簡易檢索 / 詳目顯示

研究生: 楊于萱
Yang, Yu-Hsuan
論文名稱: 超音波輔助萃取對檸檬(Citrus limon)皮抑制消化酵素能力及抗氧化成分之影響
Effect of Ultrasonic-Assisted Extraction on Digestive Enzymes Inhibition and Antioxidant Component in vitro of Lemon (Citrus limon) Peel
指導教授: 蔡碧仁
Tsai, Pi-Jen
高莫森
Mohsen Gavahian
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 109
語文別: 中文
論文頁數: 122
中文關鍵詞: 檸檬皮超音波輔助萃取消化酵素⍺-澱粉酶⍺-葡萄糖苷酶脂肪分解酵素抗氧化活性
外文關鍵詞: Lemon peel, ultrasonic-assisted extraction, digestive enzyme, ⍺-amylase, ⍺-glucosidase, lipase, antioxidant activity
DOI URL: http://doi.org/10.6346/NPUST202100155
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 近年來,綠色萃取技術 (Green extraction technology) 逐漸受到學界與業界的重視,如超音波輔助萃取、高壓萃取技術、脈衝電場及微波輔助萃取等,以減少萃取時間與有機溶劑的使用量,避免萃取過程中對經濟及生態環境之影響。本研究以檸檬皮作為原料,並利用超音波輔助萃取 (Ultrasonic-assisted extraction, UAE) 與靜置萃取法 (Maceration extraction, ME) 相比,探討是否能有效地提高檸檬皮之抗氧化能力及生物活性成分的釋放,並分析不同成熟度檸檬皮之抗氧化、抑制消化酵素 (碳水化合物水解酵素及脂肪分解酵素) 能力及以HPLC分析其主要酚類化合物。研究結果顯示,檸檬果皮中主要酚類化合物以橙皮苷 (Hesperidin) 及芥子酸 (Sinapic acid) 為主,且經超音波輔助萃取後,與靜置法 (Maceration extraction, ME) 相比,抑制消化酵素 (⍺-澱粉酶、⍺-葡萄糖苷酶及脂肪分解酵素) 能力分別顯著提升約1.1倍至6.7倍,橙皮苷 (Hesperidin) 及芥子酸 (Sinapic acid) 含量則分別增加約2.3倍及1.2倍,而經相關性分析結果,兩者化合物對於抑制消化酵素皆呈高度相關。將不同成熟度之檸檬皮經最佳超音波輔助萃取後,以未成熟檸檬皮具有較佳抑制消化酵素 (⍺-澱粉酶、⍺-葡萄糖苷酶及脂肪分解酵素) 能力,分別高於成熟者約10%、5%以及46%。又以主成分分析 (Principal component analysis, PCA) 結果證明,以UAE及ME萃取之檸檬皮,分別位於第一主成分的兩側,並以⍺-澱粉酶抑制能力及橙皮苷 (Hesperidin) 為區隔樣品之主要貢獻因子,亦即UAE不但可縮短萃取時間,且可萃取出較高的抗氧化成分、抗氧化能力及抑制消化酵素水解能力。綜合上述,檸檬果皮具有發展為天然消化酵素抑制劑及抗氧化劑之潛力,且有助於解決副產物衍生的環境問題,並增加其經濟價值。

    In recent years, green extraction technologies, such as ultrasonic-assisted extraction (UAE), have gained attention in the academic community and the industry as they can reduce solvent consumption and environmental pollution. In this study, the effects of UAE and maceration extraction (ME) on the antioxidant component and digestive enzymes inhibition (⍺-amylase, ⍺-glucosidase and lipase) from lemon peel with different maturity were compared. High performance liquid chromatography (HPLC) analysis showed that hesperidin and sinapic acid were the most abundant phenolic compound in lemon peel. After UAE, the inhibition of digestive enzymes (⍺-amylase, ⍺-glucosidase and lipase) increased by 1.1 to 5.6 times in comparison with ME, along with the hesperidin and sinapic acid increased 2.3 and 1.2 times respectively. The results indicated that, hesperidin and sinapic acid are highly correlated with digestive enzymes inhibition. Also, compared with mature samples that the immature lemon peel exhibited the highest inhibition of digestive enzymes (⍺-amylase, ⍺-glucosidase and lipase) which were increased by 10 percent, 5 percent and 46 percent, respectively. Principal component analysis (PCA) showed that samples extracted by UAE and ME were located on the opposite side of the Prin1 axis, and hesperidin and ⍺-amylase inhibition were the important contributor of this separation. It suggested that UAE may promote the release of more phenolic compounds and higher antioxidant activity which leads to a better inhibition on the digestive enzymes. In summary, the lemon peel was found to be a natural inhibitor for digestive enzymes after UAE, and such an approach may help with addressing the environmental problems related to lemon by-products.

    摘要 I
    ABSTRACT II
    謝誌 III
    目錄 IV
    表目錄 VIII
    圖目錄 IX
    第 一 章 前言 1
    第 二 章 文獻回顧 2
    2.1 柑橘類水果 2
    2.1.1 檸檬及其成分分析 2
    2.2 植物體中抗氧化成分 6
    2.2.1 酚酸 6
    2.2.2 類黃酮 10
    2.2.3 酚類化合物抗氧化機制 14
    2.3 人體中的消化酵素 16
    2.3.1 肥胖與脂肪分解酵素 16
    2.3.1.1 脂肪分解酵素 (Pancreatic lipase, EC 3.1.1) 16
    2.3.1.2 脂肪分解酵素抑制劑作用機制 17
    2.3.1.3 天然化合物之抑制脂肪分解酵素能力 21
    2.3.2 糖尿病與碳水化合物水解酵素 23
    2.3.2.1 碳水化合物水解酵素 24
    2.3.2.1.1 ⍺-澱粉酶 (⍺-Amylase, EC 3.2.1.1) 24
    2.3.2.1.2 ⍺-葡萄糖苷酶 (⍺-Glucosidase, EC 3.2.1.20) 24
    2.3.2.2 碳水化合物水解酵素抑制劑 24
    2.3.2.3 天然化合物之抑制碳水化合物水解酵素能力 25
    2.4 超音波輔助萃取(Ultrasonic-assisted extraction) 27
    2.4.1 超音波輔助萃取對於抗氧化成份之影響 29
    第 三 章 材料與方法 31
    3.1 實驗材料 31
    3.2 實驗藥品 31
    3.3 實驗儀器 32
    3.4 實驗架構 33
    3.5 試驗方法 37
    3.5.1 靜置萃取法 (Maceration extraction, ME) 37
    3.5.2 超音波輔助萃取法 (Ultrasonic-assisted extraction, UAE) 37
    3.5.3 脂肪分解酵素 (Lipase) 抑制能力分析 37
    3.5.4 碳水化合物水解酵素抑制能力分析 38
    3.5.4.1 ⍺-澱粉酶 (⍺-Amylase) 抑制能力 38
    3.5.4.2 ⍺-葡萄糖苷酶 (⍺-Glucosidase) 抑制能力 39
    3.5.5 抗氧化能力分析 40
    3.5.5.1 DPPH自由基清除能力 40
    3.5.5.2 FRAP三價鐵還原能力 (Ferric reducing antioxidant power) 40
    3.5.6 抗氧化成分分析 41
    3.5.6.1 總酚含量分析 41
    3.5.6.2 總類黃酮含量分析 41
    3.5.6.3 HPLC分析酚類化合物 42
    3.5.7 統計分析 44
    3.5.7.1 顯著性及相關性分析 44
    3.5.7.2 主成分分析 44
    第 四 章 結果與討論 45
    4.1 最佳萃取溶劑 45
    4.1.1 抗氧化成分分析 45
    4.1.1.1 總酚含量 45
    4.1.1.2 總類黃酮含量 46
    4.1.1.3 檸檬皮中酚類化合物定性與定量 46
    4.1.2 抗氧化能力分析 53
    4.1.2.1 DPPH自由基清除能力 53
    4.1.2.2 FRAP三價鐵還原能力 53
    4.1.3 消化酵素抑制能力 56
    4.1.3.1 脂肪分解酵素抑制能力分析 56
    4.1.3.2 碳水化合物水解酵素抑制能力 56
    4.2 最佳超音波輔助萃取功率 60
    4.2.1 抗氧化成分及能力分析 60
    4.2.1.1 總酚及總類黃酮含量 60
    4.2.1.2 DPPH自由基清除能力及FRAP三價鐵還原能力 62
    4.2.2 消化酵素抑制能力 62
    4.2.2.1 脂肪分解酵素抑制能力 62
    4.2.2.2 碳水化合物水解酵素抑制能力 63
    4.3 最佳超音波輔助萃取時間 67
    4.3.1 抗氧化成分及能力分析 67
    4.3.1.1 總酚及總類黃酮含量 67
    4.3.1.2 DPPH自由基清除能力及FRAP三價鐵還原能力 67
    4.3.2 消化酵素抑制能力 71
    4.3.2.1 脂肪分解酵素抑制能力 71
    4.3.2.2 碳水化合物水解酵素抑制能力 71
    4.4 靜置法與超音波輔助萃取之比較 74
    4.5 比較不同成熟度檸檬皮之抗氧化活性及消化酵素抑制能力 77
    4.5.1 抗氧化成分及能力分析 77
    4.5.1.1 總酚及總類黃酮含量 77
    4.5.1.2 不同成熟度檸檬皮酚類化合物之定性與定量 79
    4.5.1.3 DPPH自由基清除能力及FRAP三價鐵還原能力 81
    4.5.2 消化酵素抑制能力 84
    4.5.2.1 脂肪分解酵素抑制能力 84
    4.5.2.2 碳水化合物水解酵素抑制能力 84
    4.6 統計分析 88
    4.6.1 相關性分析 88
    4.6.1.1 檸檬皮抗氧化能力與抑制消化酵素能力之相關性分析 88
    4.6.1.2 檸檬皮中酚酸成分與抑制消化酵素能力之相關性分析 90
    4.6.1.3 檸檬皮中類黃酮成分與抑制消化酵素能力之相關性分析 92
    4.6.2 主成分分析 94
    第 五 章 結論 98
    第 六 章 參考文獻 99

    農糧署. 2020. 108年臺灣各縣市鄉鎮檸檬產量. 行政院農業委員會. 2021年2月20日,取自: https://kmweb.coa.gov.tw/theme_data.php?theme=production_map&ii=152
    食品藥物管理署. 2020. 食品營養成分資料庫(新版). 行政院衛生福利部. 2021年3月5日,取自: https://consumer.fda.gov.tw/Food/tfndDetail.aspx?nodeID=178&f=0&id=230
    Abeysinghe, D., Li, X., Sun, C., Zhang, W., Zhou, C., & Chen, K. (2007). Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chemistry, 104(4), 1338-1344.
    Ademiluyi, A. O., Aladeselu, O. H., Oboh, G., & Boligon, A. A. (2018). Drying alters the phenolic constituents, antioxidant properties, α-amylase, and α-glucosidase inhibitory properties of Moringa (Moringa oleifera) leaf. Food Science and Nutrition, 6(8), 2123-2133.
    Adibelli, Z., Dilek, M., & Akpolat, T. (2009). Lemon juice as an alternative therapy in hypertension in Turkey. International Journal of Cardiology, 135(2), e58-e59.
    Ahmed, B., Sultana, R., & Greene, M. W. (2021). Adipose tissue and insulin resistance in obese. Biomedicine and Pharmacotherapy, 137, 111315.
    Al-Dhabi, N. A., Ponmurugan, K., & Jeganathan, P. M. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34, 206-213.
    Alaofi, A. L. (2020). Sinapic Acid Ameliorates the Progression of Streptozotocin (STZ)-Induced Diabetic Nephropathy in Rats via NRF2/HO-1 Mediated Pathways. Frontiers in Pharmacology, 11(1119).
    Alós, E., Cercós, M., Rodrigo, M.-J., Zacarías, L., & Talón, M. (2006). Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. Journal of Agricultural and Food Chemistry, 54(13), 4888-4895.
    Alothman, M., Bhat, R., & Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry, 115(3), 785-788.
    Aloulou, A., & Carrière, F. (2008). Gastric lipase: an extremophilic interfacial enzyme with medical applications. Cellular and Molecular Life Sciences, 65(6), 851-854.
    Ambigaipalan, P., de Camargo, A. C., & Shahidi, F. (2016). Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. Journal of Agricultural and Food Chemistry, 64(34), 6584-6604.
    Amiot, M. J., Riva, C., & Vinet, A. (2016). Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obesity Reviews, 17(7), 573-586.
    Arruda, H. S., Silva, E. K., Pereira, G. A., Angolini, C. F. F., Eberlin, M. N., Meireles, M. A. A., & Pastore, G. M. (2019). Effects of high-intensity ultrasound process parameters on the phenolic compounds recovery from araticum peel. Ultrasonics Sonochemistry, 50, 82-95.
    Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., & Versteeg, C. K. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9(2), 155-160.
    Assini, J. M., Mulvihill, E. E., & Huff, M. W. (2013). Citrus flavonoids and lipid metabolism. Current Opinion in Lipidology, 24(1), 34-40.
    Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203.
    Batubara, I., Kuspradini, H., Muddathir, A. M., & Mitsunaga, T. (2014). Intsia palembanica wood extracts and its isolated compounds as Propionibacterium acnes lipase inhibitor. Journal of Wood Science, 60(2), 169-174.
    Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
    Berk, Z. (2009). Freeze drying (lyophilization) and freeze concentration. Food Process Engineering and Technology. Elsevier. New York, 522.
    Bhanja, T., Rout, S., Banerjee, R., & Bhattacharyya, B. C. (2007). Comparative profiles of alpha-amylase production in conventional tray reactor and GROWTEK bioreactor. Bioprocess and Biosystems Enginerring, 30(5), 369-376.
    Bimakr, M., Rahman, R. A., Saleena Taip, F., Adzahan, N. M., & Islam Sarker, Z. (2013). Ultrasound-assisted extraction of valuable compounds from winter melon (Benincasa hispida) seeds. International Food Research Journal, 20(1).
    Birari, R. B., & Bhutani, K. K. (2007). Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discovery Today, 12(19-20), 879-889.
    Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28(1), 25-30.
    Casacchia, T., Occhiuzzi, M. A., Grande, F., Rizzuti, B., Granieri, M. C., Rocca, C., . . . Statti, G. (2019). A pilot study on the nutraceutical properties of the Citrus hybrid Tacle® as a dietary source of polyphenols for supplementation in metabolic disorders. Journal of Functional Foods, 52, 370-381.
    Castro-Vazquez, L., Alañón, M. E., Rodríguez-Robledo, V., Pérez-Coello, M. S., Hermosín-Gutierrez, I., Díaz-Maroto, M. C., . . . Arroyo-Jiménez, M. d. M. (2016). Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (Citrus paradisi Macf.). Oxidative Medicine and Cellular Longevity, 2016, 8915729.
    Chandrasekara, A. (2019). Phenolic Acids. In Encyclopedia of Food Chemistry (pp. 535-545).
    Chemat, F., Zill e, H., & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813-835.
    Chemat, S., Lagha, A., AitAmar, H., Bartels, P. V., & Chemat, F. (2004). Comparison of conventional and ultrasound‐assisted extraction of carvone and limonene from caraway seeds. Flavour and Fragrance Journal, 19(3), 188-195.
    Cheng, L., Soh, C., Liew, S., & Teh, F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104(4), 1396-1401.
    Cho, N., Shaw, J., Karuranga, S., Huang, Y., da Rocha Fernandes, J., Ohlrogge, A., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281.
    Costa, M. G. M., Fonteles, T. V., de Jesus, A. L. T., Almeida, F. D. L., de Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2013). High-Intensity Ultrasound Processing of Pineapple Juice. Food and Bioprocess Technology, 6(4), 997-1006.
    Coutinho, W. (2009). The first decade of sibutramine and orlistat: a reappraisal of their expanding roles in the treatment of obesity and associated conditions. Arq Bras Endocrinol Metabol, 53(2), 262-270.
    Del Rı́o, J. A., Fuster, M. D., Gómez, P., Porras, I., Garcı́a-Lidón, A., & Ortuño, A. (2004). Citrus limon: a source of flavonoids of pharmaceutical interest. Food Chemistry, 84(3), 457-461.
    Di Matteo, A., Di Rauso Simeone, G., Cirillo, A., Rao, M. A., & Di Vaio, C. (2021). Morphological characteristics, ascorbic acid and antioxidant activity during fruit ripening of four lemon (Citrus limon (L.) Burm. F.) cultivars. Scientia Horticulturae, 276.
    Dirar, A. I., Alsaadi, D. H. M., Wada, M., Mohamed, M. A., Watanabe, T., & Devkota, H. P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 120, 261-267.
    Dollinger, L. M., & Howell, A. R. (1998). A 2-methyleneoxetane analog of orlistat demonstrating inhibition of porcine pancreatic lipase. Bioorganic and Medicinal Chemistry Letters, 8(8), 977-978.
    Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35.
    Elfalleh, W., Hannachi, H., Tlili, N., Yahia, Y., Nasri, N., & Ferchichi, A. (2012). Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. Journal of Medicinal Plants Research, 6(32), 4724-4730.
    Gionfriddo, F., Postorino, E., & Bovalo, F. (1996). I flavanoni glucosidici del succo di bergamotto. Essenze e derivati agrumari, 66(4), 404-416.
    Gironés-Vilaplana, A., Moreno, D. A., & García-Viguera, C. (2014). Phytochemistry and biological activity of Spanish Citrus fruits. Food and Function, 5(4), 764-772.
    Gogate, P. R. (2010). Theory of cavitation and design aspects of cavitational reactors. In Theoretical and Experimental Sonochemistry Involving Inorganic Systems (pp. 31-67): Springer.
    Goldberg, R. B., Einhorn, D., Lucas, C. P., Rendell, M. S., Damsbo, P., Huang, W. C., . . . Brodows, R. G. (1998). A randomized placebo-controlled trial of repaglinide in the treatment of type 2 diabetes. Diabetes Care, 21(11), 1897-1903.
    Gorinstein, S., Martı́n-Belloso, O., Park, Y.-S., Haruenkit, R., Lojek, A., Ĉı́ž, M., . . . Trakhtenberg, S. (2001). Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry, 74(3), 309-315.
    Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemistry, 38(11), 1599-1616.
    Gutiérrez-Grijalva, E. P., Antunes-Ricardo, M., Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Basilio Heredia, J. (2019). Cellular antioxidant activity and in vitro inhibition of α-glucosidase, α-amylase and pancreatic lipase of oregano polyphenols under simulated gastrointestinal digestion. Food Research International, 116, 676-686.
    Hafizur, R. M., Hameed, A., Shukrana, M., Raza, S. A., Chishti, S., Kabir, N., & Siddiqui, R. A. (2015). Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine, 22(2), 297-300.
    Herrera, M. C., & de Castro, M. D. (2005). Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection. Journal of Chromatography A, 1100(1), 1-7.
    Herrera, M. C., & Luque de Castro, M. D. (2005). Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection. Journal of Chromatography A, 1100(1), 1-7.
    Hromádková, Z., Košt’Álová, Z., & Ebringerová, A. (2008). Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochemistry, 15(6), 1062-1068.
    Huang, R., Zhang, Y., Shen, S., Zhi, Z., Cheng, H., Chen, S., & Ye, X. (2020). Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chemistry, 326, 126785.
    Huang, W., Xue, A., Niu, H., Jia, Z., & Wang, J. (2009). Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chemistry, 114(3), 1147-1154.
    Ince, N. H. (2018). Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrasonics Sonochemistry, 40, 97-103.
    Ithal, N., & Reddy, A. R. (2004). Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Science, 166(6), 1505-1513.
    Jacobo-Velázquez, D. A., Martínez-Hernández, G. B., del C. Rodríguez, S., Cao, C.-M., & Cisneros-Zevallos, L. (2011). Plants as biofactories: physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. Journal of Agricultural and Food Chemistry, 59(12), 6583-6593.
    Jacotet-Navarro, M., Rombaut, N., Deslis, S., Fabiano-Tixier, A.-S., Pierre, F.-X., Bily, A., & Chemat, F. (2016). Towards a “dry” bio-refinery without solvents or added water using microwaves and ultrasound for total valorization of fruit and vegetable by-products. Green Chemistry, 18(10), 3106-3115.
    Jeong, J. Y., Jo, Y. H., Lee, K. Y., Do, S.-G., Hwang, B. Y., & Lee, M. K. (2014). Optimization of pancreatic lipase inhibition by Cudrania tricuspidata fruits using response surface methodology. Bioorganic and Medicinal Chemistry Letters, 24(10), 2329-2333.
    Kawaguchi, K., Mizuno, T., Aida, K., & Uchino, K. (1997). Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas. Bioscience, Biotechnology, and Biochemistry, 61(1), 102-104.
    Kawser Hossain, M., Abdal Dayem, A., Han, J., Yin, Y., Kim, K., Kumar Saha, S., . . . Cho, S. G. (2016). Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. International Journal Molecular Science, 17(4), 569.
    Khadhraoui, B., Turk, M., Fabiano-Tixier, A., Petitcolas, E., Robinet, P., Imbert, R., . . . Chemat, F. (2018). Histo-cytochemistry and scanning electron microscopy for studying spatial and temporal extraction of metabolites induced by ultrasound. Towards chain detexturation mechanism. Ultrasonics Sonochemistry, 42, 482-492.
    Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A.-S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2), 851-858.
    Khan, M. K., Zill, E. H., & Dangles, O. (2014). A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis, 33(1), 85-104.
    Kim, G.-N., Shin, J.-G., & Jang, H.-D. (2009). Antioxidant and antidiabetic activity of Dangyuja (Citrus grandis Osbeck) extract treated with Aspergillus saitoi. Food Chemistry, 117(1), 35-41.
    Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews, 5(9), 19.
    Kwon, Y.-I. I., Vattem, D. A., & Shetty, K. (2006). Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 15(1), 107.
    Lado, J., Gambetta, G., & Zacarias, L. (2018). Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Scientia Horticulturae, 233, 238-248.
    Lattanzio, V. (2013). Phenolic Compounds: Introduction. In Natural Products (pp. 1543-1580).
    Leopoldini, M., Russo, N., & Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125(2), 288-306.
    Li, B. B., Smith, B., & Hossain, M. M. (2006). Extraction of phenolics from citrus peels: I. Solvent extraction method. Separation and Purification Technology, 48(2), 182-188.
    Liu, P.-K., Weng, Z.-M., Ge, G.-B., Li, H.-L., Ding, L.-L., Dai, Z.-R., . . . Hou, J. (2018). Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. International Journal of Biological Macromolecules, 118, 2216-2223.
    Liu, T. T., Liu, X. T., Chen, Q. X., & Shi, Y. (2020). Lipase Inhibitors for Obesity: A Review. Biomed Pharmacother, 128, 110314.
    Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M., & Chou, C. J. (2008). Flavonoids for controlling starch digestion: structural requirements for inhibiting human α-amylase. Journal of Medicinal Chemistry, 51(12), 3555-3561.
    Lu, S.-Y., Chu, Y.-L., Sridhar, K., & Tsai, P.-J. (2021). Effect of ultrasound, high-pressure processing, and enzymatic hydrolysis on carbohydrate hydrolyzing enzymes and antioxidant activity of lemon (Citrus limon) flavedo. LWT, 138, 110511.
    Luka, C., & Mohammed, A. (2012). Evaluation of the antidiabetic property of aqueous extract of Mangifera indica leaf on normal and alloxan-induced diabetic rats. Journal of Natural Product and Plant Resources, 2(2).
    Ma, P., He, P., Xu, C.-Y., Hou, B.-Y., Qiang, G.-F., & Du, G.-H. (2020). Recent developments in natural products for white adipose tissue browning. Chinese Journal of Natural Medicines, 18(11), 803-817.
    Ma, Y., Ye, X., Hao, Y., Xu, G., Xu, G., & Liu, D. (2008). Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrasonics Sonochemistry, 15(3), 227-232.
    Ma, Y.-L., Sun, P., Feng, J., Yuan, J., Wang, Y., Shang, Y.-F., . . . Wei, Z.-J. (2021). Solvent effect on phenolics and antioxidant activity of Huangshan Gongju (Dendranthema morifolium (Ramat) Tzvel. cv. Gongju) extract. Food and Chemical Toxicology, 147, 111875.
    Ma, Y.-Q., Chen, J.-C., Liu, D.-H., & Ye, X.-Q. (2009). Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry, 16(1), 57-62.
    Ma, Y.-Q., Ye, X.-Q., Fang, Z.-X., Chen, J.-C., Xu, G.-H., & Liu, D.-H. (2008). Phenolic compounds and antioxidant activity of extracts from ultrasonic treatment of Satsuma mandarin (Citrus unshiu Marc.) peels. Journal of Agricultural and Food Chemistry, 56(14), 5682-5690.
    Ma, Y. Q., Chen, J. C., Liu, D. H., & Ye, X. Q. (2008). Effect of ultrasonic treatment on the total phenolic and antioxidant activity of extracts from citrus peel. Journal of Food Science, 73(8), T115-T120.
    MacDougall, D. (2002). Colour in Food: Improving Quality: Woodhead Publishing.
    Macheix, J., Fleuriet, A., & Billot, J. (1990). The main phenolics of fruits. Fruit Phenolics, 1-98.
    Mahmoud, A. M., Ashour, M. B., Abdel-Moneim, A., & Ahmed, O. M. (2012). Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. Journal of Diabetes and its Complications, 26(6), 483-490.
    Majo, D. D., Giammanco, M., Guardia, M. L., Tripoli, E., Giammanco, S., & Finotti, E. (2005). Flavanones in Citrus fruit: Structure–antioxidant activity relationships. Food Research International, 38(10), 1161-1166.
    Maleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 299, 125124.
    Mcharek, N., & Hanchi, B. (2017). Maturational effects on phenolic constituents, antioxidant activities and LC-MS/MS profiles of lemon (Citrus limon) peels. Journal Applied Botany and Food Qualilty, 90, 1-9.
    Mehl, F., Marti, G., Boccard, J., Debrus, B., Merle, P., Delort, E., . . . Rudaz, S. (2014). Differentiation of lemon essential oil based on volatile and non-volatile fractions with various analytical techniques: a metabolomic approach. Food Chemistry, 143, 325-335.
    Menichini, F., Loizzo, M. R., Bonesi, M., Conforti, F., De Luca, D., Statti, G. A., . . . Tundis, R. (2011). Phytochemical profile, antioxidant, anti-inflammatory and hypoglycemic potential of hydroalcoholic extracts from Citrus medica L. cv Diamante flowers, leaves and fruits at two maturity stages. Food and Chemical Toxicology, 49(7), 1549-1555.
    Merzlyak, M. N., Gitelson, A. A., Pogosyan, S. I., Lekhimena, L., & Chivkunova, O. B. (1998). Light‐induced pigment degradation in leaves and ripening fruits studied in situ with reflectance spectroscopy. Physiologia Plantarum, 104(4), 661-667.
    Moser, S., Aragon, I., Furrer, A., Van Klinken, J.-W., Kaczmarczyk, M., Lee, B.-H., . . . Ferruzzi, M. G. (2018). Potato phenolics impact starch digestion and glucose transport in model systems but translation to phenolic rich potato chips results in only modest modification of glycemic response in humans. Nutrition Research, 52, 57-70.
    Mozaffarian, D. (2017). Foods, nutrients, and health: when will our policies catch up with nutrition science? The Lancet Diabetes and Endocrinology, 5(2), 85-88.
    Multari, S., Licciardello, C., Caruso, M., & Martens, S. (2020). Monitoring the changes in phenolic compounds and carotenoids occurring during fruit development in the tissues of four citrus fruits. Food Research International, 134, 109228.
    Mumtaz, M. W., Al-Zuaidy, M. H., Abdul Hamid, A., Danish, M., Akhtar, M. T., & Mukhtar, H. (2018). Metabolite profiling and inhibitory properties of leaf extracts of Ficus benjamina towards α-glucosidase and α-amylase. International Journal of Food Properties, 21(1), 1560-1574.
    Neeland, I. J., & Patel, K. V. (2019). Chapter 4 - Diabetes: Key Markers of Injury and Prognosis. In V. Nambi (Ed.), Biomarkers in Cardiovascular Disease (pp. 41-51): Elsevier.
    Nie, X.-R., Li, H.-Y., Wei, S.-Y., Han, Q.-H., Zhao, L., Zhang, Q., . . . Wu, D.-T. (2020). Changes of phenolic compounds, antioxidant capacities, and inhibitory effects on digestive enzymes of kiwifruits (Actinidia chinensis) during maturation. Journal of Food Measurement and Characterization, 14(3), 1765-1774.
    Nipornram, S., Tochampa, W., Rattanatraiwong, P., & Singanusong, R. (2018). Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chemistry, 241, 338-345.
    Nishad, J., Saha, S., Dubey, A. K., Varghese, E., & Kaur, C. (2019). Optimization and comparison of non-conventional extraction technologies for Citrus paradisi L. peels: a valorization approach. Journal of Food Science and Technology, 56(3), 1221-1233.
    Oboh, G., & Ademosun, A. O. (2011). Shaddock peels (Citrus maxima) phenolic extracts inhibit alpha-amylase, alpha-glucosidase and angiotensin I-converting enzyme activities: a nutraceutical approach to diabetes management. Diabetes Metabolic Syndrome, 5(3), 148-152.
    Oikeh, E., Oriakhi, K., & Omoregie, E. (2014). Phenolic content and in vitro antioxidant activities of sweet orange (Citrus sinensis L.) fruit wastes. Arch Bas App Med, 2, 119-126.
    Okumura, H. (2021). Application of phenolic compounds in plants for green chemical materials. Current Opinion in Green and Sustainable Chemistry, 27.
    Olszowy, M. (2019). What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology Biochemistry, 144, 135-143.
    Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338, 128119.
    Pereira, G. A., Arruda, H. S., de Morais, D. R., Eberlin, M. N., & Pastore, G. M. (2018). Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. Food Research International, 108, 264-273.
    Phan, M. A. T., Wang, J., Tang, J., Lee, Y. Z., & Ng, K. (2013). Evaluation of α-glucosidase inhibition potential of some flavonoids from Epimedium brevicornum. Food Science and Technology, 53(2), 492-498.
    Prakash Maran, J., Manikandan, S., Vigna Nivetha, C., & Dinesh, R. (2017). Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian Journal of Chemistry, 10, S1145-S1157.
    Qurrat ul, A., Ashiq, U., Jamal, R. A., Saleem, M., & Mahroof-Tahir, M. (2017). Alpha-glucosidase and carbonic anhydrase inhibition studies of Pd(II)-hydrazide complexes. Arabian Journal of Chemistry, 10(4), 488-499.
    Randhir, R., Lin, Y.-T., & Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry, 39(5), 637-646.
    Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956.
    Rosak, C., & Mertes, G. (2012). Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy, 5, 357-367.
    Safdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K., & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis, 25(3), 488-500.
    Sakulnarmrat, K., Srzednicki, G., & Konczak, I. (2014). Composition and inhibitory activities towards digestive enzymes of polyphenolic-rich fractions of Davidson's plum and quandong. Food Science and Technology, 57(1), 366-375.
    Sánchez, J., Priego, T., Palou, M., Tobaruela, A., Palou, A., & Picó, C. (2008). Oral Supplementation with Physiological Doses of Leptin During Lactation in Rats Improves Insulin Sensitivity and Affects Food Preferences Later in Life. Endocrinology, 149(2), 733-740.
    Sanderson, B. (2004). Applied sonochemistry–the uses of power ultrasound in chemistry and processing. By Timothy J Mason and John P Lorimer, Wiley‐VCH Verlag, Weinheim, 2002, 303 pp, ISBN 3‐527‐30205‐0. Journal of Chemical Technology & Biotechnology, 79(2), 207-208.
    Shirsath, S. R., Sonawane, S. H., & Gogate, P. R. (2012). Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10-23.
    Singh, M., Thrimawithana, T., Shukla, R., & Adhikari, B. (2020). Managing obesity through natural polyphenols: A review. Future Foods, 1-2, 100002.
    Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
    Siriamornpun, S., & Kaewseejan, N. (2017). Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Scientia Horticulturae, 221, 33-42.
    Subinya, M., Steudle, A. K., Jurkowski, T. P., & Stubenrauch, C. (2015). Conformation and activity of lipase B from Candida antarctica in bicontinuous microemulsions. Colloids and Surfaces B: Biointerfaces, 131, 108-114.
    Sumere, B. R., de Souza, M. C., dos Santos, M. P., Bezerra, R. M. N., da Cunha, D. T., Martinez, J., & Rostagno, M. A. (2018). Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 48, 151-162.
    Tiss, A., Lengsfeld, H., Carrière, F., & Verger, R. (2009). Inhibition of human pancreatic lipase by tetrahydrolipstatin: further kinetic studies showing its reversibility. Journal of Molecular Catalysis B: Enzymatic, 58(1-4), 41-47.
    Trapero, A., & Llebaria, A. (2012). A prospect for pyrrolidine iminosugars as antidiabetic α-glucosidase inhibitors. In: ACS Publications.
    Vinayagam, R., Jayachandran, M., & Xu, B. (2016). Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review. Phytotherapy Research, 30(2), 184-199.
    Wang, J., Wang, J., Ye, J., Vanga, S. K., & Raghavan, V. (2019). Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, 96, 128-136.
    Wang, Y.-C., Chuang, Y.-C., & Hsu, H.-W. (2008). The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chemistry, 106(1), 277-284.
    Wang, Y.-C., Chuang, Y.-C., & Ku, Y.-H. (2007). Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chemistry, 102(4), 1163-1171.
    Winkler, F. K., D'Arcy, A., & Hunziker, W. (1990). Structure of human pancreatic lipase. Nature, 343(6260), 771-774.
    Winkler, U. K., & Stuckmann, M. (1979). Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journa of Bacteriol, 138(3), 663-670.
    Wissam, Z., Ghada, B., Wassim, A., & Warid, K. (2012). Effective extraction of polyphenols and proanthocyanidins from pomegranate’s peel. International Journal of Pharmcy and Pharmaceutical Sciences, 4(Suppl 3), 675-682.
    Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., . . . Huang, Q. (2019). Hesperidin: A Therapeutic Agent For Obesity. Drug Design, Development and Therapy, 13, 3855-3866.
    Yusof, S., Ghazali, H. M., & King, G. S. (1990). Naringin content in local citrus fruits. Food Chemistry, 37(2), 113-121.
    Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33-42.
    Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.
    Zhu, Y.-T., Jia, Y.-W., Liu, Y.-M., Liang, J., Ding, L.-S., & Liao, X. (2014). Lipase ligands in Nelumbo nucifera leaves and study of their binding mechanism. Journal of Agricultural and Food Chemistry, 62(44), 10679-10686.

    無法下載圖示 校外公開
    2026/07/04
    QR CODE