簡易檢索 / 詳目顯示

研究生: 羅迪瓦
Shreesha Sadashiva Rao
論文名稱: 養殖魚類乳酸乳球菌之基因特性、表面特性及疫苗效力評估
Genetic characteristics, cell-surface properties and vaccine efficacy of Lactococcus garvieae in cultured fish
指導教授: 陳石柱
Shih-Chu Chen
學位類別: 博士
Doctor
系所名稱: 獸醫學院 - 獸醫學系所
Department of Veterinary Medicine
畢業學年度: 109
語文別: 英文
論文頁數: 124
中文關鍵詞: 乳酸球菌致病性烏魚疫苗海鱺
外文關鍵詞: Lactococcus garvieae, pathogenicity,, Grey mullet, vaccine, Cobia
DOI URL: http://doi.org/10.6346/NPUST202100213
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 乳酸球菌(Lactococcus garvieae),此病原體已有多種淡水、海水養殖魚類感染病例,因急性出血性敗血症及高死亡率而被重視。因此,本論文以四個主題進行分析研究:(1) 進行烏魚來源乳酸球菌分離株與其他不同魚種來源菌株間之基因特性、表面特性分析。(2) 以實驗室規格進行烏魚乳酸球菌福馬林不活化疫苗之保護效力評估。 (3) 烏魚候選疫苗進行田間免疫後1、3個月之保護效力評估。 (4) 研究分析台灣首例箱網養殖海鱺感染乳酸球菌症分離菌株之表現特性、基因特性及致病性。
    來自台灣不同地理位置養殖烏魚感染乳酸球菌症病例所分離之41株乳酸球菌菌株之表現型分析包括革蘭氏染色、氧化酶(oxidase)、過氧化氫酶(Catalase)、運動性(Motility)、NaCl耐受性、bile-esculin水解能力等。以16S rRNA之pLG-1和pLG-2引子對以及針對編碼位於16S-23S rRNA基因內之內部轉錄間隔區Internal transcribed spacer (ITS) 區域設計之G1和L1特異性引子對分別鑑定分析不同分離菌株。透過GenBank數據庫相比及親緣關係樹分析結果,可獲得16S rRNA和內部轉錄間隔區(ITS)區域的核苷酸序列相似性為99.1-100%。同時以限制酶SmaI和ApaI分別進行菌株染色體核型之脈衝式電泳(PFGE)分析。結果大多數菌株之基因型呈現相同的脈衝型,有利於流行病學之研究。
    依據菌株不同脈衝型分析結果挑選候選菌株,進行致病性研究及半致死劑量(median lethal dose (LD50)測試,並以不同毒力候選菌株進行細胞表面特性研究。以電子顯微鏡觀察候選菌株之細胞表面特殊結構特性,並評估具有該結構菌株免疫魚隻後,確實可提供使魚隻獲得對乳酸球菌較具高的特異型抗體力價。因此研製該候選菌株(OT103003-S3) 之福馬林不活化死菌疫苗以實驗室規格進行烏魚注射免疫及同源、異源菌株攻毒評比疫苗之保護效力。結果其疫苗保護之相對存活率 (Relative percent survival (RPS)分別為91.4%和100%,且於攻毒後24小時各疫苗組之相關促炎性和抗炎性免疫基因的表現均明顯上升,溶菌酶活性和特異性抗體力價亦隨免疫期程呈現正向提升。另,以異源菌株分別於疫苗免疫後1、3個月進行攻毒,結果確實可保護烏魚抵抗乳酸球菌感染,RPS均為100%。
    首例台灣箱網養殖海鱺感染病例出現後進行病原菌之表現特性、基因特性、表面特性分析及致病性研究。結果確認海鱺分離株菌種為乳酸球菌(L. garvieae) 。本菌在表現型中非莢膜 (KG +) 已被證實為其潛在致病性的毒力因子之一,雖本研究中進行莢膜基因 (Capsular gene cluster, CGC) 檢測為陰性,但以莢膜染色和穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 技術則證實海鱺分離株的類透明質酸莢膜 (Hyaluronic acid-like) 結構確實存在。另,致病性研究結果,以候選菌株(AOD109191) 以人工接種攻毒後可引發與自然界海鱺感染本菌病症之相同病理學病變,符合Koch 假說病原菌定義,證實乳酸球菌確實在箱網養殖海鱺為一新浮現病原菌,並值得未來投入本病防治疫苗研製以減少化學用藥、落實保護環境永續,同時可增進產業發展。

    Lactococcus garvieae is a persistent pathogen in aquaculture that causes lactococcosis in cultured fish, a disease characterized by hyperacute hemorrhagic septicemic infections and mass mortalities in fish cultivated both in fresh and marine waters. The present study was designed with four major objectives: 1) Epidemiological study of L. garvieae isolated from grey mullet and other fish species isolated within different geographic locations of Taiwan and to characterize the cell surface property of contagious isolate from grey mullet through electron microscopic visualization. 2) To determine the efficacy of a formalin-killed L. garvieae (FKC) vaccine in grey mullet in a laboratory trial, both with and without adjuvant, through multiple parameters. 3) To assess the efficacy of formalin-killed L. garvieae (FKC) in a field trial with double dose vaccination over a three-month period for cross-protection. 4) Phenotypic and genotypic comparisons of newly identified L. garvieae isolates from cobia to previously characterized isolates.
    A total of 41 fish pathogenic L. garvieae isolates were successfully isolated from diseased fish from different geographical locations in Taiwan majorly isolated from grey mullet. For comparison and characterization of Taiwanese isolates, three Japanese strains of L. garvieae and one reference strain, ATCC 43921, were used. All isolates obtained from pure bacterial cultures were subjected to Gram staining and common bench tests, ability to develop on bile esculin agar was examined. pLG-1 and pLG-2 primers targeting 16S ribosomal RNA (rRNA) and G1 & L1 primers targeting the 16S–23S rRNA gene encoding the internal transcribed spacer (ITS) region were used for L. garvieae-specific PCR. For genotyping, genomic DNA fingerprinting was performed by pulsed-field gel electrophoresis (PFGE) by using the SmaI and ApaI restriction enzymes digestion. The results revealed an identical profile seemed to be more suitable for epidemiological studies of L. garvieae. The pathogenicity and cell surface property of selected pathogenic isolate (OT103003-S3) from grey mullet was established by performing lethal dose determination challenge. Further, the pathogenic isolate was observed for its cell surface property through electron microscopic visualization, of non-treated L. garvieae did not show the presence of capsule on the bacterial surface. The electron microscopic visualization of selected pathogenic isolate (OT103003-S3) was confirmed to be KG+ phenotype. upon incubation with fish serum, the ability of KG+ phenotypic L. garvieae to evade phagocytosis by cloaking itself against specific antibodies was observed.
    To evaluate the ability of a formalin-killed L. garvieae vaccine; research was designed with an oil-based adjuvant in grey mullet in laboratory trail. Formalin-killed cells (FKC) of previously selected pathogenic isolate (OT103003-S3) was used for the study. Electron microscopy observation of the FKC revealed a peculiar membrane vesicle-like pimple structure on the surface of L. garvieae, possibly indicating a shift in cell surface property in formalin-killed cells. Grey mullet fish were immunized with formalin-killed L. garvieae vaccine an oil-based adjuvant for single-dose test in laboratory trials. When challenged with homologous and heterologous strains after one month, the adjuvant mixed formalin-killed L. garvieae resulted in 91.4 percent and 100 percent relative percent survival (RPS), respectively. The vaccinated community had substantially higher levels of specific antibody titer and lysozyme activity. The levels of pro-inflammatory and anti-inflammatory cytokines increased 24 hours after the challenge, according to immune gene expression. The long-term efficacy of the L. garvieae vaccine was investigated in a parallel field trial experiment. The results showed that 100 percent survival was observed in the vaccinated groups of one month and three months after heterologous challenge.
    In conjunction with multiple host species susceptible to L. garvieae infection, an etiological detection in diseased cage-cultured cobia (Rachycentron canadum) indicated an infection with L. garvieae for the first time. All isolates recovered were confirmed to be L. garvieae through, API 32 strep system and pLG-1 and pLG-2 primers targeting 16S ribosomal RNA (rRNA) and G1 & L1 primers targeting the 16S–23S rRNA gene encoding the internal transcribed spacer (ITS) region were used for L. garvieae-specific PCR. Genotypic characterization of cobia isolates was performed in comparison with previously characterized pathogenic isolate from grey mullet (vaccine strain- OT103003-S3) along with three Japanese strains of L. garvieae and one reference strain, ATCC 43921. Similar to our previous observations with pathogenic isolate from grey mullet (OT103003-S3), transmission electron microscopy and multiplex PCR revealed no existence of the capsular gene cluster (CGC) in L. garvieae isolates(AOD109191) from cobia. Intraperitoneal injection challenges in cobia were used to assess the pathogenic potential of the representative isolate in order to fulfil the Koch postulate. The gross lesions and histopathological changes observed in experimentally infected cobia were comparable to those observed in naturally infected fish. As a result, it confirms that L. garvieae caused disease outbreaks in cage-cultured cobia.
    The overall results of the present study revile the genotypic and phenotypic characterisation of Taiwanese isolates and potency of pathogenic L. garvieae isolates as vaccine candidates and as an essential resource for further studies on inactivated vaccine in the Taiwanese grey mullet farming industry exhibiting concern over emergence of new isolates within aquaculture fish species like Cobia.

    摘要.........................I
    Abstract........................II
    Acknowledgements.....................VII
    List of Tables.....................XIV
    List of Figures.....................XVI
    List of Abbreviations.....................XXIII
    CHAPTER 1...........................1
    Introduction..........................1
    1.1. Research background..........................1
    1.2. Research objectives..........................4
    CHAPTER 2..........................5
    Literature Review..........................5
    2.1. Taxonomy classification..........................6
    2.2. Biochemical, genetic and morphological profile..........................7
    2.3. Serotype of L. garvieae..........................8
    2.4. Genotypic classifications..........................10
    2.5. Virulence Factors..........................11
    2.5.1. Membrane vesicle formation in Gram-Positive bacteria.......................13
    2.5.2. Bacterial Membrane Vesicle as Decoy.......................14
    2.5.3. Role of BMVs During Infection.......................14
    2.5.4. Biofilm formation.......................14
    2.6. Host Pathogen Interaction................................15
    2.7. Lactococcosis in Taiwanese Aquaculture..................................15
    2.8. Grey Mullet (Mugil cephalus)...............................15
    2.9. Cobia (Rachycentron canadum)...............................16
    2.10. Disease Control...............................17
    2.10.1. Antibiotic resistance...............................18
    2.10.2. Immunogenicity against L. garvieae..............................18
    2.10.3. Immune evasion mechanisms..............................18
    CHAPTER 3..............................19
    Materials and Methods..............................22
    Experimental Design............................22
    3.1. Identification and characteristic of L. garvieae isolated from grey mullet comparison to other reference fish isolates.............................22
    3.1.1. Identification of the strains............................22
    3.1.2. Analysis of L. garvieae genotype by pulsed- field gel electrophoresis...........................23
    3.1.3. Electron microscopy..........................25
    3.1.3.1. Transmission Electron Microscopy (TEM)..........................26
    3.1.3.2. Scanning electron microscopy (SEM)..........................27
    3.2. To evaluate the efficacy of formalin-killed L. garvieae (FKC) vaccine in grey mullet in laboratory trail conferring with adjuvant and without adjuvant.......................28
    3.2.1. Husbandry.....................29
    3.2.2. Identification of the strains.....................30
    3.2.3. Formalin-inactivated bacterin preparation....................31
    3.2.4. Vaccine preparation and immunization...................31
    3.2.5. Challenge trials...................31
    3.2.6. Evaluation of antibody production...................32
    3.2.7. Serum lysozyme assay...................32
    3.2.8. Total ribonucleic acid (RNA) isolation and quantitative PCR (qPCR).............................33
    3.2.9. Statistical analysis
    3.3. To evaluate the efficacy of formalin-killed L. garvieae (FKC) in field trials for one month and three-month............................36
    3.3.1. Preliminary experiment for cross protection study (single dose)...........................36
    3.3.1.1. Vaccination and fish husbandry...........................36
    3.3.1.2. Challenge trials...........................36
    3.3.2. Protective efficacy of the vaccine in the field trial (booster)...........................36
    3.3.2.1. Husbandry...........................36
    3.3.2.2. Immunization...........................37
    3.3.2.3. Challenge trials...........................36
    3.3.2.4. Evaluation of antibody production…............................36
    3.3.2.5. Statistical analysis…………………..............................38
    3.4. Isolation, identification, characterization and Molecular phenotyping of L. garvieae emerged cage cultured cobia in offshores of Taiwan………………………………………............................39
    3.4.1. Case description and sampling...........................39
    3.4.2. Macroscopic and histological analyses...........................40
    3.4.3. Isolation and characterization of bacteria...........................41
    3.4.4. Phenotypic and biochemical characterizations...........................41
    3.4.5. PCR and phylogenetic analyses...........................42
    3.4.6. Genetic characterization...........................42
    3.4.7. Scanning electron microscopy...........................43
    3.4.8. Transmission electron microscopy.........................43
    3.4.9. Experimental challenge of cobia.........................46
    3.4.10. Statistical analysis.........................47

    CHAPTER 4.........................48
    Results and Discussions.........................48
    4.1. Identification and characteristic of L. garvieae isolated from grey mullet comparison to other reference fish isolates..........................48
    4.1.1. Genetic diversity of L. garvieae isolates........................48
    4.1.1.1 Pulsed field gel electrophoresis (PFGE) analysis using ApaI restriction enzyme........................48
    4.1.1.2. Pulsed field gel electrophoresis (PFGE) analysis using SmaI restriction enzyme........................52
    4.1.2. Electron microscopy........................55
    4.1.2.1. Transmission electron microscopic observation........................56
    4.1.2.2. Bactericidal activity of antiserum against L. garvieae........................56
    4.1.2.3. Scanning electron microscopic observation........................58
    4.1.2.4. Biofilm formation........................59
    4.2. To evaluate the efficacy of formalin-killed L. garvieae (FKC) vaccine in grey mullet in laboratory trail conferring with adjuvant and without adjuvant.........................62
    4.2.1. Transmission electron microscopic observation of FKC ........................64
    4.2.2. Serum agglutination titer........................65
    4.2.3. Serum lysozyme assay.......................67
    4.2.4. Determination of the expression of immune related genes.......................69
    4.3. To evaluate the efficacy of formalin-killed L. garvieae (FKC) in field trial......................75
    4.3.1. Protective efficacy cross protection through preliminary trial experiment.....................75
    4.3.2. Protective efficacy of the vaccine in the field trial with booster.....................77
    4.3.2.1. Protective efficacy of the vaccine in the field trial for one-month....................78
    4.3.2.2. Protective efficacy of the vaccine in the field trial for three-month....................81
    4.3.2.3. Serum agglutination titer....................83
    4.4. Isolation, identification, characterization and Molecular phenotyping of L. garvieae emerged cage cultured cobia in offshores of Taiwan....................83
    4.4.1. Case history....................83
    4.4.2. Bacteriological and biochemical analyses....................84
    4.4.3. Histopathology....................85
    4.4.4. Molecular identification and phylogenetic analysis....................87
    4.4.4.1. Genetic characterization...................90
    4.4.4.2. Multiplex PCR for the CGC genes...........................92
    4.4.5. Scanning electron microscopy.........................94
    4.4.6. Transmission electron microscopy.........................95
    4.4.7. Challenge assays.........................97
    CHAPTER 5.........................99
    Conclusion and Future study.........................99
    5.1. Characteristics of L. garvieae isolated from different host species.........................99
    5.2. Development and evaluation of inactivated vaccine in laboratory trail.........................100
    5.3. Development and evaluation of inactivated vaccine in field trial.........................101
    5.4. Characteristics of newly emerged L. garvieae strains in cobia.........................101
    REFERENCES........................103
    APPENDICES........................120
    Bio-Sketch of Author........................123

    Adams, A. (2019). Progress, challenges and opportunities in fish vaccine development. Fish & shellfish immunology, 90, 210-214.
    Aguado-Urda, M., Rodríguez-Bertos, A., delas Heras, A. I., Blanco, M. M., Acosta, F., Cid, R., Fernández-Garayzábal, J. F., & Gibello, A. (2014). Experimental Lactococcus garvieae infection in zebrafish and first evidence of its ability to invade non-phagocytic cells. Veterinary Microbiology,171(1–2), 248–254.
    Algöet, M., Bayley, A. E., Roberts, E. G., Feist, S. W., Wheeler, R. W., &Verner-Jeffreys, D. W. (2009). Susceptibility of selected freshwater fish species to a UK Lactococcus garvieae isolate. Journal of Fish Diseases, 32(10), 825–834.
    Altun, S., Kubilay, A., Ekici, S., Didinen, B. I., & Diler, O. (2009). Taşıyıcı olarak poli (lactid-ko-glikolid) ve Sodium Alginate Kullanılarak Gökkuşağı Alabalıkları (Oncorhyncus mykiss)’nın Lactococcus garvieae’ye Karşı Oral İmmunizasyonu. Kafkas Universitesi Veteriner Fakultesi Dergisi, 16, 211–217.
    Anshary, H., Kurniawan, R. A., Sriwulan, S., Ramli, R., & Baxa, D.V. (2014). Isolation and molecular identification of the etiological agents of streptococcosis in Nile tilapia (Oreochromis niloticus) cultured in net cages in Lake Sentani, Papua, Indonesia. SpringerPlus, 3(1).
    Aubin, G. G., Bémer, P., Guillouzouic, A., Crémet, L., Touchais, S., Fraquet, N., Boutoille, D., Reynaud, A., Lepelletier, D., & Corvec, S. (2011). First report of a hip prosthetic and joint infection caused by Lactococcus garvieae in a woman fishmonger. Journal of Clinical Microbiology, 49(5), 2074–2076.
    Austin, B., & Austin, D. A. (2007). Characteristics of the pathogens: Gram-negative bacteria. Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish, 81-150.
    Barnes, A. C., & Ellis, A. E. (2004). Role of capsule in serotypic differences and complement fixation by Lactococcus garvieae. Fish and Shellfish Immunology, 16(2), 207–214.
    Barnes, A. C., Guyot, C., Hansen, B. G., Mackenzie, K., Horne, M. T., & Ellis, A. E. (2002). Resistance to serum killing may contribute to differences in the abilities of capsulate and non-capsulated isolates of Lactococcus garvieae to cause disease in rainbow trout (Oncorhynchus mykiss L.). Fish and Shellfish Immunology, 12(2), 155–168.
    Barnes, A. C., Young, F. M., Horne, M. T., & Ellis, A. E. (2003). Streptococcus iniae: serological differences, presence of capsule and resistance to immune serum killing. Diseases of Aquatic Organisms, 53(3), 241–247.
    Bastardo, A., Ravelo, C., Castro, N., Calheiros, J., & Romalde, J. L. (2012). Effectiveness of bivalent vaccines against Aeromonas hydrophila and Lactococcus garvieae infections in rainbow trout Oncorhynchus mykiss (Walbaum). Fish and Shellfish Immunology, 32(5), 756–761.
    Baumgarten, T., Sperling, S., Seifert, J., vonBergen, M., Steiniger, F., Wick, L. Y., & Heipieper, H. J. (2012). Membrane vesicle formation as a multiple-stress response mechanism enhances pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Applied and Environmental Microbiology, 78(17), 6217–6224.
    Brown, L., Kessler, A., Cabezas-Sanchez, P., Luque-Garcia, J. L., & Casadevall, A. (2014). Extracellular vesicles produced by the Gram-positive Bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin. Molecular Microbiology, 93(1),183–198.
    Bwalya, P., Hang'ombe, B. M., Gamil, A. A., Munang'andu, H. M., Evensen, Ø., & Mutoloki, S. (2020). A whole-cell Lactococcus garvieae autovaccine protects Nile tilapia against infection. PLoS One, 15(3), e0230739.
    Byadgi, O., Chen, Y. C., Barnes, A. C., Tsai, M. A., Wang, P. C., & Chen, S. C. (2016). Transcriptome analysis of grey mullet (Mugil cephalus) after challenge with Lactococcus garvieae. Fish & shellfish immunology, 58, 593-603.
    Cao, T. T., Tsai, M.-A., Yang, C.-D., Wang, P.-C., Kuo, T.-Y., Chen, H.-C. G., & Chen, S.-C. (2014). Vaccine efficacy of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Edwardsiella ictaluri against E. tarda in tilapia. The Journal of General and Applied Microbiology, 60(6), 241–250.
    Castellanos-Galindo, G. A., Baos, R., & Zapata, L. A. (2016). Mariculture-induced introduction of cobia Rachycentron canadum (Linnaeus, 1766), a large predatory fish, in the Tropical Eastern Pacific. BioInvasions Records, 5(1), 55–58.
    Castro, R., Reguera-Brito, M., López-Campos, G. H., Blanco, M. M., Aguado-Urda, M., Fernández-Garayzábal, J. F., & Gibello, A. (2017). How does temperature influence the development of lactococcosis? Transcriptomic and immunoproteomic in vitro approaches. Journal of Fish Diseases, 40(10), 1285–1297.
    Castro, R., Coll, J., del Mar Blanco, M., Rodriguez-Bertos, A., Jouneau, L., Fernández-Garayzábal, J. F., & Gibello, A. (2019). Spleen and head kidney differential gene expression patterns in trout infected with Lactococcus garvieae correlate with spleen granulomas. Veterinary research, 50(1), 1-14.
    Carson, J., Gudkovs, N., & Austin, B. (1993). Characteristics of an Enterococcus-like bacterium from Australia and South Africa, pathogenic for rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis., 16, 381-388.
    Chang, C. W., Iizuka, Y., & Tzeng, W. N. (2004). Migratory environmental history of the grey mullet Mugil cephalus as revealed by otolith Sr:Ca ratios. Marine Ecology Progress Series, 269, 277–288.
    Chang, P. H., Lin, C. W., & Lee, Y. C. (2002). Lactococcus garvieae infection of cultured rainbow trout, Oncorhynchus mykiss, in Taiwan and associated biophysical characteristics and histopathology. Bulletin of the European Association of Fish Pathologists, 22(5), 319–327.
    Chen, S. C., Liaw, L. L., Su, H. Y., Ko, S. C., Wu, C. Y., Chaung, H. C., Tsai, Y. H., Yang, K. L., Chen, Y. C., Chen, T. H., Lin, G. R., Cheng, S. Y., Lin, Y. D., Lee, J. L., Lai, C. C., Weng, Y. J., & Chu, S. Y. (2002). Lactococcus garvieae, a cause of disease in grey mullet, Mugil cephalus L., in Taiwan. Journal of Fish Diseases, 25(12), 727–732.
    Chen, S. C., Lin, Y. D., Liaw, L. L., & Wang, P. C. (2001). Lactococcus garvieae infection in the giant freshwater prawn Macrobranchium rosenbergii confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of Aquatic Organisms, 45(1), 45–52.
    Chen, S. C., Thompson, K. D., Adams, A., & Richards, R. H. (2001b). The production of a lymphokine (macrophage activating factor) by rainbow trout, Oncorhynchus mykiss (Walbaum), leucocytes stimulated with the extracellular products of Mycobacterium sp. Journal of Fish Diseases, 24(4), 217–223.
    Chen, Y., Dai, J., Morris, J. G., & Johnson, J. a. (2010). Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6. BMC Microbiology, 10(1), 274.
    Cheng, W., Tung, Y. H., Liu, C. H., & Chen, J. C. (2006). Molecular cloning and characterization of cytosolic manganese superoxide dismutase (cytMn-SOD) from the giant freshwater prawn Macrobrachium rosenbergii. Fish and Shellfish Immunology, 20(4),
    Chu, H., & Mazmanian, S. K. (2013). Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nature immunology, 14(7), 668-675.
    Chu, K. B., Abdulah, A., Abdullah, S. Z., & Bakar, R. A. (2013). A case study on the mortality of cobia (Rachycentron canadum) cultured in traditional cages. Trop. Life Sci. Res., 24(2), 77–84.
    Duman, M., Buyukekiz, A. G., Saticioglu, I. B., Cengiz, M., Sahinturk, P., &Altun, S. (2020). Epidemiology, genotypic diversity, and antimicrobial resistance of Lactococcus garvieae in farmed rainbow trout (Oncorhynchus mykiss. Iran. J. Fish. Sci, 19(1), 1–18.
    Ebner, P., & Götz, F. (2019). Bacterial Excretion of Cytoplasmic Proteins (ECP): Occurrence, Mechanism, and Function. Trends in Microbiol, 27(2), 176–187.
    Eldar, A., Horovitcz, A., & Bercovier, H. (1997). Development and efficacy of a vaccine against Streptococcus iniae infection in farmed rainbow trout. Vet. Immunol. Immunopathol., 56(1-2), 175-183.
    Eldar, A., Ghittino, C., Asanta, L., Bozzetta, E., Goria, M., Prearo, M., & Bercovier, H. (1996). Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Curr. Microbiol., 32(2), 85-88.
    Eldar, A., Goria, M., Ghittino, C., Zlotkin, A., & Bercovier, H. (1999). Biodiversity of Lactococcus garvieae Strains Isolated from Fish in Europe, Asia, and Australia. Appl. Environ. Microbiol, 65(3), 1005-1008.
    Enos-Berlage, J. L., & McCarter, L. L. (2000). Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. Journal of Bacteriology, 182(19), 5513-5520.
    Evans, J. J., Klesius, P. H., & Shoemaker, C. A. (2009). First isolation and characterization of Lactococcus garvieae from Brazilian Nile tilapia, Oreochromis niloticus (L.), and pintado, Pseudoplathystoma corruscans (Spix & Agassiz). Journal of fish diseases, 32(11), 943-951.
    Eyngor, M., Zlotkin, A., Ghittino, C., Prearo, M., Douet, D. G., Chilmonczyk, S., & Eldar, A. (2004). Clonality and diversity of the fish pathogen Lactococcus garvieae in Mediterranean countries. Appl. Environ. Microbiol., 70(9), 5132-5137.
    FAO, I. (2016). The state of world fisheries and aquaculture (2016). Contributing to food security and nutrition for all, 200.
    Freney, J., Bland, S., Etienne, J., Desmonceaux, M., Boeufgras, J. M., & Fleurette, J. (1992). Description and evaluation of the semiautomated 4-hour rapid ID 32 Strep method for identification of streptococci and members of related genera. J. Clin. Microbiol., 30(10), 2657-2661
    Ferrario, C., Ricci, G., Milani, C., Lugli, G. A., Ventura, M., Eraclio, G., Borgo, F., & Fortina, M. G. (2013). Lactococcus garvieae: Where is it from? A first approach to explore the evolutionary history of this emerging pathogen. PLoS ONE, 8(12).
    Halimi, M., Alishahi, M., Abbaspour, M. R., Ghorbanpoor, M., & Tabandeh, M. R. (2020). High efficacy and economical procedure of oral vaccination against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol, 99(February), 505–513.
    Hall-stoodley, L., & Stoodley, P. (2005). Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol., 13(1), 7-10.
    Han, H. J., Lee, N. S., Kim, M. S., & Jung, S. H. (2015). An outbreak of lactococcus garvieae infection in cage-cultured red lip mullet chelon haematocheilus with green liver syndrome. Fish Aquatic Sci. 18(3). 333–339.
    Hashish, E., Merwad, A., Elgaml, S., Amer, A., Kamal, H., Elsadek, A., Marei, A., & Sitohy, M. (2018). Mycobacterium marinum infection in fish and man: Epidemiology, pathophysiology and management; a review. Veterinary Quarterly, 38(1), 35–46.
    Hirokawa, Y., Irie, T., Ooyama, T., Yasuda, H., Nakamura, A., Jin, D.-H., Kittigul, C., & Yoshida, T. (2004). Lactococcus garvieae strains from yellowtail Seriola quinqueradiata carry different lengths of fimbriae on their cell surface. Fisheries Science, 70(3), 521–523.
    Hirono, I., Yamashita, H., Park, C.Il, Yoshida, T., & Aoki, T. (1999). Identification of genes in a KG- phenotype of Lactococcus garvieae, a fish pathogenic bacterium, whose proteins react with anti-KG- rabbit serum. Microbial Pathogenesis, 27(6), 407–417.
    Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 35(4), 322–332.
    Hoai, T. D., Nishiki, I., Yoshida, T., & Nakai, T. (2018). Host range and influence of a cell capsule on the phage efficacy of three Lactococcus garvieae lytic phages. Diseases of Aquatic Organisms, 128(1), 81–86. https://doi.org/10.3354/dao03212
    Huang, H. Y., Chen, Y. C., Wang, P. C., Tsai, M. A., Yeh, S. C., Liang, H. J., & Chen, S. C. (2014). Efficacy of a formalin-inactivated vaccine against Streptococcus iniae infection in the farmed grouper Epinephelus coioides by intraperitoneal immunization. Vaccine, 32(51), 7014–7020.
    Hung, C. M., & Shaw, D. (2006). The impact of upstream catch and global warming on the grey mullet fishery in Taiwan: A non-cooperative game analysis. Mar. Resour. Econ, 21(3), 285–300.
    Ingunn, S., Eirik, B., & Petter, F. (2005). Vaccines for fish in aquaculture. Expert Review of Vaccines, 4(1), 89-101.
    Ismail, S., Hampton, M. B., & Keenan, J. I. (2003). Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infection and immunity, 71(10), 5670-5675.
    Jensen, M. A., J. A., & W., &Straus, N. (1993). Rapid Identification of Bacteria on the Basis of Polymerase Chain Reaction-Amplified Ribosomal DNA Spacer Polymorphisms. Appl. Environ. Microbiol, 55(4), 945–952.
    Kaláb, M., Yang, A.-F., & Chabot, D. (2008). Conventional scanning electron microscopy of bacteria. Infocus Magazine, 10, 42–61.
    Kanai, K., Honma, T., Souda, A., Shutou, K., & Sugihara, Y. (2018). Variation in the integration site for capsule gene cluster in the genome among strains of Lactococcus garvieae. Fish Pathology, 53(1), 19–28.
    Karami, E., Alishahi, M., Molayemraftar, T., & Ghorbanpour, M. (2019). Study of pathogenicity and severity of Lactococcus garvieae isolated from rainbow trout (Oncorhynchus mykiss) farms in Kohkilooieh and Boyerahmad province. Fisheries and Aquatic Sciences, 22(1), 1–7.
    Kawanishi, M., Yoshida, T., Yagashiro, S., Kijima, M., Yagyu, K., Nakai, T., Murakami, M., Morita, H., & Suzuki, S. (2006). Differences between Lactococcus garvieae isolated from the genus Seriola in Japan and those isolated from other animals (trout, terrestrial animals from Europe) with regard to pathogenicity, phage susceptibility and genetic characterization. J. Appl. Microbiol, 101(2), 496–504.
    Kitao, T. (1982). The Methods for Detection of Streptococcus sp., Causative Bacteria of Streptococcal Disease of Cultured Yellowtail (Seriola quinqueradiata). Fish Pathology, 17(1), 17–26.
    Kusuda, R., Kawai, K., Salati, F., Banner, C. R., & Fryer, J. L. (1991). Enterococcus seriolicida sp. nov., a fish pathogenInt. J. Syst. Evol., 41(3), 406-409.
    Liao, I. C., Huang, T. S., Tsai, W. S., Hsueh, C. M., Chang, S. L., &, Leaño, E. M., Liao, I. C., Huang, T. S., Tsai, W. S., Hsueh, C. M., Chang, S. L., Leaño, E. M., Liao, I. C., Huang, T. S., Tsai, W. S., Hsueh, C. M., Chang, S. L., &, & Leaño, E. M. (2004). Cobia culture in Taiwan: current status and problems. Aquaculture, 237(1–4), 155–165.
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408.
    Louca, S., Doebeli, M., & Parfrey, L. W. (2018). Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome, 6(1), 1-12.
    Ma, J., Bruce, T. J., Jones, E. M., & Cain, K. D. (2019). A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms, 7(11).
    Mandel, M. J., Wollenberg, M. S., Stabb, E.V, Visick, K. L., & Ruby, E. G. (2009). A single regulatory gene is sufficient to alter bacterial host range. Nature, 458(7235), 215–218.
    Meyburgh, C. M., Bragg, R. R., & Boucher, C. E. (2017). Lactococcus garvieae: An emerging bacterial pathogen of fish. Dis. Aquat. Org, 123(1), 67–79.
    Munang’andu, H. M., Paul, J., & Evensen, Ø. (2016). An overview of vaccination strategies and antigen delivery systems for Streptococcus agalactiae vaccines in nile tilapia (Oreochromis niloticus). Vaccines, 4(4).
    Múzquiz, J. L., Royo, F. M., Ortega, C., DeBlas, I., Ruiz, I., & Alonso, J. L. (1999). Pathogenicity of streptococcosis in rainbow trout (Oncorhynchus mykiss): Dependence on age of diseased fish. Bulletin of the European Association of Fish Pathologists, 19(3), 114–119.
    Nakajima, N., Kawanishi, M., Imamura, S., Hirano, F., Uchiyama, M., Yamamoto, K.,Kijima, M. (2014). Development of a serology-based assay for efficacy evaluation of a lactococcicosis vaccine in Seriola fish. Fish Shellfish Immunol, 38(1), 135-139.
    Ohbayashi, K., Oinaka, D., Hoai, T. D., Yoshida, T., & Nishiki, I. (2017). PCR-mediated identification of the newly emerging pathogen Lactococcus garvieae serotype II from Seriola quinqueradiata and S. dumerili. Fish Pathology, 52(1), 46–49.
    Oinaka, D., Yoshimura, N., Fukuda, Y., Yamashita, A., Urasaki, S., Wada, Y., & Yoshida, T. (2015). Isolation of Lactococcus garvieae showing no agglutination with anti-KG-phenotype rabbit serum. 魚病研究, 50(2), 37-43.
    Ooyama, T., Hirokawa, Y., Minami, T., Yasuda, H., Nakai, T., Endo, M., Ruangpan, L., & Yoshida, T. (2002). Cell-surface properties of Lactococcus garvieae strains and their immunogenicity in the yellowtail Seriola quinqueradiata. Diseases of Aquatic Organisms, 51(3), 169–177.
    Ooyama, T., Kera, A., Okada, T., Inglis, V., & Yoshida, T. (1999). The protective immune response of yellowtail Seriola quinqueradiata to the bacterial fish pathogen Lactococcus garvieae. Dis. Aquat. Org, 37(2), 121-126.
    Ooyama, T., Shimahara, Y., Nomoto, R., Yasuda, H., Iwata, K., Nakamura, A., Yoshida, T. (2006). Application of attenuated Lactococcus garvieae strain lacking a virulence-associated capsule on its cell surface as a live vaccine in yellowtail Seriola quinqueradiata Temminck and Schlegel. J. Appl. Ichthyol., 22(2), 149-152.
    Pham, T. H., Cheng, T. C., Wang, P. C., & Chen, S. C. (2020). Genotypic diversity, and molecular and pathogenic characterization of Photobacterium damselae subsp. piscicida isolated from different fish species in Taiwan. Journal of Fish Diseases, 43(7), 757–774.
    Raissy, M., & Branch, S. (2014). Antibiotic susceptibility of Lactococcus garvieae isolated from rainbow trout (Oncorhynchus mykiss) in Iran fish farms. Afr. J. Biotechnol, 10(8), 1473-1476.
    Ravelo, C., Magariños, B., López-Romalde, S., Toranzo, A. E., Romalde, J. L., Magarin, B., Lo, S., & Toranzo, A. E. (2003). Molecular Fingerprinting of Fish-Pathogenic Lactococcus garvieae Strains by Random Amplified Polymorphic DNA Analysis. J. Clin. Microbiol, 41(2), 751–756.
    Rossetti, L., & Giraffa, G. (2005). Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. Journal of Microbiological Methods, 63(2), 135-144.
    Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol, 4(4), 406-425.
    Schindelin, J., Rueden, C. T., Hiner, M. C., & Eliceiri, K. W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 82(7–8), 518–529.
    Schmidtke, L. M., & Carson, J. (2003). Lactococcus garvieae strains isolated from rainbow trout and yellowtail in Australia, South Africa and Japan differentiated by repetitive sequence markers. Bull. Eur. Assoc. Fish Pathol, 23(5), 206–212.
    Schmidtke, L. M., Carson, J., Xu, W., Jiao, C., Bao, P., Liu, Q., Wang, P. C. C. P. P. C. P. C. P. C., Zhang, R., Liu, X., Zhang, Y., Anderson, D. G., McKay, L. L., Yao, F., Xu, X. Y., Pan, Q., Rampersad, T., Makume, M., Sobia, P., Willem Sturm, A., Ranzani-Paiva, M. J. T. (2014). First occurrence of Streptococcosis affecting farmed rainbow trout (Oncorhynchus mykiss) in Turkey. Journal of Fish Diseases, 32(1), 1–11.
    Shabayek, S., & Spellerberg, B. (2018). Group B streptococcal colonization, molecular characteristics, and epidemiology. Frontiers in Microbiology, 9, 1–14.
    Shahi, N., Mallik, S. K., Sahoo, M., Chandra, S., & Singh, A. K. (2018). First report on characterization and pathogenicity study of emerging Lactococcus garvieae infection in farmed rainbow trout, Oncorhynchus mykiss (Walbaum), from India. Transbound Emerg Dis 65(4), 1039–1048.
    Shahi, N., & Mallik, S. K. (2020). Emerging bacterial fish pathogen Lactococcus garvieae RTCLI04, isolated from rainbow trout (Oncorhynchus mykiss): Genomic features and comparative genomics. Microbial Pathogenesis, 147, 104368.
    Shi, Y. Z., Nishiki, I., Yanagi, S., & Yoshida, T. (2019). Epidemiological Study on Newly Emerging Lactococcus garvieae Serotype II Isolated from Marine Fish Species in Japan. Fish Pathology, 54(3), 51–57.
    Shima, T., Kodama, H., Iwasaki, T., Watarai, S., Asagi, M., Bragg, R. R., Boucher, C. E., Meyburgh, C. M., Balca, L., Ruiz-Zarzuela, I., Vendrell, D., Mu, L., Blas, I.De, Girone, O., Breuil, G., Bonami, J. R., Pepin, J. F., Pichot, Y., Shahi, N., …Múzquiz, J. L. (2007). Lactococcus garvieae endocarditis: Report of a case and review of the literature. Diseases of Aquatic Organisms, 32(1), 1–11.
    Stukalov, O., Korenevsky, A., Beveridge, T. J., & Dutcher, J. R. (2008). Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules. Applied and Environmental Microbiology, 74(17), 5457–5465.
    Suanyuk, N., & Dangwetngam, M. (2014). Identification and Pathology of Lactococcus garvieae Isolated from Cultured and wild giant freshwater prawns (Macrobrachium rosenbergii de Man) in Thailand. Thai Journal of Veterinary Medicine, 44(3), 325–333.
    Subburaj, R., Venmathi Maran, B. A., Arasu, A. R. T., Kailasam, M., Elangeshwaran, S., Kumar, P., Thiagarajan, G., & Sukumaran, K. (2019). First Report on Infection of Argulus quadristriatus (Arthropoda: Crustacea: Branchiura) on Marine Fish Cobia in Brood Stock Pond Culture. National Academy Science Letters, 42(3), 205–208.
    Sudheesh, P. S., Al-Ghabshi, A., Al-Mazrooei, N., & Al-Habsi, S. (2012). Comparative Pathogenomics of Bacteria Causing Infectious Diseases in Fish. International Journal of Evolutionary Biology, 2012, 1–16.
    Swain, P., Nayak, S. K., Nanda, P. K., & Dash, S. (2008). Biological effects of bacterial lipopolysaccharide (endotoxin) in fish: A review. Fish and Shellfish Immunology, 25(3), 191–201.
    Teixeira, L. M., Merquior, V. L. C., Vianni, M. D. C. E., Carvalho, M. D. G. S., Fracalanzza, S. E. L., Steigerwalt, A. G., Brenner, D. J., & Facklam, R. R. (1996). Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida. International Journal of Systematic Bacteriology, 46(3), 664–668.
    Teker, T., Albayrak, G., Akayli, T., & Urku, C. (2019). Detection of haemolysin genes as genetic determinants of virulence in Lactococcus garvieae. Turkish Journal of Fisheries and Aquatic Sciences, 19(7), 625–634.
    Tenover, F. C., Arbeit, R. D., Goering, R.V., Mickelsen, P. A., Murray, B. E., Persing, D. H., & Swaminathan, B. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed- field gel electrophoresis: Criteria for bacterial strain typing. Journal of Clinical Microbiology, 33(9), 2233–2239.
    Tsai, M. A., Wang, P. C., Liaw, L. L., Yoshida, T., & Chen, S. C. (2012). Comparison of genetic characteristics and pathogenicity of Lactococcus garvieae isolated from aquatic animals in Taiwan. Diseases of Aquatic Organisms, 102(1), 43–51.
    Tsai, M. A., Wang, P. C., Trung, C. T., Chih, L. P., Li, L. L., & Shih, C. C. (2013). Immunoprotection of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Lactococcus garvieae against Lactococcosis in tilapia. The Journal of General and Applied Microbiology, 59(6), 437–449.
    Tsai, M. A., Wang, P. C., Yoshida, S., Aono, A., Mitarai, S., Wada, T., & Chen, S. C. (2019). Establishment of loop-mediated isothermal amplification for rapid and convenient detection of Mycobacterium marinum complex. Journal of Microbiological Methods, 164(July), 105671.
    Ture, M., & Altinok, I. (2016). Detection of putative virulence genes of Lactococcus garvieae. Diseases of Aquatic Organisms, 119(1), 59–66. https://doi.org/10.3354/dao02981
    Ture, M., Altinok, I., & Capkin, E. (2015). Comparison of pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus PCR and biochemical tests to characterize Lactococcus garvieae. Journal of Fish Diseases, 38(1), 37–47.
    Ucko, M., & Colorni, A. (2005). Mycobacterium marinum infections in fish and humans in Israel. Journal of Clinical Microbiology, 43(2), 892–895. https://doi.org/10.1128/JCM.43.2.892-895.2005
    Vela, A. I., Vazquez, J., Gibello, A., Blanco, M. M., Moreno, M. A., Liebana, P., Albendea, C., Alcala, B., Mendez, A., Dominguez, L., & Fernandez-Garayzabal, J. F. (2000). Phenotypic and genetic characterization of Lactococcus garvieae isolated in Spain from lactococcosis outbreaks and comparison with isolates of other countries and sources. Journal of Clinical Microbiology, 38(10), 3791–3795.
    Vendrell, D., Balcázar, J. L., Ruiz-Zarzuela, I., De Blas, I., Gironés, O., & Múzquiz, J. L. (2006). Lactococcus garvieae in fish: a review. Comparative immunology, microbiology and infectious diseases, 29(4), 177-198.
    Versalovic J., Koeuth T., & Lupski J.R. (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acid Research 19, 6823–6831.
    Větrovský, T., & Baldrian, P. (2013). The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses. PLoS ONE, 8(2), 1–10.
    Vdovikova, S., Luhr, M., Szalai, P., Nygård Skalman, L., Francis, M. K., Lundmark, R., & Wai, S. N. (2017). A novel role of Listeria monocytogenes membrane vesicles in inhibition of autophagy and cell death. Front. Cell. Infect. Microbiol, 7, 154.
    Wang, E., Qin, Z., Yu, Z., Ai, X., Wang, K., Yang, Q., Liu, T., Chen, D., Geng, Y., Huang, X., Ouyang, P., & Lai, W. (2018). Molecular characterization, phylogenetic, expression, and protective immunity analysis of OmpF, a promising candidate immunogen against yersinia ruckeri infection in channel catfish. Frontiers in Immunology, 9(SEP), 1–15.
    Wang, Y. C., Shie, H. S., Chen, S. C., Huang, J. P., Hsieh, I. C., Wen, M. S., Lin, F. C., & Wu, D. (2007). Lactococcus garvieae infections in humans: Possible association with aquaculture outbreaks. International Journal of Clinical Practice, 61(1), 68–73.
    Wu, Y.-L., Lee, M.-A., Chen, L.-C., Chan, J.-W., & Lan, K.-W. (2020). Evaluating a Suitable Aquaculture Site Selection Model for Cobia (Rachycentron canadum) during Extreme Events in the Inner Bay of the Penghu Islands, Taiwan. Remote Sensing, 12(17), 2689.
    Yesiltas, M. C., Altinok, I., & Ozturk, R. C. (2019). Determination of virulence associated immunogenic proteins in some of lactococcus garvieae strains. Veterinary Research Forum, 10(2), 101–107.
    Yoshida, T., Endo, M., Sakai, M., & Inglis, V. (1997). A cell capsule with possible involvement in resistance to opsonophagocytosis in Enterococcus seriolicida isolated from yellowtail Seriola quinqueradiata. Disease of Aquatic Organisms, 29(3), 233–235.
    Yoshida, T., Eshima, T., Wada, Y., Yamada, Y., Kakizaki, E., Sakai, M., Kitao, T., & Inglis, V. (1996). Phenotypic variation associated with an anti-phagocytic factor in the bacterial fish pathogen Enterococcus seriolicida. Diseases of Aquatic Organisms, 25(1–2), 81–86.
    Zlotkin, A., Eldar, A., Ghittino, C., & Bercovier, H. (1998). Identification of Lactococcus garvieae by PCR. J. Clin. Microbiol, 36(4), 983-985.

    無法下載圖示 校外公開
    2024/07/20
    QR CODE