簡易檢索 / 詳目顯示

研究生: 羅丹梓
Tan-Tzu Lo
論文名稱: 以TLR7配體咪喹莫特為佐劑是否增進老鼠施打子宮頸癌疫苗的免疫效果
The immunological effect of mice after receiving commercial HPV vaccine with TLR7 ligand imiquimod as adjuvant
指導教授: 鄭力廷
Li-Ting Cheng
學位類別: 碩士
Master
系所名稱: 獸醫學院 - 動物疫苗科技研究所
Graduate Institute of Animal Vaccine Technology
畢業學年度: 109
語文別: 英文
論文頁數: 47
中文關鍵詞: 人類乳突病毒疫苗佐劑類鐸受體咪喹莫特
外文關鍵詞: HPV, vaccine adjuvant, toll-like receptor, imiquimod
DOI URL: http://doi.org/10.6346/NPUST202100244
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 子宮頸癌是中低收入國家女性死於癌症的主要原因,幾乎所有的子宮頸癌都是由高致癌危險人類乳突病毒所引起. 由於有效率的篩檢方法及人類乳突病毒疫苗, 子宮頸癌可說是最可以預防的癌症之一. 人類乳突病毒疫苗已證實是安全及有效的, 但是需在超過六個月的時間內施打多次, 還有青春期少女的遵醫囑性差, 都是問題. 現在研究的趨勢是要克服這些困難, 並且讓最需要疫苗的低資源國家更容易獲得疫苗. 添加佐劑是可以改進疫苗效果的一種方式. 類鐸受體是一群可以識別病原的受體. 結合類鐸受體可以活化先天及後天的免疫系統. 咪喹莫特是一種免疫調節藥物. 它可以活化第七類鐸受體並誘發一連串的免疫反應. 這些反應使得咪喹莫特有抗病毒及抗腫瘤的能力. 因此, 咪喹莫特很有潛能成為疫苗佐劑. 本研究顯示比起單純只用人類乳突疫苗,肌肉注射人類乳突疫苗及同時表皮使用咪喹莫特可以明顯昇高實驗鼠的IL-1β, IL-8, IL-12 and IgG.

    Cervix cancer is the major reason that women die of cancer in low and middle income countries. Oncogenic HPV is the cause of almost all cervical cancer. On account of effective screening methods and HPV vaccines, cervical cancer is one of the most preventable cancers. HPV vaccines are proved to be safe and useful, but there are problems such as the need of low temperature storage, multiple intramuscular doses administered over 6 months and poor adolescent compliance. There are trends in research to overcome these difficulties and to make vaccines more available in low-resource developing countries where they are most needed. Adding adjuvant is a way that can improve outcome of vaccines.
    Toll-like receptors (TLRs) are a group of pathogen recognition receptors. The ligation of toll-like receptor (TLR) activates both the innate and adaptive immune systems. Imiquimod, an immunomodulating drug, can activate TLR7 and trigger a series of immune responses. These effects indicate the antiviral and antitumor qualities of imiquimod. Hence, imiquimod demonstrates potential as vaccine adjuvant. This study showed that intramuscular injection with Gardasil in combination with topical imiquimod ointment as adjuvant evoked obvious elevation of IL-1β, IL-8, IL-12 and IgG in mice comparing to Gardasil only.

    Abstracts................................................................................................... II
    Acknowledgements .................................................................................IV
    Contents ...................................................................................................V

    1. Introduction ..........................................................................................1
    1.1 Background of the study..…………………………………………..1
    1.2 Hypothesis………………..…………………………………………3
    1.3 Objective of the Study……..………………………………………..3

    2. Review of related literatures….………………………………………..4
    2.1 Cervical cancer……………..……………………………………….4
    2.2 HPV infection and cancer…..……………………………………….5
    2.3 The development of HPV vaccines……..…………………………..7
    2.4 The limitations of HPV vaccines………..…………………………10
    2.5 Adjuvants………………………………..…………………………11
    2.6 Imiquimod: a toll-like receptor agonist…..………………………..13

    3. Materials and Methods……………………………………………….15
    3.1 Materials……………..…………………………………………….15
    3.2 Methods………………..…………………………………………..16
    3.2.1 Pilot study: intramuscular immunization and sample collection.16
    3.2.2 Intradermal immunization and sample collection……………...16
    3.2.3 Quantitative analysis of cytokine mRNA using real-time PCR……………………………………………………………………...17
    3.2.4 Cellular response analysis……………………………………...19
    3.2.5 Antibody titer analysis………………………………………….20

    4. Results…………………………………………………..……………21
    4.1. Topical imiquimod stimulated some higher cytokine responses….21
    4.2. Topical imiquimod caused more production of CD8 T lymphocytes in the early phase of vaccination ……………………………………….22
    4.3. Topical imiquimod evoked higher and longer IgG reaction………23

    5. Tables and Figures……………………………………………………24
    Table 1.The designation of primers of cytokines and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in this study…..24
    Figure 1. Vaccination Schedule………………………………………25

    Figure 2. Cytokine profiles of the pilot study…...…………………....26

    Figure 3. Interleukin-12 expression……..……………………………27

    Figure 4. Interferon-γ expression……..………………………………28

    Figure 5. Interleukin-6 expression……………………………………28

    Figure 6. Interleukin-1β expression…………..………………………29

    Figure 7. Interleukin-8 profile………………………..………………30

    Figure 8. Cytokine profiles of female BALB/c mice on the 3rd day after 1st intradermal vaccination with or without topical imiquimod…..…….31

    Figure 9. Cytokine profiles of female BALB/c mice on the 17th day of experiment, which was the 3rd day after 2nd intradermal vaccination with or without topical imiquimod…………………..……………………….32

    Figure 10. Cytokine profiles of female BALB/c mice on the 28th day of experiment, which was the 14th day after 2nd intradermal vaccination with or without topical imiquimod….………………………………………..33

    Figure 11. Flow cytometry result of CD4 T lymphocytes……………34

    Figure 12. Flow cytometry result of CD8 T lymphocytes……………35

    Figure 13. IgG profile analysis by ELISA after intramuscular vaccination………………………………………………………………36

    6. Discussion…………………………………………………………….37

    7. References……………………………………………………………39

    8. Appendix……………………………………………………………..46

    9. Personal Information…………………………………………………46

    Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. The Lancet Global Health. 2020;8:e191-e203.

    Bissett SL, Godi A, Jit M, Beddows S. Seropositivity to non-vaccine incorporated genotypes induced by the bivalent and quadrivalent HPV vaccines: A systematic review and meta-analysis. Vaccine. 2017;35:3922-3929.

    Brotherton JML. Could one dose of bivalent HPV vaccine prevent cervical cancer? The Lancet Oncology. 2015;16:739-40.

    Carmona-Cruz SA, García-Romero MT. The Skin Immune System and Intradermal Delivery of Vaccines: A Review. Vaccine Research. 2020;7:15-21.

    Chuang CM, Monie A, Hung CF, Wu TC. Treatment with imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. J Biomed Sci. 2010;17:32.

    Cosette M Wheeler, S Rachel Skinner, M Rowena Del Rosario-Raymundo, Suzanne M Garland, Archana Chatterjee, Eduardo Lazcano-Ponce, et al. Efficacy, safety, and immunogenicity of the human papillomavirus 16/18 AS04-adjuvanted vaccine in women older than 25 years: 7-year follow-up of the phase 3, double-blind, randomised controlled VIVIANE study. The Lancet Infectious Diseases. 2016;16:13.

    Countelier J-P, Broeck JV, Wolf SF. Interleukin-12 Gene Expression after Viral Infection in the Mouse. Journal of Virology. 1995;69:1955-1958.

    Doan TD, Wang HY, Ke GM, Cheng LT. N-terminus of Flagellin Fused to an Antigen Improves Vaccine Efficacy against Pasteurella multocida Infection in Chickens. Vaccines. 2020;8.

    Dupuy C, Buzoni-Gatel D, Touze A, Cann PL, Bout D, Coursaget P. Cell mediated immunity induced in mice by HPV 16 L1 virus-like particles. MIcrobial pathogenesis. 1997;22:219-25.

    de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141:664-70.

    de Witte CJ, van de Sande AJ, van Beekhuizen HJ, Koeneman MM, Kruse AJ, Gerestein CG. Imiquimod in cervical, vaginal and vulvar intraepithelial neoplasia: a review. Gynecol Oncol. 2015;139:377-84.

    Echchannaoui H, Bianchi M, Baud D, Bobst M, Stehle JC, Nardelli-Haefliger D. Intravaginal immunization of mice with recombinant Salmonella enterica serovar Typhimurium expressing human papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer. Infect Immun. 2008;76:1940-51.

    Einstein MH, Takacs P, Chatterjee A, Sperling RS, Chakhtoura N, Blatter MM, et al. Comparison of long-term immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine and HPV-6/11/16/18 vaccine in healthy women aged 18-45 years: end-of-study analysis of a Phase III randomized trial. Hum Vaccin Immunother. 2014;10:3435-45.

    Engel AL, Holt GE, Lu H. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system. Expert Review of Clinical Pharmacology. 2011;4:275-89.

    Esquerré M, Momot M, Goubier A, Gonindard C, Leung-Theung-Long S, Misser Y, et al. GTL001 and bivalent CyaA-based therapeutic vaccine strategies against human papillomavirus and other tumor-associated antigens induce effector and memory T-cell responses that inhibit tumor growth. Vacine 2017;35:1509-16.

    Force USPST, Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, et al. Screening for Cervical Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2018;320:674-86.

    Fraillery D, Zosso N, Nardelli-Haefliger D. Rectal and vaginal immunization of mice with human papillomavirus L1 virus-like particles. Vaccine. 2009;27:2326-34.

    Garcia-Pineres A, Hildesheim A, Dodd L, Kemp TJ, Williams M, Harro C, et al. Cytokine and chemokine profiles following vaccination with human papillomavirus type 16 L1 Virus-like particles. Clin Vaccine Immunol. 2007;14:984-9.

    Harrison CJ, Miller RL, Bernstein DI. Reduction of recurrent HSV disease using imiquimod alone or combined with a glycoprotein vaccine. Vaccine. 2000;19:1820-6.

    Hengge UR, Benninghoff B, Ruzicka T, Goos M. Topical immunomodulators—progress towards treating inflammation, infection, and cancer. The Lancet Infectious Diseases. 2001;1:189-98.

    Herrero R, González P, Markowitz LE. Present status of human papillomavirus vaccine development and implementation. Lancet Oncology. 2015;16:e206-16.

    Hildesheim A, Herrero R, Wacholder S, C. A, Rodriguez, Solomon D. Effect of human papillomavirus 16/18 L1 virus-like particle vaccine among young women with preexisting infection. JAMA. 2007;298:743-53.

    Hung IF, Zhang AJ, To KK, Chan JF, Li C, Zhu HS, et al. Immunogenicity of intradermal trivalent influenza vaccine with topical imiquimod: a double blind randomized controlled trial. Clin Infect Dis. 2014;59:1246-55.

    Jach R, Basta A, Kotarski J, Markowska J, Paszkowski T, Debski R, et al. Ten years of anti-HPV vaccinations: what do we know? Prz Menopauzalny. 2016;15:170-5.

    Kaise MG, Cheeseman JH, Kaiser P, Lamont SJ. Cytokine expression in chicken peripheral blood mononuclear cells after in vitro exposure tosSalmonella enterica serovareEnteritidis. Poultry Science. 2006;85:5.

    Karimi-Zarchi M, Allahqoli L, Nehmati A, Kash AM, Taghipour-Zahir S, Alkatout I. Can the prophylactic quadrivalent HPV vaccine be used as a therapeutic agent in women with CIN? A randomized trial. BMC Public Health. 2020;20:274-281.

    Kau YC, Liu FC, Kuo CF, Huang HJ, Li AH, Hsieh MY, et al. Trend and survival outcome in Taiwan cervical cancer patients: A population-based study. Medicine (Baltimore). 2019;98:e14848.

    Kianmehr Z, Soleimanjahi H, Ardestani SK, Fotouhi F, Abdoli A. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV 16 L1VLP vaccine in mice. Med Microbiol Immunol. 2015;204:205-13.

    Kirnbauer R, Taub J, Greenstone H, Roden R, Durst M, Gissmann L, et al. Efficient self-assembly of human papillomavirus type 16 LI and L1-L2 into virus-like particles. Journal of Virology. 1993;67:8.

    Koutsky LA, Ault KA, Wheeler CM, Brown DR, Barr E, Alvarez FB, et al. A controlled trial of a human papillomavirus type 16 vaccine. The New England Journal of Medicine. 2002;347:7.

    Laprise JF, Chesson HW, Markowitz LE, Drolet M, Martin D, Benard E, et al. Effectiveness and Cost-Effectiveness of Human Papillomavirus Vaccination Through Age 45 Years in the United States. Ann Intern Med. 2020;172:22-9.

    Leroux-Roels G. Unmet needs in modern vaccinology Adjuvants to improve the immune response. Vaccine. 2010;28S:C25-C36

    Lu Y, Li P, Luo G, Liu D, Zou H. Cancer attributable to human papillomavirus infection in China: Burden and trends. Cancer. 2020;126:3719-32.

    Mayer-Barber KD, Yan B. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cell Mol Immunol. 2017;14:22-35.

    Nakayama T, Kashiwagi Y, Kawashima H. Long-term regulation of local cytokine production following immunization in mice. Microbiol Immunol. 2018;62:124-31.

    Nelson EAS, Lam HS, Choi KC, Ho WCS, Fung LWE, Cheng FWT, et al. A pilot randomized study to assess immunogenicity, reactogenicity, safety and tolerability of two human papillomavirus vaccines administered intramuscularly and intradermally to females aged 18–26 years. Vaccine. 2013;31:9.

    Ogilvie GS, van Niekerk D, Krajden M, Smith LW, Cook D, Gondara L, et al. Effect of screening with primary cervical HPV testing vs cytology testing on high-grade cervical intraepithelial neoplasia at 48 months: The HPV FOCAL Randomized Clinical Trial. JAMA. 2018;320:43-52.

    Pan Z, Fang Q, Geng S, Kang X, Cong Q, Jiao X. Analysis of immune-related gene expression in chicken peripheral blood mononuclear cells following Salmonella enterica serovar Enteritidis infection in vitro. Res Vet Sci. 2012;93:716-20.

    Pastrana DV, Buck CB, Pang YY, Thompson CD, Castle PE, FitzGerald PC, et al. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology. 2004;321:205-16.

    Pilleron S, Cabasag CJ, Ferlay J, Bray F, Luciani S, Almonte M, et al. Cervical cancer burden in Latin America and the Caribbean: Where are we? Int J Cancer. 2020;147:1638-48.

    Pils S, Joura EA. From the monovalent to the nine-valent HPV vaccine. Clin Microbiol Infect. 2015;21:827-33.

    Safaeian M, Porras C, Pan Y, Kreimer A, Schiller JT, Gonzalez P, et al. Durable antibody responses following one dose of the bivalent human papillomavirus L1 virus-like particle vaccine in the Costa Rica Vaccine Trial. Cancer Prev Res (Phila). 2013;6:1242-50.

    Schiller JT, Müller M. Next generation prophylactic human papillomavirus vaccines. The Lancet Oncology. 2015;16:e217-e25.

    Scott M, Nakagawa M, Moscicki AB. Cell-mediated immune response to human papillomavirus infection. Clin Diagn Lab Immunol. 2001;8:209-20.

    Serrano B, Brotons M, Bosch FX, Bruni L. Epidemiology and burden of HPV-related disease. Best Pract Res Clin Obstet Gynaecol. 2018;47:14-26.

    Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 2019;37:3167-78.

    Shrestha AD, Neupane D, Vedsted P, Kallestrup P. Cervical Cancer Prevalence, Incidence and Mortality in Low and Middle Income Countries: A Systematic Review. Asian Pac J Cancer Prev. 2018;19:319-24.

    Sin J-I, Kim J, Patchuk C, Weiner DB. Interleukin 7 can eEnhance antigen-specific cytotoxic-T-lymphocyte and/or Th2-type immune responses in vivo. Clinical and diagnostic laboratory immunology. 2000:751-8.

    Skinner RB. Imiquimod. Dermatologic Clinics. 2003;21:291-300.

    Soong RS, Song L, Trieu J, Knoff J, He L, Tsai YC, et al. Toll-like receptor agonist imiquimod facilitates antigen-specific CD8+ T-cell accumulation in the genital tract leading to tumor control through IFNgamma. Clin Cancer Res. 2014;20:5456-67.

    Tumban E, Peabody J, Peabody DS, Chackerian B. A universal virus-like particle-based vaccine for human papillomavirus: Longevity of protection and role of endogenous and exogenous adjuvants. Vaccine. 2013;31:4647-4654

    van Damme P, Bouillette-Marussig M, Hens A, De Coster I, Depuydt C, Goubier A, et al. GTL001, A Therapeutic Vaccine for Women Infected with Human Papillomavirus 16 or 18 and Normal Cervical Cytology: Results of a Phase I Clinical Trial. Clin Cancer Res. 2016;22:3238-48.

    van de Sande AJM, Koeneman MM, Gerestein CG, Kruse AJ, van Kemenade FJ, van Beekhuizen HJ. TOPical Imiquimod treatment of residual or recurrent cervical intraepithelial neoplasia (TOPIC-2 trial): a study protocol for a randomized controlled trial. BMC Cancer. 2018;18:655-670.

    Vasilakos JP, Tomai MA. The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Review of Vaccines. 2013;12:809-19.

    WHO position paper: Human papillomavirus vaccine, May 2017. Available online: http://apps.who.int/iris/bitstream/handle/10665/255353/WER9219.pdf;jsessionid=DE59FFE8371239459B207F597F03D58F?sequence=1 (accessed on 14 February 2021).

    Wise LD, Wolf JJ, Plitnick LM. Evaluation of a 9-valent HPV vaccine in Sprague-Dawley rats: Nonclinical studies assessing general, reproductive, and developmental toxicity. Vaccine. 2018;36:6401-7.

    Woo M-K, Hur S-J, Park S, Kim H-J. Study of Cell-mediated Response in Mice by HPV16 L1 Virus-like Particles Expressed in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology. 2007;17:1738-41.

    Yang X, Cheng Y, Li C. The role of TLRs in cervical cancer with HPV infection: a review. Signal Transduct Target Ther. 2017;2:17055.

    Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45:27-37.

    zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342-50.

    無法下載圖示 校外公開
    2026/07/25
    QR CODE