burnett. 1967. The Mechanism of the Lysine-Arginine Antagonism in The Chick: Effect of Lysine on Digestion, Kidney Arginase and Liver Transaminase. The Journal of nutrition, 93(1): 103–116.
    68. Keerqin. C., S. B. Wu, B. Svihus, R. Swick, N. Morgan, and M. Choct. 2017. An Early Feeding Regime and A High-Density Amino Acid Diet on Growth Performance of Broilers Under Subclinical Necrotic Enteritis Challenge. Animal Nutrition, 3 (1): 25-32.
    69. Keshavarz, K. 1997. Investigations on the use of low-protein, amino acid-supplemented diets for poultry. Pages, 155-163. Proceedings of the Cornell Nutrition Conference, Rochester, NY.
    70. Khajali, F., and R.F. Wideman, 2010. Dietary Arginine:Metabolic, Environmental, Immunological and Physiological Interrelationships. World’s Poultry Science Journal, 66 (4): 751-766.
    71. Khakpour Irani, F., M. Daneshyar, and R. Najafi. 2015. Growth and Antioxidant Status of Broilers Fed Supplemental Lysine and Pyridoxine under High Ambient Temperature. Veterinary Research Forum: An International Quarterly Journal, 6(2): 161–165.
    72. Khan, S.H. and J. Iqbal. 2016. Recent Advances in the Role of Organic Acids in Poultry Nutrition. Journal of Applied Animal Research, 44 (1): 359-369.
    73. Kheiri, F. and M. Alibeyghi. 2017. Effect of Different Levels of Lysine and Threonine on Carcass Characteristics, Intestinal Microflora and Growth Performance of Broiler Chicks. Italian Journal of Animal Science, 16 (4): 580-587.
    74. Kidd, M., C. McDaniel, S. Branton, E. Miller, B. Boren, and B. Fancher. 2004. Increasing Amino Acid Density Improves Live Performance and Carcass Yields of Commercial Broilers. Journal of Applied Poultry Research, 13 (4): 593-604.
    75. Kriseldi, R., P.B. Tillman, Z. Jiang, W. A. Dozier III. 2018. Effects of Feeding Reduced Crude Protein Diets on Growth Performance, Nitrogen Excretion, and Plasma Uric Acid Concentration of Broiler Chicks during the Starter Period. Poultry Science, 97(5):1614-1626.
    9. Kriseldi, R., P.B. Tillman, Z. Jiang, and W.A. Dozier III. 2017. Effects of glycine and glutamine supplementation to reduced crude protein diets on growth performance and carcass characteristics of male broilers during a 41-day production period, Journal of Applied Poultry Research, 26 (4): 558-572.
    76. Kum, S., Ü. Eren, A.G. Önol, and M. Sandikçi. 2010. Effects of Dietary Organic Acid Supplementation on the Intestinal Mucosa in Broilers. Revue De Medecine Veterinaire, 161(10): 463-468.
    77. Kumar, C. B., R.G. Gloridoss, K. C. Singh, T. M. Prabhu, and B. N. Suresh. 2016. Performance of Broiler Chickens Fed Low Protein, Limiting Amino Acid Supplemented Diets Formulated Either on Total or Standardized Ileal Digestible Amino Acid Basis. Asian-Australasian Journal of Animal Sciences, 29(11): 1616–1624.
    78. Lan, Y., M.W.A. Verstegen, S. Tamminga, and B.A. Williams. 2005. The Role of the Commensal Gut Microbial Community in Broiler Chickens. World's Poultry Science Journal, 61(1): 95–104.
    79. Lan, Y., S. Xun, S. Tamminga, B. A. Williams, M. W. A. Verstegen, and G. Erdi. 2004. Real-Time PCR Detection of Lactic Acid Bacteria in Cecal Contents of Eimeria Tenella-Infected Broilers Fed Soybean Oligosaccharides and Soluble Soybean Polysaccharides. Poultry Science, 83 (10): 1696 – 1702.
    80. Leclercq, B., 1995. Broiler Quality: Considering The Trio of Genotype, Quality and Dietary Amino Acids. OECDWorkshop “Growth and quality in broiler production” from 7th–9th June 1994 in Celle. Arch. Geflu¨gelkd. 59: 37–40.
    81. Leibowitz, S.F. and J.T. Alexander. 1998. Hypothalamic Serotonin in Control of Eating Behavior, Meal Size, and Body Weight. Biological psychiatry, 44 (9): 851–864.
    82. Lemme, A. 2003. The “Ideal Protein Concept” in Broiler Nutrition. 1. Methodological Aspects—Opportunities and Limitations. AminoNews, 4, 7-14.
    83. Li, P., Y.L. Yin, D. Li, S.W. Kim, and G. Wu. 2007. Amino Acids and Immune Function. British Journal of Nutrition, 98 (2): 237–252.
    10. Lilburn, M. S., and S. Loeffler. 2015. Early intestinal growth and development in poultry. Poultry science, 94 (7), 1569–1576.
    84. Lindsay, D. 1980. Amino Acids as Energy Sources. Proceedings of the Nutrition Society, 39(1): 53-59.
    85. Liu, W., C.H. Lin, Z.K. Wu, G.H. Liu, H.J. Yan, H.M. Yang, and H.Y. Cai. 2017. Estimation of the net energy requirement for maintenance in broilers. Asian-Australasian Journal of Animal Sciences, 30 (6): 849–856.
    86. Macelline, S. P., S.S. Wickramasuriya, H. M. Cho, E. Kim, T. K. Shin, J. S. Hong, J. C. Kim, J. R. Pluske, H. J., Choi, Y. G., Hong, and J.M. Heo. 2020. Broilers Fed a Low Protein Diet Supplemented with Synthetic Amino Acids Maintained Growth Performance and Retained Intestinal Integrity while Reducing Nitrogen Excretion when Raised Under Poor Sanitary Conditions. Poultry Science, 99 (2): 949-958.
    87. Macleod, M.G. 1997. Effects of Amino Acid Balance and Energy: Protein Ratio on Energy and Nitrogen Metabolism in make Broiler Chickens. British Poultry Science, 38 (4): 405-411.
    88. Marder, J., and Z. Arad. 1989. Panting and Acid-Base Regulation in Heat Stressed Birds. Comparative Biochemistry and Physiology Part A: Physiology, 94(3): 395–400.
    89. Maruyama, K., M.L. Sunde, and A.E. Harper. 1976. Conditions Affecting Plasma Amino Acid Patterns in Chickens Fed Practical and Purified Diets. Poultry Science, 55(5): 1615-1626.
    90. Massuquetto, A., J. F. Durau, L. N. Ezaki Barrilli, R. O. Fernandes Dos Santos, E. L. Krabbe, and A. Maiorka. 2020. Thermal Processing of Corn and Physical Form of Broiler Diets. Poultry science, 99 (6): 3188–3195.
    91. Métayer, S., I. Seiliez, A. Collin, S. Duchêne, Y. Mercier, P.A. Geraert, and S. Tesseraud. 2008. Mechanisms through which Sulfur Amino Acids Control Protein Metabolism and Oxidative Status. The Journal of nutritional biochemistry, 19 (4): 207–215.
    92. Mickelberry, W.C., J.C. Rogler, and W.J. Stadelman. 1966. The Influence of Dietary Fat and Environmental Temperature Upon Chick Growth and Carcass Composition. Poultry Science, 45 (2):313-321.
    93. Moran E.T.JR., and S.F. Bilgili. 1990. Processing Losses, Carcass Yield Quality, and Meat Yields of Broiler Chickens Receiving Diets Marginally Deficient to Adequate in Lysine Prior to Marketing. Poultry Science, 69 (4): 702-710.
    94. Morris, S. M. Jr. 2009. Recent Advances in Arginine Metabolism: Roles and Regulation of the Arginases. British journal of pharmacology, 157 (6): 922–930.
    95. Mroz, Z., A.W. Jongbloed, and P.A. Kemme. 1994. Apparent Digestibility and Retention of Nutrients Bound to Phytate Complexes as Influenced by Microbial Phytase and Feeding Regimen in Pigs. Journal of Animal Science, 72 (1): 126-132.
    96. Munks, B., A. Robinson, E.F. Beach, and H.H. Williams. 1945. Amino Acids in the Production of Chicken Egg and Muscle. Poultry Science, 24 (5): 459–464.
    97. Musharaf, N., and J. Latshaw. 1999. Heat Increment as Affected by Protein and Amino Acid Nutrition. World's Poultry Science Journal, 55(3): 233-240.
    98. Nascimento, S., A. Maia, K. Gebremedhin, and C. C. Nascimento. 2017. Metabolic Heat Production and Evaporation of Poultry. Poultry Science, 96 (8): 2691–2698.
    99. Nasr, J. 2012. Effect of Different Amino Acids Density Diets on Lysine, Methionine and Protein Efficiency in Arian Broiler. Italian Journal of Animal Science, 11(10): 54-57.
    100. National Research Council. 1994. Nutrient Requirements of Poultry: Ninth Revised Edition, 1994. Washington, DC: The National Academies Press.
    101. Newsholme, P., L. Brennnan, B. Rubi, and P. Maechler. 2005. New Insights into Amino Acid Metabolism, Beta-Cell Function and Diabetes. Clinical Science. 108 (3):185-194.
    102. Ning, D., J. Yuan, Y. Wang, Y. Peng, and Y. Guo. 2014. The Net Energy Values of Corn, Dried Distillers Grains with Solubles and Wheat Bran for Laying Hens Using Indirect Calorimetry Method. Asian Australasian Journal of Animal Sciences, 27 (2) :209-16.
    103. O'Dell, B. L. and J. E. Savage. 1966. Arginine-Lysine Antagonism in the Chick and its Relationship to Dietary Cations. Journal of Nutrition, 90 (4): 364.
    104. Ojano-Dirain, C. P. and P. W. Waldroup. 2002. Protein and Amino Acid Needs of Broilers in Warm Weather: A Review. International Journal of Poultry Science, 1 (4): 40-46.
    105. Ospina-Rojas, I.C., A.E. Murakami, E. Cinthia, K. P. Picoli, C. Scapinello and C. R. do Amaral Durate. 2014. Threonine-Lysine Ratio on the Requirements of Digestibility in Diets for Broilers. Acta Scientiarum. Animal Sciences, 36(2):157-162.
    106. Ostrowski-Meissner, H. T., 1981. The Physiological and Biochemical Responses of Broilers Exposed to Short-Term Thermal Stress. Comparative Biochemistry and Physiology Part A: Physiology, 70 (1): l-9.
    107. Parsons, C.M., F. Castanon and Y. Han. 1997. Protein and Amino Acid Quality of Meat and Bone Meal. Poultry Science, 76 (2): 361-368.
    108. Partanen, K., and Z. Mroz. 1999. Organic Acids for Performance Enhancement in Pig Diets. Nutrition Research Reviews, 12 (1):117–145.
    109. Payne, R.L., A. Lemme, H. Seko, Y. Hashimoto, H. Fujisaki, J. Koreleski, S. Swiatkiewicz, W. Szczurek, and H. Rostagno. 2006. Bioavailability of Methionine Hydroxy Analog-Free Acid Relative to Dl-Methionine in Broilers. Animal Science Journal, 77 (4): 427-439.
    110. Pinchasov, Y., C.X. Mendonça, and L.S. Jensen. 1990. Broiler Chick Response to Low Protein Diets Supplemented with Synthetic Amino Acids. Poultry Science, 69 (11):1950-1955.
    111. Pirgozliev, V, O. Oduguwa O, T. Acamovic, and M. R. Bedford. 2008. Effects of Dietary Phytase on Performance and Nutrient Metabolism in Chickens. British Poultry Science, 49(2): 144-154.
    112. Potier, M., N. Darcel, and D. Tome. 2009. Protein, Amino Acids and the Control of Food Intake. Clinical Nutrition and Metabolic Care, 12(1): 54-58.
    113. Qaisrani, S. N, M. M. van Krimpen, R. P. Kwakkel, M.W. Verstegen, and W. H. Hendriks. 2015. Diet Structure, Butyric Acid, and Fermentable Carbohydrates Influence Growth Performance, Gut Morphology, and Cecal Fermentation Characteristics in Broilers. Poultry Science. 94(9) :2152-2164.
    114. Ren, W., S. Chen, J. Yin, J. Duan, T. Li, G. Liu, Z. Feng, B. Tan, Y. Yin, G. Wu. 2014. Dietary Arginine Supplementation of Mice Alters the Microbial Population and Activates Intestinal Innate Immunity. Journal of Nutrition, 144 (6): 988–995.
    11. Rochell, S. J., A. Helmbrecht, C.M. Parsons, and R.N. Dilger. 2017. Interactive effects of dietary arginine and Eimeria acervulina infection on broiler growth performance and metabolism. Poultry science, 96 (3): 659–666.
    115. Rutherfurd, S. M., T. K. Chung, and P. J. Moughan. 2002. The Effect of Microbial Phytase on Ileal Phosphorus and Amino Acid Digestibility in the Broiler Chicken. British Poultry Science, 43 (4):598–606.
    116. Saule Abdukalykova and Ciro A. Ruiz-Feria , 2006. Arginine and Vitamin E Improve the Cellular and Humoral Immune Response of Broiler Chickens. International Journal of Poultry Science, 5 (2): 121-127.
    117. Scott, T.A., M.L. Swift, and M.L. Bedford. 1997. The Influence of Feed Milling, Enzyme Supplementation, and Nutrient Regimen on Broiler Chick Performance. Journal of Applied Poultry Research, 6 (4) 391-398.
    118. Sekine, T., E. Watanabe, and T. Ishibashi. 1994. Influence of Dietary Amino Acids and Calcium Available Phosphorus on Bone Development of Female Broiler Chicks. Animal Science Technology, 65 (11): 999-1007.
    12. Si, J., C.A. Fritts, P.W. Waldroup, and D.J. Burnham. 2004. Effects of tryptophan to large neutral amino acid ratios and overall amino acid levels on utilization of diets low in crude protein by broilers, Journal of Applied Poultry Research, 13 (4): 570-578.
    119. Sibbald, I. R. 1986. The T.M.E. System of Feed Evaluation: Methodology, Feed Composition Data and Bibliography. Technical Bulletin, 1: 986-4E, Research Branch Agriculture Canada.
    120. Sibbald, I.R., and M.S. Wolynetz. 1987. Effects of Dietary Fat Level and Lysine Energy Ratio on Energy Utilization and Tissue Synthesis by Broiler Chicks. Poultry Science, 66 (11): 1788-1797.
    121. Sousa, J.D., L. Albino, R. Vaz, K.F. Rodrigues, G.F., Silva, L.N. Rennó, V. Barros, I. and Kaneko. 2015. The Effect of Dietary Phytase on Broiler Performance and Digestive, Bone, and Blood Biochemistry Characteristics. Brazilian Journal of Poultry Science, 17 (1): 69-76.
    122. Srinongkote, S., M. Smrige and Y. Toride, 2004. Diet Supplied with L-Lysine and L-Arginine During Chronic Stress of High Stock Density Normalizes Growth of Broilers. Animal Science Journal, 75(4): 339 – 343.
    123. Suiryanrayna, M. V., and J. V. Ramana. 2015. A Review of the Effects of Dietary Organic Acids Fed to Swine. Journal of Animal Science and Biotechnology, 6 (45):1-11.
    124. Summers, J. D., D. Spratt, and J.L. Atkinson. 1992. Broiler Weight Gain and Carcass Composition when Fed Diets Varying in Amino Acid Balance, Dietary Energy and Protein Level. Poultry Science, 71 (2): 263–273.
    125. Swatson, H.K. R. Gous, P. A. Iji, and R. Zarrinkalam. 2002. Effect of Dietary Protein Level, Amino Acid Balance and Feeding Level on Growth, Gastrointestinal Tract, and Mucosal Structure of the Small Intestine in Broiler Chickens. Animal Research, 51 (6): 501-515.
    126. Szczurek, W. 2010. Standardized Ileal Digestibility of Amino Acids in some Cereals, Rapeseed Products and Maize DDGS for Broiler Chickens at the Age of 14 Days. Journal of Animal Feed Science, 19 (1): 72-80.
    127. Tan, J., T.J. Applegate, S. Liu, Y. Guo, and S. D. Eicher. 2014. Supplemental Dietary L-Arginine Attenuates Intestinal Mucosal Disruption During Coccidial Vaccine Challenge in Broiler Chickens. British Journal of Nutrition, 112 (7): 1098–109.
    128. Temim, S., A. M. Chagneau, S. Guillaumin, J. Michel, R. Peresson, S. Guillaumin, and S. Tesseraud. 1998. Muscle Protein Turnover in Broiler Chickens: Effects of High Ambient Temperatures and Dietary Protein Intake. Reproduction Nutrition Development, 38 (2): 38-190.
    129. Tesseraud, S., M. Larbier, A. M. Chagneau, and P.A. Geraert. 1992. Effect of Dietary Lysine on Muscle Protein Turnover in Growing Chickens. Reproduction Nutrition Development, 32 (2): 163-171.
    130. Tesseraud, S., N. Maaa, R. Peresson, and A.M. Chagneau. 1996. Relative Responses of Protein Turnover in Three Different Skeletal Muscles to Dietary Lysine Deficiency in Chicks. British Poultry Science, 37 (3): 641-650.
    131. Tesseraud, S., R. A. Pym, E. Le Bihan-Duval, M. J. Duclos. 2003. Response of Broilers Selected on Carcass Quality to Dietary Protein Supply: Live Performance, Muscle Development, and Circulating Insulin-Like Growth Factors (IGF-I and -II). Poultry Science. 82(6): 1011-6.
    132. Tobin, G, and K. N. Boorman. 1979. Carotid or Jugular Amino Acid Infusions and Food Intake in the Cockerel. British Journal of Nutrition, 41(1): 157-162.
    133. Uni, Z., O. Gal-Garger, A. Geyra, D. Sklan, S. Yahav. 2001. Changes in Growth and Function of Chick Small Intestine Epithelium Duo to Early Thermal Conditioning. Poultry Science, 80 (4): 438–445.
    134. van de Poll, M.C., P.B. Soeters, N. E. Deutz, K.C. Fearon, and C.H. Dejong. 2004. Renal Metabolism of Amino Acids: Its Role in Interorgan Amino Acid Exchange. The American Journal of Clinical Nutrition, 79 (2): 185–197.
    135. van Harn, J., M.A. Dijkslag, and M.M. van Krimpen. 2019. Effect of Low Protein Diets Supplemented with Free Amino Acids on Growth Performance, Slaughter Yield, Litter Quality, and Footpad Lesions of Male Broilers. Poultry Science, 98 (10): 4868–4877.
    136. Van Immerseel, F., K. Cauwerts, L.A. Devriese, F. Haesebrouck, and R. Ducatelle. 2002. Feed Additives to Control Salmonella in Poultry, World's Poultry Science Journal, 58 (4): 501-513.
    137. Vieira, S. L. and C. R. Angel. 2012. Optimizing Broiler Performance Using Different Amino Acid Density Diets: What are the Limits? Journal of Applied Poultry Research, 21 (1): 149–155.
    138. Vieira, S.L., A. Lemme, D.B. Goldenberg, and I. Brugalli. 2004. Responses of Growing Broilers to Diets with Increased Sulfur Amino Acids to Lysine Ratios at Two Dietary Protein Levels. Poultry Science, 83 (8):1307–1313.
    139. Waldroup, P.W. Feeding Programs for Broilers: The Challenge of Low Protein Diets. Pages 119-134. In: Proceeding 47th Maryland Nutrition Conference. 2000. University of Maryland, College Park.
    140. Waldroup, P.W., Q. Jiang and C.A. Fritts, 2005. Effects of Glycine and Threonine Supplementation on Performance of Broiler Chicks Fed Diets Low in Crude Protein. International Journal of Poultry Science, 4 (5):250-257.
    13. Wallis, I.R., and D. Balnave. 1984. The Influence of Environmental Temperature, Age and Sex on the Digestibility of Amino Acids in Growing Broiler Chickens. British Poultry Science, 25(3): 401-407.
    14. Walsberg, G. E, and T. C. Hoffman. 2005. Direct Calorimetry Reveals Large Errors in Respirometric Estimates of Energy Expenditure. The Journal of experimental biology, 208 (6): 1035-1043.
    15. Wang, X. and C.M. Parsons. 1998. Dietary Formulation with Meat and Bone Meal on A Total Versus a Digestible or Bioavailable Amino Acid Basis. Poultry Science, 77 (7): 1010-1015.
    16. Wang, Z., X. Pan, Z. Peng, R. Zhao, and G. Zhou. 2009. Methionine and Selenium Yeast Supplementation of the Maternal Diets Affects Color, Water-Holding Capacity, and Oxidative Stability of Their Male Offspring Meat at The Early Stage. Poultry Science, 88 (5): 1096-1101.
    141. Wauldroup, P.W., R.J. Mitchell, J.R. Payne and K.R. Hazen. 1976. Performance of Chicks Fed Diets Formulated to Minimize Excess Levels of Essential Amino Acids. Poultry Science, 55 (1): 243-253.
    17. Webber, W. A., J. L. Brown and R. F. Pitts. 1961. Interactions of Amino Acids in Renal Tubular Transport. The American journal of physiology, 200 (2): 380-386.
    18. Wen, C., X. Jiang, L. Ding, T. Wang, and Y. Zhou. 2017. Effects of Dietary Methionine on Growth Performance, Meat Quality and Oxidative Status of Breast Muscle in Fast-And Slow-Growing Broilers. Poultry Science, 96 (6): 1707-1714.
    19. Wilkie D.C., A.G. Van Kessel, L.J. White, B. Laarveld, and M.D. Drew. 2005. Dietary Amino Acids Affect Intestinal Clostridium Perfringens Populations in Broiler Chickens. Canadian Journal of Animal Science, 85 (2): 185-193.
    20. Williams, P.E.V., H. Monge, and D. Jackson. 1997. Effects on the Performance of Poultry of Manufacturing Feed Using Expansion Plus Pelleting Compared with Pelleting Alone. Pages, 74-78. In: Proceeding Australian Poultry Science Symposium. 1997 (9) University of Sydney, Australia.
    21. Wilson, E. K., F. W. Pierson, P. Y. Hester, R. L. Adams, and W. J. Standelman. 1980. Effects of High Environmental Temperature on Feed Passage Time and Performance Traits of White Peking Ducks. Poultry Science, 59 (10): 2322-2330.
    22. Wu, G. 2009. Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids, 37 (1): 1-17.
    23. Wu, G. 2013. Functional Amino Acids in Nutrition and Health. Amino Acids, 45 (3): 407-411.
    24. Yahav, S. 2002. Limitations in Energy Intake Affect the Ability of Young Turkeys to Cope with Low Ambient Temperatures. Journal of Thermal Biology, 27 (2): 103-108.
    25. Yahav, S., A. Collin, D. Shinder, and M. Picard. 2004. Thermal Manipulations During Broiler Chick Embryogenesis: Effects of Timing and Temperature. Poultry Science, 83 (12):1959-1963.
    26. Yahav, S., A. Straschnow, I. Plavnik and S. Hurwitz. 1996. Effect of Diurnal Cycling Versus Constant Temperatures on Chicken Growth and Food Intake. British Poultry Science, 37 (1): 43-54.
    27. Yalçin, S., P. Settar, S. Ozkan, and A. Cahaner. 1997. Comparative Evaluation of Three Commercial Broiler Stocks in Hot Versus Temperate Climates. Poultry science, 76 (7): 921–929.
    28. Yousef, M. K. 1985. Thermoneutral Zone. In: Stress Physiology in Livestock. In: Stress physiology in livestock. Volume I. Basic principles. CRC Press, Boca Raton, Florida, pages, 47-54.
    29. Yu, J., H.M. Yang, Z. Wang, H. Dai, L. Xu, and C. Ling. 2018. Effects of Arginine on the Growth Performance, Hormones, Digestive Organ Development and Intestinal Morphology in the Early Growth Stage of Layer Chickens. Italian Journal of Animal Science, 17 (4): 1077 - 1082.
    30. Zarate, A. J. E. T. Moran, and D. J. Burnham. 2003. Reducing Crude Protein and Increasing Limiting Essential Amino Acid Levels with Summer-Reared, Slow- and Fast-Feathering Broilers. Journal of Applied Poultry Research, 12 (2): 160-168.

    下載圖示
    QR CODE