簡易檢索 / 詳目顯示

研究生: 王菲
Wang, Fei
論文名稱: 建立Bacillus amyloliquefaciens PMB04的液態發酵配方於甜椒細菌性斑點病之防治
Establishment of liquid fermentation formula of Bacillus amyloliquefaciens PMB04 to control bacterial leaf spot of sweet
指導教授: 林宜賢
Lin, Yi-Hsien
學位類別: 碩士
Master
系所名稱: 農學院 - 植物醫學系所
Department of Plant Medicine
畢業學年度: 109
語文別: 中文
論文頁數: 78
中文關鍵詞: 細菌性斑點病液態發酵殺菌劑拮抗物質
外文關鍵詞: submerge, antagonistic compound
DOI URL: http://doi.org/10.6346/NPUST202100270
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 甜椒是世界上重要作物之一,在其栽培過程中由Xanthomonas perforans 所造成的細菌性斑點病會造成品質及產量嚴重降低。除了化學防治方法之外,開發可防治甜椒細菌性斑點病之微生物製劑也有其必要性。本研究擬應用已證明對十字花科黑腐病及草莓炭疽病具有良好防治效果之Bacillus amyloliquefaciens PMB04,評估其在防治甜椒細菌性斑點病之潛力並建立其發酵液配方。在平板拮抗活性分析的結果顯示B. amyloliquefaciens PMB04可抑制多種病原細菌之生長,其中又以對X. perforans 之拮抗效果最為顯著。進一步利用B. amyloliquefaciens PMB04之細菌懸浮液進行處理,亦可顯著降低甜椒之細菌性斑點病發生。為了提升B. amyloliquefaciens PMB04在田間應用的潛力,以PMBFL-2A作為基礎發酵配方,分別利用搖瓶試驗及30公升發酵槽,以不同比例之碳氮比進行配方調整。在菌量及產胞率的結果顯示,於搖瓶發酵中以碳氮比0.5-0.5及1-1之配方發酵後可達100%之產胞率;在30公升發酵槽中以碳氮比3-1、2-1以及0.5-0.5之配方均可達100%之產胞率。將前述由30公升發酵槽所獲得之發酵液進行防治試驗結果顯示,以碳氮比0.5-0.5所製備之發酵液配方(PMB4FL)可達44.5%之防治率為最佳,接著將PMB4FL發酵液進行200、500及1000倍稀釋處理也能顯著減少病害的發生,防治率分別為39.1%、28.7%及16.8%,且將PMB4FL發酵液於54 °C下存放14天仍可維持100%之存活率。進一步評估茄科作物常用之殺菌劑搭配B. amyloliquefaciens PMB04之可行性,由液態培養的結果顯示,包括含銅殺菌劑在內的部分殺菌劑對B. amyloliquefaciens PMB04的生長略有抑制,表示未來施用B. amyloliquefaciens PMB04發酵液時需避免與殺菌劑混合使用。同時在含銅殺菌劑與X. perforans之拮抗分析的結果顯示,氫氧化銅對於本實驗之供試菌株具有較穩定之抑制效果,因此進一步分析氫氧化銅對PMB4FL發酵液於甜椒細菌性斑點病防治效果的影響,結果顯示氫氧化銅無法增強PMB4FL發酵液對甜椒細菌性斑點病之防治效果外,單獨處理氫氧化銅亦無防治效果,由此說明B. amyloliquefaciens PMB04發酵液在甜椒細菌性斑點病之防治上以單獨處理為佳。最後,本研究亦分別利用antiSMASH軟體、PCR及薄層層析進行分析後,推測B. amyloliquefaciens PMB04可產生iturin、fengycin及bacilycin等拮抗物質,並進一步利用B. amyloliquefaciens PMB04之濾液探討其對X. perforans XL1之影響,結果顯示PMB4FL發酵液濾液可更為顯著抑制X. perforans XL1之細菌族群量。綜上所述,本研究建立之PMB4FL配方,可使B. amyloliquefaciens PMB04具有最高產胞率且單獨處理即可顯著降低甜椒細菌性斑點病之發生,具有實際應用於田間的潛力。

    Sweet pepper is an important vegetable crop worldwide. In the production process of sweet pepper, bacterial leaf spot (BLS) caused by Xanthomonas perforans has serious impact on quality and yield. In addition to chemical control, it is necessary to develop a biocontrol agent that can control BLS on sweet pepper. This study is aim to apply Bacillus amyloliquefaciens PMB04, which could control crucifer black rot disease and strawberry anthracnose, to evaluate its potential o on control BLS and further establish the liquid fermentation formula of B. amyloliquefaciens PMB04. First, the inhibitiory assay revealed that B. amyloliquefaciens PMB04 has strongest antagonistic activity against several bacterial pathogens, especially on X. perforans. Further apply the bacterial suspension of B. amyloliquefaciens PMB04, result revealed that the disease severity was significant decrease on sweet pepper. To increase its application potential in field, the PMBFL-2A was used as the basal formula, and further adjusted the different ratios on carbon and nitrogen in the 500 ml flask and 30 liters fermentation tank. Results exhibited that bacterial population and sporulation in the formula with carbon and nitrogen ratio at 0.5-0.5, named PMB4FL, had best sporulation to 100% in both 500 ml flask and 30-liter fermentation tank. The PMB4FL fermentation broth has 100% survival rate under 54 °C for 14 days. And, the biocontrol efficacy to 44.5% of PMB4FL was best. Subsequently, the control efficacies reduced by PMB4FL fermentation broth at 200, 500 and 1000-fold dilutions were 39.1, 28.7 and 16.8%. Further evaluated the inhibition effect of fungicides suggested for controlling disease of Solanaceae on growth of B. amyloliquefaciens PMB04, the result revealed that part of fungicides including copper based-fungicides could suppress the growth of B. amyloliquefaciens PMB04. These results indicated the fermentation broth of B. amyloliquefaciens PMB04 should be avoid of using with fungicides. In addition, the result revealed copper (II) hydroxide could suppress bacterial growth of X. perforans strains. However, the co-treatment of copper (II) hydroxide and PMB4FL fermentation broth, copper (II) hydroxide did not increase the biocontrol efficacy of PMB4FL fermentation broth to BLS on sweet pepper. Besides, the treatment with copper (II) hydroxide did not exhibit any control efficacy to that. The metabolites anlysis performed by genome prediction, PCR and thin-layer chromatography assay suggested that B. amyloliquefaciens PMB04 might have iturin, fengycin and bacilysin synthesis. And, the filtrate of PMB4FL ferementation broth was reduce the population of X. perforans XL1 significantly. Taken together, B. amyloliquefaciens from PMB4FL liquid fermentation formula has highest sporulation and decrease disease severity of bacterial leaf spot on sweet pepper effectively. Application of the fermentation broth alone to control BLS would be promising in the field.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖表目錄 IX
    壹、前言 1
    貳、前人研究 3
    參、材料方法 9
    一、植物材料 9
    二、菌株分離及培養 9
    三、Xanthomonas perforans之基因定序及鑑定 9
    四、聚合酶連鎖反應 10
    五、Bacillus amyloliquefaciens PMB04之水解酵素測試 11
    六、Bacillus spp. 與不同植物細菌病原菌於平板之抑制測試 12
    七、Bacillus amyloliquefaciens PMB04於葉部之殘存能力分析 13
    八、Bacillus amyloliquefaciens PMB04之施用順序對Xanthomonas perforans XL1防治效果之影響 13
    九、Bacillus amyloliquefaciens PMB04發酵液對甜椒發芽率之影響 14
    十、生長曲線 14
    十一、Bacillus amyloliquefaciens PMB04於500 ml搖瓶發酵之培養試驗 14
    十二、Bacillus amyloliquefaciens PMB04於30公升發酵槽之培養試驗 15
    十三、Bacillus amyloliquefaciens PMB04發酵液對細菌性斑點病之防治 16
    十四、Bacillus amyloliquefaciens PMB04對殺菌劑之敏感性 16
    十五、Bacillus amyloliquefaciens PMB04發酵液對殺菌劑之敏感性 17
    十六、Xanthomonas perforans 之菌株對含銅殺菌劑之敏感性 17
    十七、殺菌劑對碳氮比0.5-0.5配方之B. amyloliquefaciens PMB04發酵液(PMB4FL)在防治細菌性斑點病上之影響 18
    十八、Bacillus amyloliquefaciens PMB04之全基因定序與antiSMASH軟體之預測 18
    十九、Bacillus amyloliquefaciens PMB04拮抗物質生合成基因之親緣樹分析 19
    二十、利用薄層色層分析法(Thin-layer chromatography)分析Bacillus amyloliquefaciens PMB04之拮抗物質 20
    二十一、Bacillus amyloliquefaciens PMB04的拮抗物質生合成基因之親源樹分析 20
    二十二、Bacillus amyloliquefaciens PMB04培養濾液對Xanthomonas perforans XL1膜磷脂絲胺酸外顯性之影響 20
    二十三、統計分析 21
    肆、結果 22
    一、菌株分離及鑑定 22
    二、Bacillus amyloliquefaciens PMB04之對植物病原菌之平板拮抗活性分析 22
    三、Bacillus amyloliquefaciens PMB04於甜椒葉部之殘存能力 23
    四、Bacillus amyloliquefaciens PMB04之施用順序對Xanthomonas perforans XL1之防治效果之影響 23
    五、Bacillus amyloliquefaciens PMB04對於甜椒種子發芽之影響 23
    六、Bacillus amyloliquefaciens PMB04之生長曲線 24
    七、不同碳氮比之發酵液配方於500 mL搖瓶對Bacillus amyloliquefaciens PMB04產胞率之影響 24
    八、不同碳氮比之發酵液配方於30公升發酵槽對Bacillus amyloliquefaciens PMB04產胞率之影響 24
    九、不同碳氮比之發酵液配方於30公升發酵槽對Bacillus amyloliquefaciens PMB04防治細菌性斑點病之影響 25
    十、利用PMB4FL發酵液配方製作之發酵液在不同稀釋倍數下對細菌性斑點病之防治效果 25
    十一、Bacillus amyloliquefaciens PMB04於發酵液中之偵測率 25
    十二、Bacillus amyloliquefaciens PMB04發酵液之儲架壽命 26
    十三、Bacillus amyloliquefaciens PMB04與殺菌劑之親和性 26
    十四、殺菌劑對於Xanthomonas perforans XL1之生長抑制效果 26
    十五、殺菌劑對PMB4FL在防治細菌性斑點病上之影響 27
    十六、Bacillus amyloliquefaciens PMB04拮抗物質之分析 27
    十七、Bacillus amyloliquefaciens PMB04培養濾液對Xanthomonas perforans XL1膜磷脂絲胺酸外顯性之影響 28
    伍、討論 30
    陸、參考文獻 35
    柒、圖表 47
    捌、附錄 76

    1. 王昭月. 2016. 飄洋過海來台的番椒. 科學發展. 526: 28-33.
    2. 李阿嬌、范淑貞. 2004. 品種與栽培介質對甜椒生長及產量之效應. 桃園區農業改良場研究彙報第55期. 1-14頁.
    3. 李睿家. 2016. 補光對設施小果番茄及彩色甜椒生產之影響. 國立中興大學農藝學系碩士學位論文. 118頁.
    4. 何庭欣. 2019. 建立Bacillus amyloliquefaciens PMB05 之發酵液配方於植物免疫反應與防治番茄青枯病之探討. 國立屏東科技大學植物醫學系碩士學位論文. 72頁.
    5. 林昇慧、陳婉伶、郭武東. 2007. 微生物發酵產業. 科學發展415: 1-6.
    6. 林思婷. 2020. 利用AtWRKY22-GFP 阿拉伯芥轉殖株篩選可提升植物免疫之土壤微生物菌株. 國立屏東科技大學植物醫學系碩士學位論文. 80頁.
    7. 林學詩. 1999. 花蓮縣瑞穗鄉的彩色甜椒及其栽培注意事項簡介.花蓮區農業改良場編印. 15-17頁.
    8. 林鍇薳. 2020. Bacillus amyloliquefaciens PMB05之最適發酵條件建立與 其應用於檸檬潰瘍病之防治. 國立屏東科技大學植物醫學系碩士學位論文. 79頁.
    9. 韋巧婕、鄭新豔、鄧開英、王小慧、高雪蓮、沈其榮、沈標. 2013. 黄瓜枯萎病拮抗菌的篩選鑑定及其生物防效. 南京農業大學學報36: 40-46.
    10. 張俊傑. 2016. 藉由Bacillus amyloliquefaciens啟動西瓜內源之免疫反應於果 斑病之防治.國立屏東科技大學植物醫學系碩士學位論文. 56頁.
    11. 張俊傑、吳佩宜、林咏霓、鄧文玲、林宜賢. 2019. 應用Bacillus spp.菌株強化西瓜內源之免疫反應防治西瓜果斑病. 植物醫學61: 39-48.
    12. 彭淑貞. 2004. 甜椒常見病害及防治. 苗栗區農業專訊第26期.
    13. 鄭靜霖. 2018 應用AtGSL5-GFP轉殖阿拉伯芥篩選可提升植物免疫之微生物. 國立屏東科技大學植物醫學系碩士學位論文. 54頁.
    14. Abd-Elhalem, B.T., M. El-Sawy, R.F. Gamal, and K.A. Abou-Taleb. 2015. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann. Agric. Sci. 60: 193-202.
    15. Almoneafy, A.A., K.U. Kakar, Z. Nawaz, B. Li, M.A. saand, Y. Chun-lan, and G.-L. Xie. 2014. Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63: 59-70.
    16. Anand, K. U. M. A. R., Kumari, B. A. B. Y., and Mallick, M. A. 2016. Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. J. Pharm. Sci. 8: 37.
    17. Araújo, E.R., J.R. Costa, N.C. Pontes, and A.M. Quezado-Duval. 2015. Xanthomonas perforans and X. gardneri associated with bacterial leaf spot on weeds in Brazilian tomato fields. Eur. J. Plant Pathol. 143: 543-548.
    18. Balogh, B., Nga, N. T. T., and Jones, J. B. 2018. Relative level of bacteriophage multiplication in vitro or in phyllosphere may not predict in planta efficacy for controlling bacterial leaf spot on tomato caused by Xanthomonas perforans. Front. Microbiol. 9: 2176.
    19. Behlau, F., Canteros, B. I., Minsavage, G. V., Jones, J. B., and Graham, J. H. 2011. Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Appl. Environ. Microbiol. 77: 4089-4096.
    20. Burlakoti, R. R., Hsu, C. F., Chen, J. R., & Wang, J. F. 2018. Population dynamics of xanthomonads associated with bacterial spot of tomato and pepper during 27 years across Taiwan. Plant Dis. 102: 1348-1356.
    21. Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., and Cai, Y. 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 8: 1-14.
    22. Chateau, N., Castellanos, I., and Deschamps, A. M. 1993. Distribution of pathogen inhibition in the Lactobacillus isolates of a commercial probiotic consortium. J. Appl. Microbiol. 74: 36-40.
    23. Chen, D., Liu, X., Li, C., Tian, W., Shen, Q., and Shen, B. 2014. Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. J. Environ. Manage. 137: 120-7.
    24. Chen, M. C., Wang, J.P., Zhu, Y. J., Liu, B., Yang, W. J. and Ruan, C. Q. 2019. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349. J. Appl. Microbiol. 126: 1519-1529.
    25. Chen, W., Ma, X., Wang, X., Chen, S., Rogiewicz, A., Slominski, B., and Huang, F. 2019. Establishment of a rapeseed meal fermentation model for iturin A production by Bacillus amyloliquefaciens CX-20. Microb. Biotechnol. 12: 1417-1429.
    26. Chen, X. H., Scholz, R., Borriss, M., Junge, H., Mögel, G., Kunz, S., and Borriss, R. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140: 38-44.
    27. Chien, Y. C., and Huang, C. H. 2020. Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. Eur. J. Plant Pathol. 156: 995-1003.
    28. Choi, H. K., Song, G. C., Yi, H. S. and Ryu, C. M. 2014. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J. Chem. Ecol. 40: 882-892.
    29. COA. 2020. COA yearbook, Council of Agriculture, Executive Yuan, Taiwan: Annu. Rep. Agri. Stat.
    30. Coutte, F., D. Lecouturier, S. A., Yahia, V. Leclere, M. Bechet, P. Jacques, and P. Dhulster. 2010. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl. Microbiol. Biotechnol. 87: 499-507.
    31. Cui, W., He, P., Munir, S., He, P., He, Y., Li, X. and He, P. 2019. Biocontrol of Soft Rot of Chinese Cabbage Using an Endophytic Bacterial Strain. Front. Microbiol. 10: 1471. https://doi.org/10.3389/fmicb.2019.01471
    32. Czinkóczky, R., and Németh, Á. 2020. Techno-economic assessment of Bacillus fermentation to produce surfactin and lichenysin. Biochem. Eng. J. 163: 107719. https://doi.org/10.1016/j.bej.2020.107719
    33. Deng, Y., Wang, L., Chen, Y., and Long, Y. Optimization of staining with SYTO 9/propidium iodide: interplay, kinetics and impact on Brevibacillus brevis. BioTechniques 69: 88-98.
    34. Dimkić, I., Stanković, S., Nišavić, M., Petković, M., Ristivojević, P., Fira, D., and Berić, T. 2017. The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front. Microbiol. 8: 925. doi: 10.3389/fmicb.2017.00925
    35. Es-Soufi, R., Tahiri, H., Azaroual, L., El Oualkadi, A., Martin, P., Badoc, A., and Lamarti, A. 2020. Biocontrol potential of Bacillus amyloliquefaciens Bc2 and Trichoderma harzianum TR against strawberry anthracnose under laboratory and field conditions. Agric. Sci. 11: 260-277.
    36. Fan, H., Z. Zhang, Y. Li, Zhang, X. Duan, Y. and Wang, Q. 2017. Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front. Microbiol. 8: 1973. https://doi.org/10.3389/fmicb.2017.01973
    37. World Health Organization. 2010. Manual on development and use of FAO and WHO specifications for pesticides.
    38. Farzand, A., Moosa, A., Zubair, M., Khan, A. R., Hanif, A., Tahir, H. A. S., and Gao, X. 2019. Marker assisted detection and LC-MS analysis of antimicrobial compounds in different Bacillus strains and their antifungal effect on Sclerotinia sclerotiorum. Biol. Control. 133: 91-102.
    39. Fazion, F., Perchat, S., Buisson, C., Vilas‐Bôas, G., and Lereclus, D. 2018. A plasmid-borne Rap-Phr system regulates sporulation of Bacillus thuringiensis in insect larvae. Environ. Microbiol. 20: 145-155.
    40. Fira, D., Dimkić, I., Berić, T., Lozo, J., and Stanković, S. 2018. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285: 44-55.
    41. Fritze, D. 2004. Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology 94: 1245-1248.
    42. Gase, K., Ferretti, J. J., Primeaux, C., and McShan, W. M. Identification, Cloning, and Expression of the CAMP factor gene (cfa) of Group A Streptococci. Infect. Immun. 67: 4725-4731.
    43. Gerayeli, N., Baghaee-Ravari, S., and Tarighi, S. 2018. Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection. Eur. J. Plant Pathol. 150: 1049-1063.
    44. Ghelardi, E., Salvetti, S., Ceragioli, M., Gueye, S. A., Celandroni, F., and Senesi, S. 2012. Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Appl. Environ. Microbiol. 78: 6540.
    45. Gong, A. D., Li, H. P., Yuan, Q. S., Song, X. S., Yao, W., He, W. J. and Liao, Y. C. 2015. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10: e0116871. doi:10.1371/journal.pone.0116871
    46. He, S., Wang, H., Wu, B., Zhou, H., Zhu, P., Yang, R., and Yan, X. 2012. Response surface methodology optimization of fermentation conditions for rapid and efficient accumulation of macrolactin A by marine Bacillus amyloliquefaciens ESB-2. Molecules 18: 408-17.
    47. Ho, T. H., Chuang, C. Y., Zheng, J. L., Chen, H. H., Liang, Y. S., Huang, T. P., and Lin, Y. H. 2020. Bacillus amyloliquefaciens strain PMB05 intensifies plant immune responses to confer resistance against bacterial wilt of tomato. Phytopathology 110: p. 1877-1885.
    48. Irfan, M., Asghar, U., Nadeem, M., Nelofer, R., and Syed, Q. 2019. Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. J. Radiat. Res. Appl. Sc. 9: 139-147.
    49. Islam, M. N., Ali, M. S., Choi, S. J., Hyun, J. W., and Baek, K. H. 2019. Biocontrol of citrus canker disease caused by Xanthomonas citri subsp. citri using an endophytic Bacillus thuringiensis. Plant Pathol. J.35: 486-497.
    50. Jiang, C. H., Wu, F., Yu, Z. Y., Xie, P., Ke, H. J., Li, H. W. and Guo, J. H. 2015. Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiol. Res. 170: 95-104.
    51. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E. and Schaad, N. W. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 27: 755-762.
    52. Kaspar, F., Neubauer, P. and Gimpel, M. 2019. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. J. Nat. Prod. 82: 2038-2053.
    53. Khanal, S., Hind, S. R. and Babadoost, M. 2021. Occurrence of bacterial spot in Illinois tomato fields and characteristics of the causal agents. HortScience 56: 8-12.
    54. Kim, K. H., Kabir, E. and Jahan, S. A. 2017. Exposure to pesticides and the associated human health effects. Sci. Total. Environ. 575: 525-535.
    55. Kumar, P., Dubey, R. C. and Maheshwari, D. K 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 167: 493-499.
    56. Kuriyama, I., Musumi, K., Yonezawa, Y., Takemura, M., Maeda, N., Iijima, H. and Mizushina, Y. 2005. Inhibitory effects of glycolipids fraction from spinach on mammalian DNA polymerase activity and human cancer cell proliferation. J. Nutr. Biochem. 16: 594-601.
    57. Korsten, L., De Villiers, E. E., Wehner, F. C. and Kotzé, J. M.1997. Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Dis. 81: 455-459.
    58. Lane, D. J. 1991. 16S/23S rRNA Sequencing. In: Stackebrandt, E. and Goodfellow, M., Eds., nucleic acid techniques in bacterial systematic, John Wiley and Sons, New York, 115-175.
    59. Lee, G., Lee, S. H., Kim, K. M. and Ryu, C. M. 2017. Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Sci. Rep.7: 1-13.
    60. Li, M., Z. Ma, Y. Zhu, H. Xia, M. Yao, X. Chu, X. Wang, K. Yang, M. Yang, Y. Zhang, and C. Mao. Toward a Molecular Understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus. Adv. Healthc. Mater. 5: 557-566.
    61. Li’aini, A. S., Lin, Y. H., Huang, T. C. and Sulistyowati, L. 2017. Application of Bacillus amyloliquefaciens to control black rot disease on cabbage caused by Xanthomonas campestris pv. campestris. J. Plant Med. 59: 39-44.
    62. Liang, Z., An, T., Li, G. and Zhang, Z. 2015. Aerobic biodegradation of odorous dimethyl disulfide in aqueous medium by isolated Bacillus cereus GIGAN2 and identification of transformation intermediates. Bioresour. Technol.175: 563-568.
    63. Lima-Pérez, J., López-Pérez, M., Viniegra-González, G. and Loera, O. 2019. Solid-state fermentation of Bacillus thuringiensis var kurstaki HD-73 maintains higher biomass and spore yields as compared to submerged fermentation using the same media. Bioprocess Biosyst. Eng. 42: 1527-1535.
    64. Marín, A., Ferreres, F., Tomás-Barberán, F. A. and Gil, M. I. 2004. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J. Agric. Food Chem. 52: 3861-3869.
    65. Mates, A. D. P. K., de Carvalho Pontes, N. and de Almeida Halfeld-Vieira, B. 2019. Bacillus velezensis GF267 as a multi-site antagonist for the control of tomato bacterial spot. Biol. Control 137: 104013. https://doi.org/10.1016/j.biocontrol.2019.104013
    66. Mathews L. Paret, Vallad, G. E., Averett, D. R., Jones, J. B. and Olson, S. M. 2012. Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103: 228-236.
    67. Medeot, D. B., Fernandez, M., Morales, G. M. and Jofré, E. 2019. Fengycins from Bacillus amyloliquefaciens MEP218 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Front. Microbiol. 10: 3107. https://doi.org/10.3389/fmicb.2019.03107
    68. Meena, K. R. and Kanwar, S. S. 2015. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed. Res. Int. https://doi.org/10.1155/2015/473050
    69. O. Carisse, A.O., and V. Toussaint. Evaluation of the effect of seed treatments, bactericides, and cultivars on bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians. Plant Dis. 84: 295-299.
    70. Osdaghi, E., Taghavi, S. M., Hamzehzarghani, H., Fazliarab, A. and Lamichhane, J. R. 2017. Monitoring the occurrence of tomato bacterial spot and range of the causal agent Xanthomonas perforans in Iran. Plant Pathol. 66: 990-1002.
    71. Özcengiz, G. and Öğülür, İ. 2015. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. Nat. Biotechnol. 32: 612-619.
    72. Pajčin, I., Vlajkov, V., Frohme, M., Grebinyk, S., Grahovac, M., Mojićević, M. and Grahovac, J. 2020. Pepper bacterial spot control by Bacillus velezensis: bioprocess solution. Microorganisms 8: 1463. https://doi.org/10.3390/microorganisms8101463
    73. Pandya, U., Prakash, S., Shende, K., Dhuldhaj, U. and Saraf, M. 2017. Multifarious allelochemicals exhibiting antifungal activity from Bacillus subtilis MBCU5. 3 Biotech. 7: 1-9.
    74. Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L. and Jones, J. B. 2015. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol. Plant. Pathol.16: 907-920.
    75. Rahman, M. S., Ano, T. and Shoda, M. 2007. Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168. J. Biotechnol. 127: 503-7.
    76. Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B. and Cammue, B. P. 2020. Screening for novel biocontrol agents applicable in plant disease management-A review. Biol. Control 144: 104240. https://doi.org/10.1016/j.biocontrol.2020.104240
    77. Raza, W., Ling, N., Yang, L., Huang, Q. and Shen, Q. 2016. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci. Rep. 6: 24856.
    78. Roach, R., Mann, R., Gambley, C. G., Shivas, R. G. and Rodoni, B. 2017. Identification of Xanthomonas species associated with bacterial leaf spot of tomato, capsicum and chilli crops in eastern Australia. Eur. J. Plant Pathol. 150: 595-608.
    79. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100: 4927-4932.
    80. Sanogo, S. and Clary, M. 2008. Bacterial leaf spot of chill pepper: a short guide for growers. New Mexico State University, College of Agriculture and Home Economics, Cooperative Extension Service, Agricultural Experiment Station.
    81. Scortichini, M., Stefani, E., Elphinstone, J. and Bergsma Vlami, M. 2013. PM 7/110 (1) Xanthomonas spp. (Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper. EPPO Bull. 43: 7-20.
    82. Setlow, P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101: 514-525.
    83. Šević, M., Gašić, K., Ignjatov, M., Mijatović, M., Prokić, A. and Obradović, A. 2019. Integration of biological and conventional treatments in control of pepper bacterial spot. Crop Prot. 119: 46-51.
    84. Stanković, S., Mihajlović, S., Draganić, V., Dimkić, I., Vukotić, G., Berić, T. and Fira, Đ. 2012. Screening for the presence of biosynthetic genes for antimicrobial lipopeptides in natural isolates of Bacillus sp. Arch. Biol. Sci. 64: 1425-1432.
    85. Stiefel, P., Schmidt-Emrich, S., Maniura-Weber, K. and Ren, Q. 2015. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO 9 and propidium iodide. BMC Microbiol. 15: 1-9.
    86. Strayer-Scherer, A., Liao, Y. Y., Abrahamian, P., Timilsina, S., Paret, M., Momol, T. and Vallad, G. E. Integrated management of bacterial spot on tomato in Florida. EDIS 2019: 8.
    87. Suryapal Singh, N.K.B., Harshita Singh, Sunil Kumar, and S.J.a. Vijay. Effect of hot water treatment of seeds on seed quality parameters and seedling growth parameters in bell pepper (Capsicum annuum). Indian J. Agric. Sci. 89: 133-137.
    88. Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Safdar, A., Huang, Z. and Gao, X. 2017. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biol. 17: 1-16.
    89. Tan, S., Gu, Y., Yang, C., Dong, Y., Mei, X., Shen, Q. and Xu, Y. 2015. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biol. Fertil. Soils 52: 341-351.
    90. Tang, Q., X. Bie, Z. Lu, F. Lv, Y. Tao, and X. Qu. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. J Microbiol;52: 675-680.
    91. Tian, Y., Fan, Y., Liu, J., Zhao, X. and Chen, W. 2016. Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. Electron. J. Biotechnol. 19: 41-49.
    92. Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G. and Bandi, V. 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6: 1-14.
    93. Voloudakis, A. E., Reignier, T. M. and Cooksey, D. A. 2005. Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl. Environ. Microbiol. 71: 782-789.
    94. Wang, X., Liu, X. and Han, H. 2013. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf. B. 103: 136-142.
    95. Wu, B., Wang, X., Yang, L., Yang, H., Zeng, H., Qiu, Y. and Chen, S. 2016. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Appl. Soil Ecol. 103: 1-12.
    96. Wu, L., Wu, H., Chen, L., Yu, X., Borriss, R. and Gao, X. 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci. Rep. 5: 1-9.
    97. Wu, Y. M., Chen, X., Wang, F., Hsiao, C. Y., Yang, C. Y., Lin, S. T. and Lin, Y. H. 2021. Bacillus amyloliquefaciens strains control strawberry anthracnose through antagonistic activity and plant immune response intensification. Biol. Control 157: 104592. https://doi.org/10.1016/j.biocontrol.2021.104592
    98. Wu, Z., Huang, Y., Li, Y., Dong, J., Liu, X. and Li, C. 2019. Biocontrol of Rhizoctonia solani via induction of the defense mechanism and antimicrobial compounds produced by Bacillus subtilis SL-44 on pepper (Capsicum annuum L.). Front. Microbiol 10: 2676. https://doi.org/10.3389/fmicb.2019.02676
    99. Yi, H. S., Ahn, Y. R., Song, G. C., Ghim, S. Y., Lee, S., Lee, G. and Ryu, C. M. 2016. Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front. Microbiol 7: 993. https://doi.org/10.3389/fmicb.2016.00993
    100. Zeriouh, H., de Vicente, A., Pérez‐García, A. and Romero, D. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ. Microbiol. 16: 2196-2211.
    101. Zeriouh, H., D.R., Romero, D., García-Gutiérrez, L., Cazorla, F. M., de Vicente, A., and Pérez-García, A. 2011. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol. Plant Microbe Interact. 24: 1540-1552.
    102. Zhu, L., Yang, X., Xue, C., Chen, Y., Qu, L. and Lu, W. 2012. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Bioresour. Technol. 117: 208-213.
    103. Zou, M., Guo, F., Li, X., Zhao, J. and Qu, Y. 2014. Enhancing production of alkaline polygalacturonate lyase from Bacillus subtilis by fed-batch fermentation. PLoS One : e90392. https://doi.org/10.1371/journal.pone.0090392

    無法下載圖示 校外公開
    2026/08/01
    QR CODE