簡易檢索 / 詳目顯示

研究生: 林世杰
Lin, Shih-chieh
論文名稱: 食品中己二烯酸快速檢測方法之開發
The development of rapid detection for the determination of Sorbic acid in foods
指導教授: 劉展冏
Liu, Chan-Chiung
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 109
語文別: 中文
論文頁數: 70
中文關鍵詞: 己二烯酸硫巴比妥酸丙二醛重鉻酸鉀微流體紙基裝置
外文關鍵詞: Sorbic acid, Thiobarbituric acid, Malondialdehyde, Potassium dichromate, Microfludic paper-based device (μPAD)
DOI URL: http://doi.org/10.6346/NPUST202100124
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 隨著加工食品的問世,引進許多天然及人工的添加物,於生產、加工、儲存和包裝過程中進行添加,確保食品本身的品質安全無虞。它們被應用於食品中以保持風味及改善外觀,或具有某種特定功效,以致多數的食品業者高度仰賴,因此其安全疑慮廣受矚目。加上常有業者不當濫用之情形,也引起消費者的不安。其中,防腐劑是生活中常見的食品添加物,也是近幾年食藥署稽查的重點項目之一,防腐劑中的己二烯酸 (Sorbic acid)及其鹽類,具有取得容易且價格便宜,毒性較低,其鹽類易溶於水及用途廣泛等優勢,經常造成使用不當或過量添加的情形。食用過量時會引起嘔吐、腹瀉或危害人體肝腎代謝功能。目前主要用以檢測防腐劑的方法是高效液相層析法 (HPLC),而儀器分析的步驟繁瑣,成本高昂且須透過專業人力,因此開發可靠便捷的初篩方法,作為在第一線抽查時,達到快速篩檢之目的,具有相當潛在的必要性。
    為有效檢測食品中己二烯酸之含量,本研究開發基於比色定量法結合微流體紙基分析裝置的方法,利用添加氧化劑之方式使己二烯酸生成丙二醛 (Malondialdehyde),並與硫巴比妥酸進行呈色反應,最終產生鮮明的紅色複合物作為應用依據,達到定量己二烯酸的含量。並進行比較三種氧化劑的應用優劣,分別為硫酸鐵銨〔NH4Fe(SO4)2,Ammonium iron(III) sulfate〕、硝酸鐵 〔Fe(NO3)3,Iron(III) nitrate〕及重鉻酸鉀 〔K2Cr2O7,Potassium dichromate〕。其中氧化劑的不同是影響呈色的主要因素,故最後選定可穩定呈色於微流體紙基晶片上的重鉻酸鉀氧化劑,並以色階 (RGB levels)分析軟體進行顏色強度分析,探討其呈色結果的最適化條件及線性關係。
    結果顯示,此分析法在灰階條件下,可有效定量不同濃度 (500-3000 mg/kg)之己二烯酸標準檢液,求得線性迴歸方程式為y (吸光值) = -0.0108x (濃度) + 206.57,R2=0.9955,定量極限為500 mg/kg;後續則以重鉻酸鉀進行分光光度法的探討,利用分光光度計進行全波長掃描,結果得知最大吸收波長為530 nm,並在此波長進行己二烯酸的定量分析,求得線性迴歸方程式為y (吸光值) = 0.0022 x (50-300 mg/kg) - 0.087,R2=0.9968。進一步探討常見物質及其他酸類防腐劑存在下,反應是否具有專一性,以及上述成分的共伴呈色干擾試驗,結果在專一性試驗當中發現,常見物質及其他酸類防腐劑皆不與硫巴比妥酸結合產生呈色反應,吸光值皆小於0.06;在共伴呈色試驗中,在上述物質與己二烯酸共存下,吸光值相對誤差百分比皆小於5%,證明硫巴比妥酸在此檢測方法中具有專一性,在定量己二烯酸含量時,亦不容易受其它物質影響。
    最後將本研究所開發之微流體紙基晶片分析法,應用於含有己二烯酸之真實食品中進行含量測定,檢測市售碳酸飲料、果醬及糕餅,其所得結果與認證實驗室測得結果比較,測定結果的相符度達八成,回收率為101%-105%,已能達到半定量之效果。經以上研究結果得知,己二烯酸與硫巴比妥酸試劑呈色反應專一且穩定,而紙基晶片的製程及分析上也達快速便捷、成本低廉、便攜等優勢,可成為廣泛應用發展的分析型工具,在食品分析領域潛在良好的應用性。

    With the advent of processed foods, more additives have been introduced, of both natural and artificial origins. These additions can be made during production, processing, storage, and packaging, to ensure the quality and safety of the food itself. They are added to food to preserve flavor or improve its taste and appearance, or modify certain function. As a result, most food manufacturers could easily become highly dependent on these additives, thus their safety concerns have attracted attention, and the cases of misuse (abuse) also caused consumer anxiety. Preservatives have been widely used among food additives, and also a major compound inspected by Taiwan Food and Drug Administration (TFDA) in recent years. Sorbic acid and its salts in preservatives are easy to obtain and inexpensive, with low toxicity, and their salts are easily soluble in water, so have a wide range of uses. They often cause improper use or excessive additions, and excessive consumption may cause vomiting, diarrhea or endanger the liver and kidney metabolic functions. At present, the primary method used to analyze preservatives is high-performance liquid chromatography (HPLC), and the steps of instrumental analysis are time-consuming, costly, and require professional manpower. Therefore, reliable and convenient preliminary screening methods are developed as a first-line spot check. In order to achieve the purpose of rapid screening, it is potentially necessary to develop those techniques.
    In order to effectively detect the content of sorbic acid in foods, this study developed a method based on colorimetric quantitative method combined with a microfluidic paper-based analysis device, using an oxidizing agent to convert sorbic acid to malondialdehyde, and subquencially reacts with thiobarbituric acid for colorimetry. The reaction will eventually produce a bright red complex compound as the basis for application, to achieve a quantitative determination of sorbic acid. And compare the application advantages and disadvantages of the three oxidants: ammonium iron (III) sulfate [NH4Fe (SO4)2], iron (III) nitrate [Fe(NO3)3], and potassium dichromate [K2Cr2O7]. Among them, the difference of oxidants is the main factor affecting the color rendering. Therefore, the potassium dichromate oxidizing agent that can stabilize the color rendering on the microfluidic paper-based device is finally selected, and the color intensity analysis is carried out with RGB levels analysis software to explore the optimal conditions and linear relationship of color rendering results.
    The results show that this analysis method can effectively quantify the standard test solution of sorbic acid at different concentrations (500-3000 mg/kg) under gray-scale conditions. The linear regression equation is y (absorbance value) = -0.0108x (concentration) + 206.57, R2 = 0.9955, the limit of quantification is 500 mg/kg. The spectrophotometric method was applied with potassium dichromate, and the full wavelength scan was carried out with a spectrophotometer. As a result, the maximum absorption wavelength occurred at 530 nm, and quantitative analysis of sorbic acid was performed at this wavelength. The linear regression equation was y (absorbance value) = 0.0022 x (50-300 mg/kg)-0.087, R2 = 0.9968. Further exploring whether the reaction is specific in the presence of common food ingredients and other acid preservatives, as well as the color interference (synergistic effects) by the above ingredients. The result in the specific test showed that common food ingredients and other acid preservatives did not react with thiobarbituric acid to produce a color reaction, while the absorbance values were all less than 0.06; in the synergistic effect test, in the presence of above compounds with sorbic acid, the relative error of the absorbance value is less than 5%, which proves that thiobarbituric acid has specificity in this detection method, and is not easily affected by others when quantifying the content of sorbic acid in foods.
    Finally, the microfluidic paper-based analysis method developed by this research was applied to the determination of sorbic acid content in real food, samples include commercially available carbonated drinks, jams and pastrys. The results obtained are compared with the results measured by certified laboratory, which showed the consistency of the measurement results is more than 80%, and the recovery rate is 101%-105%, being able to achieve a semi-quantitative outcome. According to the above research results, the color reaction of sorbic acid and thiobarbituric acid reagent is specific and stable, and the process and analysis of paper-based device are also fast, convenient, low-cost, and portable. It has become an analytical tool for widespread application and development. Potentially wide applicability in the field of food analysis could be expected.

    摘要 I
    Abstract III
    謝誌 VI
    目錄 VII
    圖目錄 X
    表目錄 XII
    第1章 前言 1
    第2章 文獻回顧 2
    2.1食品添加物 2
    2.1.1食品添加物的簡介 2
    2.1.2防腐劑的應用規範 2
    2.2己二烯酸及其鹽類 3
    2.2.1己二烯酸及其鹽類物理化學特性和應用 3
    2.2.2己二烯酸及其鹽類的安全性議題及生理代謝 3
    2.2.3國內己二烯酸及其鹽類添加限量標準 8
    2.2.4己二烯酸及其鹽類檢測方法 8
    2.2.4.1鑑別性試驗 8
    2.2.4.2高效能液相層析法 9
    2.3己二烯酸呈色反應 10
    2.3.1硫巴比妥酸應用簡介 10
    2.3.2己二烯酸與硫巴比妥酸呈色反應機制 13
    2.4紙基分析裝置 13
    2.4.1紙基分析裝置的發展介紹 13
    2.4.2紙基分析裝置的應用 15
    2.4.3紙基晶片基材簡介 17
    2.4.4疏水/親水性區域建構方法及蠟印介紹 18
    第3章 材料與方法 23
    3.1實驗設計 23
    3.2 實驗材料 23
    3.2.1藥品與溶劑 23
    3.2.2 儀器與設備 24
    3.3標準檢液及呈色試劑製備 28
    3.3.1己二烯酸標準檢液 28
    3.3.2硫巴比妥酸試劑 28
    3.3.3重鉻酸鉀-硫酸試劑 28
    3.3.4硫酸鐵銨試劑 28
    3.3.5硝酸鐵試劑 29
    3.3.6檸檬酸溶液 29
    3.4己二烯酸檢測-紙基晶片分析法 29
    3.4.1微流體紙基晶片之設計 29
    3.4.2不同氧化試劑於紙基晶片最適呈色反應之影響 29
    3.4.3晶片分析法參數最佳化之探討 30
    3.4.3.1試劑添加比例與呈色之影響 30
    3.4.3.2不同濃度之重鉻酸鉀試劑於紙基晶片呈色之影響 30
    3.4.3.3不同濃度之檸檬酸對於紙基晶片呈色之影響 30
    3.4.3.4反應時間對於紙基晶片呈色之影響 31
    3.4.4繪製己二烯酸之檢量線 (紙基晶片分析法) 31
    3.5己二烯酸檢測-分光光度法 31
    3.5.1呈色試驗 31
    3.5.1.1最大吸收波長測定 31
    3.5.1.2反應時間對於吸光值之影響 32
    3.5.1.3重鉻酸鉀試劑添加體積對於吸光值之影響 32
    3.5.1.4繪製己二烯酸之檢量線 (分光光度法) 32
    3.5.2干擾性試驗 33
    3.5.2.1食品中其他防腐劑及常見成分對於呈色反應之影響 33
    3.5.2.2食品中其他防腐劑及常見成分之共伴呈色反應 33
    3.6真實食品 34
    3.6.1回添試驗 34
    3.6.2真實食品之萃取 35
    3.6.3紙基分析法測定真實食品 35
    3.6.4分光光度法測定真實食品 35
    3.6.5高效液相層析法測定真實食品 35
    第4章 結果與討論 37
    4.1己二烯酸檢測-紙基晶片分析法 37
    4.1.1不同氧化試劑於紙基晶片之最適呈 37
    4.1.2試劑添加量對於呈色之影響 37
    4.1.3重鉻酸鉀之濃度對於呈色之影響 40
    4.1.4檸檬酸之濃度對於呈色之影響 44
    4.1.5反應時間對於呈色之影響 44
    4.1.6己二烯酸之檢量線 (紙基晶片分析法) 44
    4.2己二烯酸檢測-分光光度法 47
    4.2.1呈色試驗 47
    4.2.1.1最大吸收波長測定 47
    4.2.1.2反應時間對於吸光值的影響 50
    4.2.1.3重鉻酸鉀添加體積對於吸光值之影響 50
    4.2.1.4己二烯酸之檢量線 (分光光度法) 53
    4.2.2干擾性試驗 53
    4.2.2.1食品中其他防腐劑及常見成分對於呈色反應之影響 53
    4.2.2.2食品中其他防腐劑及常見成分之共伴呈色反應 53
    4.3真實食品系統 57
    4.3.1紙基晶片分析法 57
    4.3.2分光光度法 60
    第5章 結論 63
    第6章 參考文獻 64
    作者簡介 70

    王崇安 (2020) 食品中阿斯巴甜快速檢測之開發。國立屏東科技大學食品科學系碩士論文。
    林麗慧 (2015) 開發對羥基苯甲酸甲酯之紙基檢測試片。國立屏東科技大學食品科學系碩士論文。
    陳冠霖 (2014) 簡易苯甲酸紙基檢測試片之開發。國立屏東科技大學食品科學系碩士論文。
    衛生福利部食品藥物管理署。2017。食品中防腐劑之檢驗方法: 酸類防腐劑。衛授食字第 1061900219 號 (MOHWA0020.02)。
    衛生福利部食品藥物管理署。2020。食品添加物使用範圍及限量暨規格標準第二條附表一。
    衛生福利部食品藥物管理署。2020。食品添加物使用範圍及限量暨規格標準第三條附表二。
    衛生福利部食品藥物管理署Taiwan Food and Drug Administration, Ministry of Health and Welfare (TFDA)。2016。食品添加物手冊http://www.msjh.cy.edu.tw/data/%E9%A3%9F%E5%93%81%E6%B7%BB%E5%8A%A0%E7%89%A9%E6%A5%AD%E8%80%85%E6%89%8B%E5%86%8A105%E5%B9%B4%E7%89%88.pdf
    鞠先惠 (2019) 食品中去水醋酸鈉快速檢測之開發。國立屏東科技大學食品科學系碩士論文。
    Apilux, A., Dungchai, W., Siangproh, W., Praphairaksit, N., Henry, C. S., & Chailapakul, O. 2010. Lab-on-paper with dual electrochemical/ colorimetric detection for simultaneous determination of gold and iron Analytical Chemistry 82(5): 1727-1732.
    Arya, S. S. 1980. Stability of sorbic acid in aqueous solutions. Journal of Agricultural and Food Chemistry 28(6): 1246-1249.
    Bier, F. F., & Schumacher, S. 2013. Integration in bioanalysis: Technologies for point-of-care testing. Advances in Biochemical Engineering/ Biotechnology. 133: 1-14.
    Busa, L. S. A., Mohammadi, S., Maeki, M., Ishida, A., Tani, H., Tokeshi, M. 2016. Advances in Microfluidic paper-based analytical devices for food and water analysis. Micromachines 7: 1-21.
    Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. C. 2014. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety 13(4): 377-399.
    Carrilho, E., Martinez, A. W., & Whitesides, G. M. 2009. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Analytical Chemistry 81(16): 7091-7095.
    Cate, D. M., Adkins, J. A., Mettakoonpitak, J., & Henry, C. S. 2015. Recent developments in paper-based microfluidic devices. Analytical Chemistry 87(1): 19-41.
    Choi, J. R., Tang, R., Wang, S., Abas, W. A. B.W., Pingguan-Murphy, B., & Xu, F. 2015. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosensors and Bioelectronics 74: 427-439.
    Dehghan, P, Mohammadi, A, Mohammadzadeh-Aghdash, H, Dolatabadi, J. E. N. 2018. Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Food Science & Technology 80: 123-130.
    Dungchai, W., Chailapakul, O., Henry, C. S. 2011. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136: 77-82.
    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). 2015. Scientific Opinion on the re‐evaluation of sorbic acid (E 200), potassium sorbate (E 202) and calcium sorbate (E 203) as food additives. EFSA Journal 13(6): 4144.
    Fu, L. M., & Wang, Y. N. 2018. Detection methods and applications of microfluidic paper-based analytical devices. TrAC Trends in Analytical Chemistry 107: 196-211.
    Fu, L. M., Liu, C. C., Yang, C. E., Wang, Y. N., & Ko, C. H. 2019. A PET/paper chip platform for high resolution sulphur dioxide detection in foods. Food Chemistry 286: 316-321.
    Gaworski C. L., Lemus-Olalde R, Carmines E. L. 2008. Toxicological evaluation of potassium sorbate added to cigarette tobacco. Food and Chemical Toxicology 46: 339-351.
    Glavind, J., & Hartmann, S. 1951. Chemical nature of the thiobarbituric acid test for the oxidation of unsaturated fatty acids. Acta Chemica Scandinavica 5(6): 975.
    Govindasamy, K., Potgieter S., Land, K., Muzenda, E. 2012. Fabrication of paper based microfluidic devices. General Science, Engineering & Technology 3: 1427-1432.
    Grotto, D., Maria, L. S., Valentini, J., Paniz, C., Schmitt, G., Garcia, S. C., ... & Farina, M. 2009. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quimica Nova, 32(1): 169-174.
    Guillén-Sans, R., & Guzmán-Chozas, M. 1998. The thiobarbituric acid (TBA) reaction in foods: a review. Critical Reviews in Food Science and Nutrition 38(4): 315‐330.
    Gutfinger, T., Ashkenazy, R., & Letan, A. 1976. Determination of benzoic and sorbic acids in orange juice. Analyst 101(1198): 49-54.
    Hu, J., Wang, S., Wang, L., Li, F., Pingguan-Murphy, B., Lu, T. J., & Xu, F. 2014. Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics 54: 585-597.
    Kung, C. T., Hou, C. Y., Wang, Y. N., & Fu, L. M. 2019. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sensors and Actuators B: Chemical 301: 126855.
    Lau Q. W., Luk S. F., & Lam R. K. 1989. Spectrophotometric method for the determination of sorbic acid in various food samples with iron(llI) and 2-thiobarbituric acid as reagents. Analyst 114(2): 217-219.
    Li, X., Tian, J., Garnier, G., & Shen, W. 2010. Fabrication of paper-based microfluidic sensors by printing. Colloids and Surfaces B: Biointerfaces 76(2): 564-570.
    Liu, C. C., Wang, Y. N., Fu, L. M., & Chen, K. L. 2018. Microfluidic paper-based chip platform for benzoic acid detection in food. Food Chemistry 249: 162-167.
    Liu, C. C., Wang, Y. N., Fu, L. M., & Huang, Y. H. 2018. Microfluidic paper-based chip platform for formaldehyde concentration detection. Chemical Engineering Journal 332: 695-701.
    Lopes, I. C., Santos, P. V., Diculescu, V. C., de Araújo, M. C. U., & Oliveira-Brett, A. M. 2012. Sorbic acid and its degradation products: electrochemical characterization. Analytical Letters 45(4): 408-417.
    Mamur, S., Yüzbaşıoğlu, D., Ünal, F., & Aksoy, H. 2012. Genotoxicity of food preservative sodium sorbate in human lymphocytes in vitro. Cytotechnology 64(5): 553-562.
    Martinez, A. W., Philips, S. T., Whitesides, G. M. 2010. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Analytical Chemistry 82: 3-10.
    Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. 2007. Patterned paper as a platform for inexpensive, low‐volume, portable bioassays. Angewandte Chemie 119(8): 1340-1342.
    Mohammadzadeh-Aghdash, H., Sohrabi, Y., Mohammadi, A., Shanehbandi, D., Dehghan, P., & Dolatabadi, J. E. N. 2018. Safety assessment of sodium acetate, sodium diacetate and potassium sorbate food additives. Food Chemistry 257: 211-215.
    Morbioli, G. G., Mazzu-Nascimento, T., Stockton, A. M., & Carrilho, E. 2017. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)-A review. Analytica Chimica Acta 970: 1-22.
    Murakami R, Yamamoto K, Kamiya T, Komuro M, Kakefuda S, Takai K. 1984. In the ethanol colorimetric determination of sorbic acid in foods. 食衛誌 25(4): 360-365.
    Nury, F. S., & Bolin, H. R. 1962. Calorimetric assay for potassium sorbate in dried fruits. Journal of Food Science 27(4): 370-372.
    Phillips, S. T., & Lewis, G. G. 2014. The expanding role of paper in point-of-care diagnostics. Expert Review of Molecular Diagnostics 14: 123-125.
    Schmidt, H. 1960. A specific method for the calorimetric determination of sorbic acid (in non-alcoholic foods). Z. Analytical Chemistry 178: 173-184.
    Sher, M., Zhuang, R., Demirci, U., Asghar, W. 2017. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Review of Molecular Diagnostics. 17: 351-366.
    Shibamoto, T., & Bjeldanes, L. 2009. Food additives. p. 229-241. Introduction to Food Toxicology Second Edition. Published by Academic Press is an imprint of Elservier, USA.
    Sofos, J. N, & Busta F. F. 1981. Antimicrobial activity of sorbate. Journal of Food Protection 44: 614-622.
    Thammana, M. 2016. A Review on High Performance Liquid Chromatography (HPLC). Journal of Pharmaceutical Analysis 5: 23-28.
    Uchiyama, M., & Mihara, M. 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry 86(1): 271-278.
    Walker, R. 1990. Toxicology of sorbic acid and sorbates. Food Additives & Contaminants 7: 671-676.
    Wilamowski, G. 1971. Collaborative Study of the Colorimetric Determination of Sorbic Acid in Cheese. Journal of the Association of Official Analytical Chemists 54(3): 663-665.
    Wu, Y., Gao, Q., Nie, J., Fu, J. Z., He, Y. 2017. From microfluidic paper-based analytical devices to paper-based biofluidics with integrated continuous perfusion. ACS Biomaterials Science and Engineering 3: 601-607.
    Xia, Y., Si, J., Li, Z. 2016. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosensors and Bioelectronics 77: 774-789
    Yetisen, A. K., Akram, M. S., & Lowe, C. R. 2013. Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip 13(12): 2210-2251.

    無法下載圖示 校外公開
    2026/06/25
    QR CODE