簡易檢索 / 詳目顯示

研究生: 何倫
Haroon Afzal
論文名稱: 鞭毛蛋白N末端與傳染性華氏囊病病毒抗原融合時之佐劑效應評估
Evaluation of the Adjuvancy of Flagellin N Terminal When Fused to An Infectious Bursal Disease Virus Antigen
指導教授: 鄭力廷
Li-Ting Cheng
吳幸潔組長
Hsing-Chieh Wu
學位類別: 碩士
Master
系所名稱: 國際學院 - 動物用疫苗國際學位專班
International Program in Animal Vaccine Technology
畢業學年度: 109
語文別: 英文
論文頁數: 64
中文關鍵詞: 鞭毛蛋白N末端與傳染性華氏囊病病毒抗原融合時之佐劑高變域。表位二聚化
外文關鍵詞: Evaluation of the adjuvancy of flagellin N terminal when fused to an infectious bursal disease virus antigen.
DOI URL: http://doi.org/10.6346/NPUST202100222
相關次數: 點閱:51下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 鞭毛蛋白N末端與傳染性華氏囊病病毒抗原融合時之佐劑效應評估
    先天免疫系統的 TLR 5 和NAIP5-NLRC4 可偵測細菌鞭毛蛋白。鞭毛蛋白有兩個保守域 D0 和 D1,而 D2、D3 被認為是可變異。與 C 端結構域相比, N 端保守結構域在引發 TLR5 免疫活性和對初級和次級二聚化的實質性支持方面具有更多作用。結構研究發現,N 端結構域為主要( 70%)支持 TLR5 結合和信號傳導,而 C 端結構域僅扶左與 TLR5 的結合。一項研究表明 NAIP5-NLRC4 複合物被 C 端的 35 個殘基激活。儘管這些鞭毛蛋白結構域就其結構和功能進行了廣泛的研究,但這些結構域並未作為嵌合產物單獨應用於抗原。這項研究揭示了 N 末端在免疫激活和保護免受致命病毒攻擊中的作用。在這項研究中,我們結合來自傳染性法氏囊病病毒 VP2 的 N 末端 (1-176) 的保守域和高變域(包含中和抗體表位)。進行PCR克隆以構建嵌合DNA,然後通過大腸桿菌表達系統表達蛋白質。我們評估了單獨由嵌合體和抗原提供的免疫功效和保護。通過細胞因子分析驗證免疫功效。通過ELISA分析總IgG力價。收集PMC並用抗原刺激用於細胞增殖測定。測量嵌合構建體的刺激指數並與抗原和對照組進行比較。體外中和試驗有助於了解中和抗體力價以應對病毒。關鍵詞:嵌合、表位、二聚化、高變域。

    Receptors of the innate immune system including Toll-like receptor 5, and neuronal apoptosis inhibitory protein 5 signal in response to bacterial flagellins. Flagellin has two conserve domains D0 and D1 while D2, D3 are considered as the variable domain. N terminal conserved domains were found to have more role in eliciting TLR5 immune activity and substantial support to primary and secondary dimerization compared to C-terminal domains. Structural studies explain that N -terminal domain almost 70% support TLR5 binding and signaling, while the C-terminal domain only support primary binding with TLR5. Although these flagellin domains were extensively studied regarding their structure and function, yet these domains are not applied individually to antigen as the chimeric product. This study put light on the flagellin N-terminus(1-176aa) in immune activation as adjuvant. In this study, our focus was fusion of the conserved domains from the N terminus of flagellin (1-176 residues) to hypervariable domain (contain neutralizing antibody epitopes) from VP2 of infectious bursal disease virus. PCR cloning was performed to construct a chimeric DNA, followed by chimeric and tVP2 expression of the protein by the E. coli expression system. We evaluated the immune efficacy and protection offered by chimeric and antigen alone. Immune efficacy was verified by the cytokine analysis. Total IgG titers were analyzed by the ELISA. Peripheral blood mononuclear cell (PBMC) were collected and stimulated with antigen for cell proliferation assay. The stimulation index of the chimeric construct was measured and compared with the antigen and control group. In vitro neutralization assay helps to understand the neutralizing antibody titers to cope with virus.
    Keywords: Chimeric, epitopes, dimerization, hypervariable domain.

    Table of Contents
    ABSTRACT 2
    ACKNOWLEDGEMENTS 6
    LIST OF TABLES 9
    LIST OF FIGURES 10
    INTRODUCTION 12
    1. LITERATURE REVIEW 14
    2.1 Mineral Salts 15
    2.2 Emulsions 15
    2.3 Toll-like receptors agonists 15
    2.4 Toll-like receptors recognition and signaling 16
    2.5 Flagellin as agonists of TLR5 16
    2.6 Flagellin binding with TLR5 and truncated flagellin designs 17
    2.7 Infectious bursal disease model to analyze the effectiveness of flagellin as an adjuvant 22
    2.8 Considering the lethality of IBDV, the only way to limit control is vaccination. Two way of vaccination is in practice 24
    2.9 The crystal structure of nFlic and VP2 projection domains that we cloned and expressed for our vaccine design 25
    3. Materials and Methods 26
    3.1 Bacterial strains 26
    3.2 Cloning of desired flagellar and IBDV antigenic segments and production of chimeric vaccine. 26
    3.2.1 Production of N and C terminal flagellar clones 26
    3.2.2 Production of infectious bursal disease VP2 clone 26
    3.3 Primer used in PCR amplification of nFlic, cFlic, and Chimeric Clone 27
    3.4 Designing of chimeric flagellin-VP2 clone 28
    3.5 Expression of recombinant proteins and analysis by SDS and western blot 29
    3.5.1 Protein expression and release 29
    3.5.2 Protein purification 29
    3.5.3 Quantification assay 29
    3.5.4 Western blot 30
    3.6 Vaccine Preparation and Immunization 30
    3.7 Immune analysis of birds was supported by the following experiments 30
    3.7.1 The enzyme-linked immunosorbent assay (ELISA) 30
    3.7.2 ELISA Protocol 31
    3.8 Lymphocyte proliferation assay 31
    3.9 Cytokine Analysis 32
    3.10 Total RNA extraction 32
    3.11 Analysis of cytokine fold change by qPCR 33
    3.12 Primers for cytokine genes 34
    3.13 Neutralization Assay Protocol 36
    4. RESULTS AND DISCUSSION 37
    4.1 Cloning of flagellin N-terminus 1-176aa(nFlic) 37
    4.2 Sequence result of flagellin N-terminus 37
    4.3 Cloning of flagellin C-terminus (406-496aa) 38
    4.4 Construction of Chimeric nFlic-VP2 that lead to the generation of a subunit vaccine 39
    4.5 Subunit vaccine was designed by making antigen-adjuvant chimeric protein 42
    4.6 SDS analysis of protein size and quantification 43
    4.7 SDS-PAGE analysis of antigen VP2 44
    4.8 SDS, Western blot comparison of purified chimeric, unpurified and pET32a 45
    4.9 Animal experiment results 46
    4.10 Lymphocyte proliferation assay 47
    4.11 Th1 and Th2 type cytokines analysis 48
    4.12 Neutralizing assay 49
    5. DISCUSSIONS 51
    6. CONCLUSION 54
    7. REFERENCES 55

    REFERENCES
    Bargieri, D. Y., Rosa, D. S., Braga, C. J. M., Carvalho, B. O., Costa, F. T. M., Maria, N., José, A., Soares, I. S., Ferreira, L. C. S., &Rodrigues, M. M. (2008). New Malaria Vaccine Candidates Based on the Plasmodium Vivax Merozoite Surface Protein-1 and the TLR-5 Agonist Salmonella Typhimurium FliC Flagellin. 26, 6132–6142.
    Bauer, S., &Gunther, H. (2008). Toll-Like Receptors (TLRs) and Innate Immunity. In Handbook of Experimental Pharmacology 183. Springer.
    Bowersock, T. L., &Martin, S. (1999). Vaccine delivery to Animals. Advanced Drug Delivery Reviews, 38(2), 167–194.
    Bublot, M., Pritchard, N., LeGros, F. X., &Goutebroze, S. (2007). Use of a Vectored Vaccine Against Infectious Bursal Disease of Chickens in the Face of High-Titred Maternally Derived Antibody. Journal of Comparative Pathology, 137, 81–84.
    Chang, H. C., Lin, T. L., &Wu, C. C. (2001). DNA-Mediated Vaccination Against Infectious Bursal Disease in Chickens. Vaccine, 20(3–4), 328–335.
    Cox, J. C., &Coulter, A. R. (1997). Adjuvants - A classification and Review of their Modes of Action. Vaccine, 15(3), 248–256.
    Cui, B., Liu, X., Fang, Y., Zhou, P., Zhang, Y., &Wang, Y. (2018). Flagellin as a Vaccine Adjuvant. Expert Review of Vaccines, 17(4), 335–349.
    Dr Nick Oswald. (2020). No Title. What Is a Cq (Ct) Value? https://bitesizebio.com/24581/what-is-a-ct-value/
    Ebrahimi, M. M., Shahsavandi, S., Shayan, P., Goudarzi, H., &Masoudi, S. (2018). Recombinant VP2 Expressed in Baculovirus and Adjuvanted with TIR-TLR7: a Vaccine Candidate Against Infectious Bursal Disease Virus. Comparative Clinical Pathology, 27(4), 911–916.
    Fliegmann, J., &Felix, G. (2016). Immunity: Flagellin Seen from All Sides. Nature Plants, 2(9), 1–2.
    Forstnerič, V., Ivičak-Kocjan, K., Plaper, T., Jerala, R., &Benčina, M. (2017). The Role of the C-terminal D0 Domain of Flagellin in Activation of Toll Like Receptor 5. PLoS Pathogens, 13(8), 1–20.
    Freund, J., &Opie, E. L. (1938). Sensitization and Antibody Formation with Increased Resistance to Tuberculous Infection Induced by Heat Killed Tubercle bacilli. Journal of Experimental Medicine, 68(2), 273–298.
    Garçon, N., Leroux-roels, G., &Cheng, W. (n.d.). Vaccine Adjuvants. Perspectives in Vaccinology, 1(1), 89–113.
    Giese, M. (2013). Molecular Vaccines. In Molecular Vaccines (Vol. 1).
    Gupta, R. K. (1998). Aluminum Compounds as Vaccine Adjuvants. Advanced Drug Delivery Reviews, 32(3), 155–172.
    Halff, E. F., Diebolder, C. A., Versteeg, M., Schouten, A., Brondijk, T. H. C., &Huizinga, E. G. (2012). Formation and Structure of a NAIP5-NLRC4 Inflammasome Induced by Direct Interactions with Conserved N- and C-Terminal Regions of Flagellin. Journal of Biological Chemistry, 287(46), 38460–38472.
    Heine, H. G., Haritou, M., Failla, P., Fahey, K., &Azad, A. (1991). Sequence Analysis and Expression of the Host-Protective Immunogen VP2 of a Variant Strain of Infectious Bursal Disease Virus which can Circumvent Vaccination with Standard type I Strains. Journal of General Virology, 72(8), 1835–1843.
    Herbert. W.J. (1968). The mode of action of mineral oil emulsion adjuvants on antibody production in mice. Immunology, 14, 301–318.
    Hinkula, J., Nyström, S., Devito, C., Bråve, A., &Applequist, S. E. (2019). Long-lasting Mucosal and Systemic Immunity Against Influenza a Virus is Significantly Prolonged and Protective by Nasal whole Influenza Immunization with Mucosal Adjuvant N3 and DNA-plasmid Expressing Flagellin in Aging in-and Outbred Mice. Vaccines, 7(3), 1–27.
    Integrated DNA Technologies. (2021). SYBR® green dye and PrimeTimeTM probe qPCR assays: intercalating due or primer assays. https://sg.idtdna.com/pages/technology/qpcr-and-pcr/sybr-green-dye-assay-or-primetime-probe-assays
    Ivičak-Kocjan, K., Forstnerič, V., Panter, G., Jerala, R., &Benčina, M. (2018). Extension and Refinement of the Recognition Motif for Toll-like Receptor 5 Activation by Flagellin. Journal of Leukocyte Biology, 104(4), 767–776.
    Ivičak-Kocjan, K., Panter, G., Benčina, M., &Jerala, R. (2013). Determination of the Physiological 2:2 TLR5:Flagellin Activation Stoichiometry Revealed by the Activity of a Fusion Receptor. Biochemical and Biophysical Research Communications, 435(1), 40–45.
    Kawasaki, T., &Kawai, T. (2014). Toll-Like Receptor Signaling Pathways. Frontiers in Immunology, 5, 461–473. https://www.frontiersin.org/article/10.3389/fimmu.2014.00461
    Khani, M. H., Bagheri, M., Zahmatkesh, A., &Moradi Bidhendi, S. (2019). Immunostimulatory Effects of Truncated and Full-length Flagellin Recombinant proteins. Microbial Pathogenesis, 127(December 2018), 190–197.
    Klausner, A. (1987). Rational Design of Vaccines. Bio/Technology, 5(7), 687–691.
    Lightfield, K. L., Persson, J., Brubaker, S. W., Witte, C. E., vonMoltke, J., Dunipace, E. A., Henry, T., Sun, Y. H., Cado, D., Dietrich, W. F., Monack, D. M., Tsolis, R. M., &Vance, R. E. (2008). Critical Function for Naip5 in Inflammasome Activation by a Conserved Carboxy-Terminal Domain of Flagellin. Nature Immunology, 9(10), 1171–1178.
    Liu, H. J., Huang, P. H., Wu, Y. H., Lin, M. Y., &Liao, M. H. (2001). Molecular Characterisation of Very Virulent Infectious Bursal Disease Viruses in Taiwan. Research in Veterinary Science, 70(2), 139–147.
    López-Yglesias, A. H., Lu, C.-C., Zhao, X., Chou, T., VandenBos, T., Strong, R. K., &Smith, K. D. (2019). FliC’s Hypervariable D3 Domain Is Required for Robust Anti-Flagellin Primary Antibody Responses. ImmunoHorizons, 3(9), 422–432.
    López-Yglesias, A. H., Zhao, X., Quarles, E. K., Lai, M. A., VandenBos, T., Strong, R. K., &Smith, K. D. (2014). Flagellin Induces Antibody Responses through a TLR5- and Inflammasome-Independent Pathway. The Journal of Immunology, 192(4), 1587–1596.
    Mahgoub, H. A. (2012). An Overview of Infectious Bursal Disease. Archives of Virology, 157(11), 2047–2057.
    Matusiak, M., VanOpdenbosch, N., VandeWalle, L., Sirard, J. C., Kanneganti, T. D., &Lamkanfi, M. (2015). Flagellin-induced NLCR4 Phosphorylation Primes the Inflammasome for Activation by NAIP5. Proceedings of the National Academy of Sciences of the United States of America, 112(5), 1541–1546.
    Mizel, S. B., &Bates, J. T. (2010). Flagellin as an Adjuvant: Cellular Mechanisms and Potential. The Journal of Immunology, 185(10), 5677–5682.
    Nempont, C., Cayet, D., Rumbo, M., Bompard, C., Villeret, V., &Sirard, J.-C. (2008). Deletion of Flagellin’s Hypervariable Region Abrogates Antibody-Mediated Neutralization and Systemic Activation of TLR5-Dependent Immunity. The Journal of Immunology, 181(3), 2036–2043.
    Nguyen, C. T., Hong, S. H., Sin, J. I., Vu, H. V. D., Jeong, K., Cho, K. O., Uematsu, S., Akira, S., Lee, S. E., &Rhee, J. H. (2013). Flagellin Enhances Tumor-Specific CD8+ T Cell Immune Responses Through TLR5 Stimulation in a Therapeutic Cancer Vaccine Model. Vaccine, 31(37), 3879–3887.
    O’Hagan, D. T. (2007). New Generation Vaccine Adjuvants. Encyclopedia of Life Sciences, 1–7.
    O’Hagan, D. T., Ott, G. S., DeGregorio, E., &Seubert, A. (2012). The Mechanism of Action of MF59 - An Innately Attractive Adjuvant Formulation. Vaccine, 30(29), 4341–4348.
    Oh, S., Cho, Y. K., Lee, H., Lee, S., &Kim, W. (2019). Enhancement of Antigen-Specific Humoral Immune Responses and Protein Solubility Through Conjugation of Bacterial Flagellin , Vibrio vulnificus FlaB , to the N-terminus of Porcine Epidemic Diarrhea Virus Surface Protein Antigen S0. 20(6), 1–16.
    Papp, Z., Babiuk, L. A., &Baca-Estrada, M. E. (1999). The Effect of Pre-existing Adenovirus-Specific Immunity on Immune Responses Induced by Recombinant Adenovirus Expressing Glycoprotein D of Bovine Herpesvirus type 1. Vaccine, 17(7–8), 933–943.
    Sali, K. (2019). Overview of Methods Used in the Diagnosis of Infectious Bursal Disease. Veterinary Medicine – Open Journal, 4(1), 9–17.
    Shane, S. M. (1994). Infectious Bursal Disease. World’s Poultry Science Journal, 50(2), 133–166.
    Smith, K. D., Andersen-Nissen, E., Hayashi, F., Strobe, K., Bergman, M. A., Rassoulian Barrett, S. L., Cookson, B. T., &Aderem, A. (2003). Toll-like Receptor 5 Recognizes a Conserved Site on Flagellin Required for Protofilament Formation and Bacterial Motility. Nature Immunology, 4(12), 1247–1253.
    Song, W. S., Jeon, Y. J., Namgung, B., Hong, M., &Yoon, S.Il. (2017). A Conserved TLR5 Binding and Activation Hot Spot on Flagellin. Scientific Reports, 7(January), 1–11.
    Stills, H. F. (2005). Adjuvants and Antibody Production: Dispelling the Myths Associated with Freund’s Complete and other Adjuvants. ILAR Journal, 46(3), 280–293.
    Tenthorey, J. L., Haloupek, N., López-blanco, J. R., Grob, P., Adamson, E., Hartenian, E., Lind, N. A., Bourgeois, N. M., Chacón, P., Nogales, E., &Vance, R. E. (2017). Limit Pathogen Immune Evasion. Science, 893(November), 888–893.
    The microneutralization assay. (2019). https://virologyresearchservices.com/2019/04/30/assay-of-the-month-the-microneutralization-assay/
    Van DenBerg, T. P., Eterradossi, N., Toquin, D., &Meulemans, G. (2000). Infectious Bursal Disease (Gumboro disease). OIE Revue Scientifique et Technique, 19(2), 527–543.
    Vijay-Kumar, M., &Gewirtz, A. T. (2009). Flagellin: Key Target of Mucosal Innate Immunity. Mucosal Immunology, 2(3), 197–205.
    Yang, J., Zhong, M., Zhang, Y., Zhang, E., Sun, Y., Cao, Y., Li, Y., Zhou, D., He, B., Chen, Y., Yang, Y., Yu, J., &Yan, H. (2013). Antigen Replacement of Domains D2 and D3 in Flagellin Promotes Mucosal IgA Production and Attenuates Flagellin-induced Inflammatory Response after Intranasal Immunization. Human Vaccines and Immunotherapeutics, 9(5), 1084–1092.
    Yoon, S.Il, Kurnasov, O., Natarajan, V., Hong, M., Gudkov, A.V., Osterman, A. L., &Wilson, I. A. (2012). Structural Basis of TLR5-Flagellin Recognition and Signaling. Science, 335(6070), 859–864.
    Zhao, Y., &Shao, F. (2015). The NAIP-NLRC4 Inflammasome in Innate Immune Detection of Bacterial Flagellin and Type III Secretion Apparatus. Immunological Reviews, 265(1), 85–102.

    下載圖示
    QR CODE