簡易檢索 / 詳目顯示

研究生: 彭秉軒
Peng, Bing-Xuan
論文名稱: 斑光對林下四種樹苗一日光合作用總量的貢獻
Contribution of Sunflecks on the Daily Photosynthesis in Understory Seedlings of Four Tree Species
指導教授: 王志強
Wang, Chih-Chiang
郭耀綸
Kuo, Yau-Lun
學位類別: 碩士
Master
系所名稱: 農學院 - 森林系所
Department of Forestry
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 斑光性狀一日CO2固定量低光環境淨光合作用率林下樹苗
外文關鍵詞: characteristics of sunflecks, daily CO2 fixation, low light environment, net photosynthetic rate, understory seedlings
DOI URL: http://doi.org/10.6346/NPUST202100251
相關次數: 點閱:16下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 森林樹冠層會阻擋大部分的陽光,導致林內入射光量甚低,但林下樹苗因為斑光提供較高的光能,可增加光合作用碳收穫。本研究於屏東科技大學校園的人工林,選擇林下香楠、樹杞、毛柿及蘭嶼肉豆蔻共4種樹苗各10株,探討林內斑光對各樹種苗木一日光合作用CO2固定量的貢獻。本研究於7:30~16:30期間,以兩套攜帶式光合作用系統,測定葉片照到的瞬間光量及淨光合作用率動態變化,分析各苗木白天照到的斑光之性狀(次數、光量、持續時間等),以及斑光對淨光合作用率的影響。該林分內白天背景光量甚低,相對光量低至1%以下。在斑光性狀方面,斑光光量在10~25 μmol photon m-2 s-1的個數為斑光總數的61%;有54%的斑光其持續時間短於30秒;單株樹苗一日可照到15~23個斑光。在斑光對淨光合作用率影響方面,林下樹苗於白天9小時期間照到斑光的時間平均僅38分鐘,但照到斑光時累積的光量可高達白天總光量的39%,有斑光時每分鐘的CO2固定量為無斑光時的5倍。在斑光對苗木一日CO2固定量的貢獻方面,香楠為30%、樹杞為25%、毛柿高達51%、蘭嶼肉豆蔻則為28%,平均為34%。然而,香楠苗木照到斑光時,淨光合作用率隨光量而提高的反應,較另3種樹苗明顯。本研究也發現大氣CO2濃度提高可降低此4種樹苗的光補償點及暗呼吸率,可能有利於樹苗在此低光環境下增加碳收穫。本研究結論為斑光對林下樹苗的光合作用具有重要性,可提高一日碳固定量,有利於樹苗在光資源極低的森林下層存活及生長。

    Forest canopy intercept most of the sunlight, thus reducing irradiance in the undestory. However, sunflecks inside the forest could provide understory seedlings higher light energy to increase photosynthetic carbon gain. This study, conducting in a plantation in the campus of National Pingtung University of Science and Technology, chose 10 seedlings each of 4 species, namely Machilus zuihoensis var. zuihoensis, Ardisia sieboldii, Diospyros blancoi, and Myristica ceylanica var. cagayanensis to investigate the contributions of sunflecks to the daily photosynthetic CO2 fixation in each species. Two portable photosynthesis systems were employed to measure the dynamics of instantaneous light intensity and net photosynthetic rate of leaves during 7:30 to 16:30 each measuring day. We analyzed the characteristics of sunflecks (frequency, light intensity, duration, etc.) and the impacts of sunflecks on net photosynthetic rates. The background light intensity was very low with relative light intensity < 1% in the stand. In the aspects of characteristics of sunflecks, the number of sunflecks with light intensity 10~25 μmol photon m-2 s-1 accounted for 61% of the total number of sunflecks, 54% of the sunflecks lasted < 30 seconds, and a single seedling received in average 15 to 23 sunflecks daily. In the aspects of impacts on net photosynthetic rates, the understory seedlings received only 38 minutes during 9 hours of daytime, yet the accumulated light intensity by sunflecks could reach as high as 39% of total daylight. The amount of CO2 fixation per minute of understory seedlings when receiving sunflecks was 5 times more than no sunflecks received. In the aspects of contribution of su nflecks to daily CO2 fixation in each species, the contribution was 30%, 25%, 51%, and 28% for Mac. zuihoensis var. zuihoensis, A. sieboldii, D. blancoi, and Myr. ceylanica var. cagayanensis, respectively. The average contribution was 34%. However, comparing to the other 3 species, seedlings of Mac. zuihoensis var. zuihoensis showed more obvious increasing responses of net photosynthetic rates when received sunflecks. This study also found that elevated CO2 concentration could lower the light compensation point and decrease dark respiration rate in seedlings of all 4 species, which may increase carbon gain for seedlings in the low light environments. In conclusion, sunflecks were critical for photosynthesis of understory seedlings and could increase their daily CO2 fixation, thereby benefited the survival and growth of seedlings in forests with low light resources.

    目錄
    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VII
    表目錄 VIII
    壹、前言 1
    貳、文獻回顧 3
    一、斑光的形成 3
    二、斑光的性質 3
    (一)斑光的持續時間 3
    (二)林內背景光及斑光的光量 4
    三、斑光林下對樹苗的一日光合作用的貢獻 4
    四、不同耐陰性樹種苗木對斑光及二氧化碳濃度提高的反應 5
    (一)不同耐陰性樹種的生理判斷方式及光合作用性狀比較 5
    (二)不同耐陰性樹苗光合作用對二氧化碳濃度提高的反應 6
    參、材料與方法 8
    一、試驗樣區選定及供試樹種 8
    二、林下CO2濃度測定 10
    三、林下光環境及斑光性狀測定 10
    (一)林下相對光量測定 10
    (二)林下斑光光量及斑光面積測定 10
    四、林下四種樹苗葉片照到的光量及淨光合作用率動態變化測定 11
    五、供試樹苗暗呼吸率及光補償點測定 12
    六、統計分析 12
    肆、結果 14
    一、屏科大誠齋人工林林下CO2濃度之日變化 14
    二、屏科大誠齋人工林之林下光環境 16
    三、屏科大誠齋人工林林下斑光性狀 17
    (一)斑光光量及斑光面積的關係 17
    (二)樹苗照射到的斑光光量及斑光不同光量之分布 18
    (三)樹苗照射到的斑光持續時間及斑光不同持續時間之分布 19
    四、林下四種樹苗白天照射到斑光的狀況 21
    五、斑光對林下樹苗一日光合作用CO2固定量的貢獻 32
    (一)斑光對不同樹種苗木一日光合作用CO2固定量的影響 32
    (二)林下樹苗有斑光時的淨光合作用率與斑光光量及斑光持續時間的關係 48
    六、林下樹苗在不同CO2濃度處理下光補償點及暗呼吸率之比較 49
    伍、討論 51
    一、林下光環境及斑光的性質 51
    二、斑光對林下樹苗光合作用CO2固定量的影響及貢獻 53
    三、斑光對林下低光環境四種樹種的碳固定量差異 56
    四、林下低光環境四種樹苗在不同CO2濃度下的光補償點及暗呼吸率的反應 57
    陸、結論 59
    參考文獻 60
    附錄 68

    參考文獻
    許子淳 (2021) 二氧化碳濃度提高對不同耐陰性樹種苗木光合作用性狀之影響。國立屏東科技大學森林系論文,78頁。
    郭耀綸、尤國霖、楊月玲、王相華 (2007) 颱風擾動對台灣南部墾丁森林林下光量及六種樹苗生長的影響。台灣林業科學 22(4): 351-364。
    郭耀綸、楊月玲、吳祥鳴 (1999) 墾丁熱帶森林六種樹苗生長性狀及光合作用對光量的可塑性。台灣林業科學 14(3): 255-273。
    陳信佑、許博行 (2016) 惠蓀林場闊葉天然林與杉木人工林對太陽輻射保溫能力的比較。林業研究季刊 38(3): 153-160。
    彭世賢 (2009) 南仁山森林樹苗一日碳收支及利用斑光之研究。國立屏東科技大學碩士論文,75頁。
    鄭鈞謄、郭耀綸 (2004) 南仁山森林內的二氧化碳濃度梯度及其對林下小苗光合作用的影響。臺灣林業科學 19(2): 143-152。
    Ádám, R., P. Ódor, A. Bidló, L. Somay, and J. Bölöni (2018) The effect of light, soil pH and stand heterogeneity on understory species composition of dry oak forests in the North Hungarian Mountains. Community Ecology 19(3): 259-271.
    Agyeman, V. K., M. D. Swaine, and J. Thompson (1999) Responses of tropical forest tree seedlings to irradiance and the derivation of a light response index. Journal of Ecology 87(5): 815-827.
    Avalos, G. (2019) Shade tolerance within the context of the successional process in tropical rain forests. Revista de Biología Tropical 67(2): 53-77.
    Baltzer, J. L., and S. C. Thomas (2007) Determinants of whole‐plant light requirements in Bornean rain forest tree saplings. Journal of Ecology 95(6): 1208-1221.
    Brenes-Arguedas, T., A. B. Roddy, P. D. Coley, and T. A. Kursar (2011) Do differences in understory light contribute to species distributions along a tropical rainfall gradient? Oecologia 166(2): 443-456.
    Chazdon, R. L. (1988) Sunflecks and their importance to forest understorey plants. Advances in Ecological Research 18: 1-63.
    Chazdon, R. L., and N. Fetcher (1984) Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. Journal of Ecology 72(2): 553-564.
    Chazdon, R. L., and R. W. Pearcy (1991) The importance of sunflecks for forest understory plants. Bioscience 41(11): 760-766.
    Chen, H. Y. H. (2003) Characteristics of light availability under forest canopies and its influences on photosynthesis of understory plants. Forest Studies in China 5(3): 54-62.
    Coomes, D. A., G. Kunstler, C. D. Canham, and E. Wright (2009) A greater range of shade‐tolerance niches in nutrient‐rich forests: an explanation for positive richness–productivity relationships? Journal of Ecology, 97(4): 705-717.
    Craine, J. M., and P. B. Reich (2005) Leaf-level light compensation points in shade-tolerant woody seedlings. New Phytologist 116(3) 710-713.
    Deguchi, R., and K. Koyama (2020) Photosynthetic and morphological acclimation to high and low light environments in Petasites japonicus subsp. giganteus. Forests 11(1365): 1-21.
    Edwards, G. E., and D. A. Walker (1983) photorespiration. p. 368-409. In: C3, C4: Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis. University of California Press.
    Eliáš, P. (2014) Sunflecks in forest communities and their importance for plant life in a forest understorey. Mendel Bioclimatology 62-70.

    Feng, J., K. Zhao, D. He, S. Fang, T. Lee, and C. Chu et al. (2018) Comparing shade tolerance measures of woody forest species. PeerJ, 6, e5736.
    Gjindali, A., H. A. Herrmann, J. M. Schwartz, G. N. Johnson, and P. I. Calzadilla (2021) A holistic approach to study photosynthetic acclimation responses of plants to fluctuating light. Frontiers in Plant Science 12(651):1-20.
    Hättenschwiler, S. (2001) Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2. Oecologia 129(1): 31-42.
    Hayek, M. N., R. Wehr, M. Longo, L. R. Hutyra, K. Wiedemann, and J. W. Munger et al. (2018) A novel correction for biases in forest eddy covariance carbon balance. Agricultural and Forest Meteorology 250-251(15): 90-101.
    Hicks, D. J, and B, F. Chabot (1985) Deciduous forest. P. 257-277. In: Chabot, B. F. and H. A. Mooney (eds.) Physiological Ecology of North America Plant Communities, Springer, Dordrecht.
    Hieke, S. C., M. Menzel, and P. Ludders (2002) Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis). TreePhysiology 22(17): 1249-1256.
    Holtum, J. A., and K. Winter (2001) Are plants growing close to the floors of tropical forests exposed to markedly elevated concentrations of carbon dioxide? Australian Journal of Botany 49(5): 629-636.
    Huang, W., S. B. Zhang, J. L. Zhang, and H. Hu (2015) Photoinhibition of photosystem I under high light in the shade-established tropical tree species Psychotria rubra. Frontiers in plant science 6(801): 1-10.

    Kaiser, E., S. Matsubara, J. Harbinson, E. Heuvelink, and L. F. M. Marcelis (2018) Acclimation of photosynthesis to lightflecks in tomato leaves: interaction with progressive shading in a growing canopy. Physiologia plantarum 162(4): 506-517.
    Kubiske, M. E., and K. S. Pregitzer (1996) Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiology 16(3): 351-358.
    Kuo, Y. L., and C. L. Yeh (2015) Photosynthetic capacity and shade tolerance of 180 native broadleaf tree species in Taiwan. Taiwan Journal of Forest Science 30(4): 229-243.
    Kutsch, W. L., O. Kolle, C. Rebmann, A. Knohl, W. Ziegler, and E. D. Schulze (2008) Advection and resulting CO2 exchange uncertainty in a tall forest in central Germany. Ecological Applications 18(6): 1391-1405.
    Leakey, A. D. B., J. D. Scholes, and M. C. Press (2005) Physiological and ecological significance of sunflecks for dipterocarp seedlings. Journal of Experimental Botany 56(411): 469-482.
    Leakey, A. D. B., M. C. Press, and J. D. Scholes (2003) Patterns of dynamic irradiance affect the photosynthetic capacity and growth of dipterocarp tree seedlings. Oecologia 135(2): 184-193.
    Leuchner, M., C. Hertel, and A. Menzel (2011) Spatial variability of photosynthetically active radiation in European beech and Norway spruce. Agricultural and forest meteorology 151(9): 1226-1232.
    Matthew, H. T., and J. Y. David (1993) Seasonal variation in the red/far-redratio and photon flux density in an Australian subtropical rainforest. Agricultural and Forest Meteorology 64: 111-127.

    Naumburg, E., and D. S. Ellsworth (2000) Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. Oecologia 122(2): 163-174.
    Naumburg, E., D. S. Ellsworth, and R. W. Pearcy (2001) Crown carbon gain and elevated [CO2] responses of understorey saplings with differing allometry and architecture. Functional Ecology 15(2): 263-273.
    Nilsen, E. T., T. T. Lei, and S. W. Semones (2009) Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus rubra seedlings growing in understory forest patches with or without evergreen shrubs present. International Journal of Plant Sciences 170(6): 735-747.
    Parker, G. G., D. R. Fitzjarrald, and I. C. G. Sampaio (2019) Consequences of environmental heterogeneity for the photosynthetic light environment of a tropical forest. Agricultural and Forest Meteorology 278: 1-18.
    Pearcy, R. W. (1983) The light environment and growth of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia 58(1): 19-25.
    Pearcy, R. W. (1990) Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Biology 41(1): 421-453.
    Pearcy, R. W., and H. W. Calkin (1983) Carbon dioxide exchange of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia 58(1): 26-32.

    Pearcy, R. W., R. L. Chazdon, L. J. Gross, and K. A. Mott (1994) Photosynthetic utilization of sunflecks: a temporally patchy resource on a time scale of seconds to minutes. p. 175-208. In: Caldwell, M. M., and R. W. Pearcy (eds.) Exploitation of Environmental Heterogeneity by Plants. Academic Press, San Diego.
    Pfitsch, W. A., and R. W. Pearcy (1989) Daily carbon gain by Adenocaulon bicolor (Asteraceae), a redwood forest understory herb, in relation to its light environment. Oecologia 80(4): 465-470.
    Quevedo, A., T. Schwarzkopf, C. García, and M. Jerez (2016) Ambiente de luz del sotobosque de una selva nublada andina: estructura del dosel y estacionalidad climática. Revista de Biología Tropical 64(4): 1699-1707.
    Roden, J. S. (2003) Modeling the light interception and carbon gain of individual fluttering aspen (Populus tremuloides Michx) leaves. Trees 17(2): 117-126.
    Rodríguez-Calcerrada, J., J. A. Pardos, and L. Gil (2007) Acclimation to light in seedlings of Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd. planted along a forest-edge gradient. Trees 21: 45-54.
    Sefcik, L. T., D. R. Zak, and D. S. Ellsworth (2006) Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Tree Physiology 26(12): 1589-1599.
    Smith, D. M., B. C. Larson, M. J. Kelty and P. M. S. Ashton (1997) The Practice of Silviculture. (9th). John Wiley and Sons, New York. 537pp.
    Smith, W. K., and Z. C. Berry (2013) Sunflecks? Tree Physiology 33(3): 233-237.

    Swaine, M. D., and T. C. Whitmore (1988) On the definition of ecological species groups in tropical rain forests. Plant Ecology 75: 81-86.
    Tang, Y., T. Okuda, M. Awang, and M. Tani (2003) Sunfleck contribution to leaf carbon gain in gap and understory tree seedlings of Shorea macrophylla. p. 251-260. In: Okuda, T., N. Manokaran, Y. Matsumoto, K. Niiyama, S. C. Thomas, (eds.) Pasoh: Eology of a Lowland Rain Forest in Southeast Asia. Springer, Tokyo.
    Théry, M. (2001) Forest light and its influence on habitat selection. Plant Ecology 153: 251-261.
    Torres-Leite, F., P. C. Cavatte, M. L. Garbin, R. K. Hollunder, K. Ferreira-Santos et al. (2019) Surviving in the shadows: light responses of co-occurring Rubiaceae species within a tropical forest understory. Flora 261: 1-13.
    Tsai, H. C., Chiang, J. M., McEwan, R. W., and T. C. Lin (2018) Decadal effects of thinning on understory light environments and plant community structure in a subtropical forest. Ecosphere 9(10): 1-14.
    Valladares, F., and Ü. Niinemets (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237-257.
    Wagner, A. and J. B. McGraw (2013) Sunfleck effects on physiology, growth, and local demography of American ginseng (Panax quinquefolius L.). Forest Ecology and Management 291: 220-227.
    Walters, R. G. (2005) Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany 56(411): 435-447.
    Way, D. A., and R. W. Pearcy (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology 32(9): 1066-1081.

    Whitmore, T. C. (1989) Canopy gaps and the two major groups of forest trees. Ecology 70(3): 536-538.
    Yin, D. S., and H. L. Shen (2016) Shade tolerance and the adaptability of forest plants in morphology and physiology: A review. Chinese Journal of Applied Ecology 27(8): 2687-2698.
    Zhang, J., S. Shuang, L. Zhang, S. Xie, and J. Chen (2021) Photosynthetic and photoprotective responses to steady-state and fluctuating light in the shade-demanding crop Amorphophallus xiei grown in intercropping and monoculture systems. Frontiers in Plant Science 12(923): 1-15.
    Zhang, Q., Y. J. Chen, L. Y. Song, N. Liu, L. L. Sun, and C. L. Peng (2012) Utilization of lightflecks by seedlings of five dominant tree species of different subtropical forest successional stages under low-light growth conditions. Tree Physiology 32(5): 545-553.

    下載圖示
    QR CODE