簡易檢索 / 詳目顯示

研究生: 陳冠宏
Chen, Guan-Hong
論文名稱: 台灣蜆及苦瓜複方調節血脂之功效評估
Assessment of the efficacy of Corbicula fluminea and Momordica charantia complex on blood lipid regulation
指導教授: 陳與國
Chen, Yu-Kuo
余旭勝
Yu, Hsu-Sheng
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 高脂血症台灣蜆苦瓜調節血脂
外文關鍵詞: hyperlipidemia, Corbicula fluminea, Momordica charantia, blood lipid regulation
DOI URL: http://doi.org/10.6346/NPUST202100333
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 全球高脂血症的罹患率正不斷的迅速增加,而高脂飲食是造成高脂血症的主要原因之一。在現代社會中已將多種具有保健功效的天然食材應用於健康食品的開發,例如:台灣蜆 (Corbicula fluminea) 以其對肝臟的保護作用而聞名,而苦瓜 (Momordica charantia) 在調節血糖方面具有一定的功效。諸多文獻指出台灣蜆及苦瓜皆對肝臟功能具有調節作用,而肝臟功能在脂質代謝中扮演著關鍵的角色。因此本實驗目的為探討將台灣蜆及苦瓜作為複方是否對於血脂具有調節作用,並進一步研究其相關機制途徑。實驗將倉鼠分為四組,分別為 (1) 控制組 (control, C):給予基礎飼料;(2) 負控制組 (high fat diet, HFD):給予高脂飼料;(3) 低劑量複方組 (low dose freshwater clam + bitter melon, LFB):給予高脂飼料及蜆萃取物 (55 mg/kg/day) 與苦瓜粉末 (110 mg/kg/day) 複方;(4) 高劑量複方組 (high dose freshwater clam + bitter melon, HFB):給予高脂飼料及蜆萃取物 (275 mg/kg/day) 與苦瓜粉末 (550 mg/kg/day) 複方。結果顯示,餵食6週的HFD顯著提高倉鼠的血清總膽固醇 (total cholesterol, TC) 與三酸甘油酯含量 (triglyceride, TG) (p< 0.05),而給予台灣蜆與苦瓜複方能顯著降低血清TC (LFB: 50%; HFB: 56%) 及TG (LFB: 38%; HFB: 46%) 的含量 (p< 0.05)。在脂蛋白方面,複方樣品的給予能夠有效的降低VLDL-C (LFB: 43%; HFB: 55%) 及LDL-C (LFB: 31%; HFB: 37%) 的濃度,並且增加HDL-C (LFB: 27%; HFB: 37%) 的濃度,顯示複方樣品的給予具有調節脂蛋白之功效。除此之外,複方樣品能夠顯著的降低肝臟中的TC (LFB: 23%; HFB: 36%) 及TG (LFB: 38%; HFB: 46%) 含量,對於糞便僅增加TC (LFB: 26%; HFB: 34%) 的排出量,而對TG則不具有影響。接著以西方墨點法進行蛋白表現分析,由實驗結果可得知複方樣品的給予可增加肝臟中LDLR的表現、抑制HMGCR的膽固醇生成途徑、刺激CYP7A1的膽固醇轉化途徑及降低FAS的TG生成途徑。根據上述可得出,台灣蜆及苦瓜複方能夠顯著的改善血脂異常,主要機制是藉由增加LDL-C及膽固醇的代謝,以及抑制膽固醇及TG的生成以達到調節效果。綜合以上結果,台灣蜆及苦瓜複方具有發展成調節血脂之健康食品的潛力。

    The global prevalence of hyperlipidemia is increasing rapidly, and high-fat diet is one of the main causes of hyperlipidemia. In modern society, varieties of natural ingredients with health benefits have been used to the development of healthy food. For example, freshwater clam (Corbicula fluminea) is known for its protective effect on the liver, while bitter melon (Momordica charantia) has a certain effect on blood glucose regulation. Several reports indicated that both freshwater clam and bitter melon have beneficial effects on liver function, and liver function plays a vital role in lipid metabolism. Therefore, the major purpose of this experiment is to investigate whether the complex of freshwater clam and bitter melon has the regulatory effect on blood lipids, and to elucidate its related mechanisms. The hamsters were divided into four groups: (1) control group (C: fed basic diet); (2) negative control group (high fat diet, HFD: fed high fat diet); (3) low-dose complex group (LFB: fed HFD and 55 mg/kg/day of freshwater clam + 110 mg/kg/day of bitter melon); (4) high-dose complex group (HFB: fed HFD and 275 mg/kg/day of freshwater clam + 550 mg/kg/day of bitter melon). The results showed that fed with HFD for 6 weeks significantly increased serum total cholesterol (TC) and triglyceride (TG) (p< 0.05) of hamsters, while the treatment of freshwater clam and bitter melon complex significantly reduced serum TC (LFB: 50%; HFB: 56%) and TG (LFB: 38%; HFB: 46%) contents (p< 0.05). In lipoproteins, the administration of complex samples effectively reduced the serum concentration of VLDL-C (LFB: 43%; HFB: 55%) and LDL-C (LFB: 31%; HFB: 37%), and increased the concentration of HDL-C (LFB: 27%; HFB: 37%), which indicates that the administration of complex sample has the efficacy in regulation of lipoprotein metabolism. Moreover, the compound sample treatment significantly reduced the contents of TC (LFB: 23%; HFB: 36%) and TG (LFB: 38%; HFB: 46%) in the liver. However, it only increased the excretion of TC (LFB: 26%; HFB: 34%) in feces, but had no effect on TG. The western blot results showed that the administration of complex sample increased the expression of LDLR, inhibited the cholesterol production pathway of HMGCR, stimulated the cholesterol conversion pathway of CYP7A1, and reduced the triglyceride production pathway of FAS in the liver. According to the above, the freshwater clam and bitter melon complex can significantly improve dyslipidemia. The main mechanism is to increase the metabolism of LDL-C and cholesterol, and inhibit the production of cholesterol and triglycerides to achieve the regulatory benefits of blood lipids. Based on the above results, the freshwater clam and bitter melon complex has the potential to develop as a healthy food for blood lipid regulation.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VIII
    表目錄 IX
    壹、前言 1
    貳、文獻回顧 3
    一、高脂血症 3
    二、併發症 4
    三、血脂組成 4
    (一)膽固醇 4
    (二)三酸甘油酯 5
    (三)極低密度脂蛋白 6
    (四)低密度脂蛋白 6
    (五)高密度脂蛋白 7
    四、膽固醇代謝 8
    五、三酸甘油酯代謝 8
    六、高脂血症之倉鼠模式 9
    七、台灣蜆 10
    八、苦瓜 13
    九、調節血脂之蛋白質相關途徑 17
    參、材料與方法 29
    一、實驗架構圖 29
    二、實驗材料與儀器設備 30
    (一)實驗樣品 30
    (二)化學藥品及試劑 30
    (三)生化分析試紙 32
    (四)動物實驗飼料 32
    (五)Western blot抗體 32
    (六)儀器設備 33
    三、實驗方法 35
    (一)實驗動物飼養 35
    (二)實驗飼料之配製 35
    (三)糞便檢體蒐集 36
    (四)第0週血清生化指標測定 36
    (五)實驗動物犧牲 36
    (六)犧牲血清生化指標測定 36
    (七)血清脂蛋白膽固醇濃度測定 37
    (八)肝臟脂質萃取及濃度測定 38
    (九)糞便脂質萃取及濃度測定 39
    (十)病理組織切片分析 40
    (十一)Western blot 40
    (十二)實驗數據統計分析 44
    肆、結果與討論 45
    一、實驗期間給予HFD及樣品對實驗動物體重變化之影響 45
    二、實驗期間實驗動物的攝食量 45
    三、試驗結束後動物臟器重量及臟器重量百分比 46
    四、試驗結束後動物脂肪組織重量 46
    五、FB對高脂飲食實驗動物血清TC之影響 47
    六、FB對高脂飲食實驗動物血清TG之影響 48
    七、FB對高脂飲食實驗動物血清ALT之影響 49
    八、FB對高脂飲食實驗動物脂蛋白之影響 49
    九、FB對高脂飲食實驗動物LDL-C/HDL-C比值之影響 52
    十、FB對高脂飲食實驗動物肝臟外觀及脂質累積之影響 52
    十一、FB對高脂飲食實驗動物肝臟脂質濃度之影響 53
    十二、FB對高脂飲食實驗動物糞便脂質濃度之影響 54
    十三、FB對高脂飲食實驗動物肝臟膽固醇生合成蛋白途徑之影響 55
    十四、FB對高脂飲食實驗動物肝臟膽固醇分解蛋白途徑之影響 57
    十五、FB對高脂飲食實驗動物三酸甘油酯生成途徑之影響 58
    伍、結論 60
    陸、實驗圖表 61
    柒、參考文獻 76
    縮寫表 91

    行政院衛生福利部。2021。中華民國109年國人主要死因統計資料。
    郭廷育。2021。台灣蜆及苦瓜對高脂膽固醇飲食所誘導的倉鼠高脂血症之調節功效評估。學士論文。
    Alam, M. A., R. Uddin, N. Subhan, M. M. Rahman, P. Jain, and H. M. Reza. 2015. Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J Lipids. 2015: 496169.
    Amengual-Cladera, E., I. Lladó, A. M. Proenza, and M. Gianotti. 2013. High-fat diet feeding induces a depot-dependent response on the pro-inflammatory state and mitochondrial function of gonadal white adipose tissue. Br J Nutr. 109(3): 413-424.
    Bai, J., Y. Chen, Z. Ning, S. Liu, C. Xu, and J. K. Yan. 2020. Proteoglycan isolated from Corbicula fluminea exerts hepato-protective effects against alcohol-induced liver injury in mice. Int J Biol Macromol. 142: 1-10.
    Bai, J., Y. Zhu, and Y. Dong. 2016. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. J Ethnopharmacol. 194: 717-726.
    Barter, P., A. M. Gotto, J. C. LaRosa, J. Maroni, M. Szarek, S. M. Grundy, J. J. Kastelein, V. Bittner, and J. C. Fruchart. 2007. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 357(13): 1301-1310.
    Bhathena, J., A. Kulamarva, C. Martoni, A. M. Urbanska, M. Malhotra, A. Paul, and S. Prakash. 2011. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease. Diabetes Metab Syndr Obes. 4: 195-203.
    Bleda, S., J. de Haro, C. Varela, A. Ferruelo, and F. Acin. 2016. Elevated levels of triglycerides and vldl-cholesterol provoke activation of nlrp1 inflammasome in endothelial cells. Int J Cardiol. 220: 52-55.
    Brosnan, J. T., and M. E. Brosnan. 2006. The sulfur-containing amino acids: an overview. J Nutr. 136(6 Suppl): 1636-1640.
    Burgess, B. L., S. A. McIsaac, K. E. Naus, J. Y. Chan, G. H. Tansley, J. Yang, F. Miao, C. J. Ross, M. van Eck, M. R. Hayden, W. van Nostrand, P. St George-Hyslop, D. Westaway, and C. L. Wellington. 2006. Elevated plasma triglyceride levels precede amyloid deposition in Alzheimer's disease mouse models with abundant A beta in plasma. Neurobiol Dis. 24(1): 114-127.
    Cappel, R. E., and H. F. Gilbert. 1988. Thiol/disulfide exchange between 3-hydroxy-3-methylglutaryl-CoA reductase and glutathione. A thermodynamically facile dithiol oxidation. J Biol Chem. 263(25): 12204-12212.
    Chambers, K. F., P. E. Day, H. T. Aboufarrag, and P. A. Kroon. 2019. Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: A review. Nutrients. 11(11): 2588.
    Chen, J. C., M. H. Chiu, R. L. Nie, G. A. Cordell, and S. X. Qiu. 2005. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep. 22(3): 386-399.
    Chen, Q., and E. T. Li. 2005. Reduced adiposity in bitter melon (Momordica charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines. Br J Nutr. 93(5): 747-754.
    Chijimatsu, T., M. Umeki, S. Kobayashi, Y. Kataoka, K. Yamada, H. Oda, and S. Mochizuki. 2015. Dietary freshwater clam (Corbicula fluminea) extract suppresses accumulation of hepatic lipids and increases in serum cholesterol and aminotransferase activities induced by dietary chloretone in rats. Biosci Biotechnol Biochem. 79(7): 1155-1163.
    Chijimatsu, T., M. Umeki, Y. Okuda, K. Yamada, H. Oda, and S. Mochizuki. 2011. The fat and protein fractions of freshwater clam (Corbicula fluminea) extract reduce serum cholesterol and enhance bile acid biosynthesis and sterol excretion in hypercholesterolaemic rats fed a high-cholesterol diet. Br J Nutr. 105(4): 526-534.
    Choi, S. H., and H. N. Ginsberg. 2011. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab. 22(9): 353-363.
    Converse, Carolyn A, and E Roy Skinner 1992. Lipoprotein analysis: a practical approach, Oxford University Press.
    Daugherty, A., A. R. Tall, Mjap Daemen, E. Falk, E. A. Fisher, G. García-Cardeña, A. J. Lusis, A. P. Owens, 3rd, M. E. Rosenfeld, and R. Virmani. 2017. Recommendation on design, execution, and reporting of animal atherosclerosis studies: A scientific statement from the American heart association. Arterioscler Thromb Vasc Biol. 37(9): 131-157.
    Deng, Y., Q. Tang, Y. Zhang, R. Zhang, Z. Wei, X. Tang, and M. Zhang. 2017. Protective effect of Momordica charantia water extract against liver injury in restraint-stressed mice and the underlying mechanism. Food Nutr Res. 61(1): 1348864.
    Emini Veseli, B., P. Perrotta, G. R. A. De Meyer, L. Roth, C. Van der Donckt, W. Martinet, and G. R. Y. De Meyer. 2017. Animal models of atherosclerosis. Eur J Pharmacol. 816: 3-13.
    Fang, E. F., and T. B. Ng. 2011. Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties. Curr Mol Med. 11(5): 417-436.
    Fang, E. F., C. Z. Zhang, W. P. Fong, and T. B. Ng. 2012. RNase MC2: a new Momordica charantia ribonuclease that induces apoptosis in breast cancer cells associated with activation of MAPKs and induction of caspase pathways. Apoptosis. 17(4): 377-387.
    Fang, E. F., C. Z. Zhang, T. B. Ng, J. H. Wong, W. L. Pan, X. J. Ye, Y. S. Chan, and W. P. Fong. 2012. Momordica Charantia lectin, a type II ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo. Cancer Prev Res (Phila). 5(1): 109-121.
    Fang, E. F., C. Z. Zhang, J. H. Wong, J. Y. Shen, C. H. Li, and T. B. Ng. 2012. The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Lett. 324(1): 66-74.
    Ference, B. A., J. J. P. Kastelein, K. K. Ray, H. N. Ginsberg, M. J. Chapman, C. J. Packard, U. Laufs, C. Oliver-Williams, A. M. Wood, A. S. Butterworth, E. Di Angelantonio, J. Danesh, S. J. Nicholls, D. L. Bhatt, M. S. Sabatine, and A. L. Catapano. 2019. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. Jama. 321(4): 364-373.
    Ferrières, J. 2009. Effects on coronary atherosclerosis by targeting low-density lipoprotein cholesterol with statins. Am J Cardiovasc Drugs. 9(2): 109-115.
    Go, G. W., and A. Mani. 2012. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med. 85(1): 19-28.
    Goulinet, S., and M. J. Chapman. 1993. Plasma lipoproteins in the golden Syrian hamster (Mesocricetus auratus): heterogeneity of apoB- and apoA-I-containing particles. J Lipid Res. 34(6): 943-959.
    Gupta, S., W. M. Pandak, and P. B. Hylemon. 2002. LXR alpha is the dominant regulator of CYP7A1 transcription. Biochem Biophys Res Commun. 293(1): 338-343.
    Hadi, H. A., C. S. Carr, and J. Al Suwaidi. 2005. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 1(3): 183-198.
    Hevonoja, T., M. O. Pentikäinen, M. T. Hyvönen, P. T. Kovanen, and M. Ala-Korpela. 2000. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta. 1488(3): 189-210.
    Hoi, Jia Tse, Curtis L. Weller, Vicki L. Schlegel, Susan L. Cuppett, Ji-Young Lee, and Timothy P. Carr. 2009. Sorghum distillers dried grain lipid extract increases cholesterol excretion and decreases plasma and liver cholesterol concentration in hamsters. Journal of Functional Foods. 1(4): 381-386.
    Hussain, M. S., N. Jahan, M. M. Or Rashid, M. S. Hossain, U. Chen, and N. Rahman. 2019. Antihyperlipidemic screening and plasma uric acid reducing potential of Momordica charantia seeds on swiss albino mice model. Heliyon. 5(5): e01739.
    Hussan, F., S. L. Teoh, N. Muhamad, M. Mazlan, and A. A. Latiff. 2014. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression. J Wound Care. 23(8): 400, 402, 404-407.
    Jia, S., M. Shen, F. Zhang, and J. Xie. 2017. Recent advances in Momordica charantia: functional components and biological activities. Int J Mol Sci. 18(12): 2555.
    Kaabia, Z., J. Poirier, M. Moughaizel, A. Aguesse, S. Billon-Crossouard, F. Fall, M. Durand, E. Dagher, M. Krempf, and M. Croyal. 2018. Plasma lipidomic analysis reveals strong similarities between lipid fingerprints in human, hamster and mouse compared to other animal species. Sci Rep. 8(1): 15893.
    Kang, Jinhe, Bo Zeng, Shaoxun Tang, Min Wang, Xuefeng Han, Chuanshe Zhou, Qiongxian Yan, Jinfu Liu, and Zhiliang Tan. 2017. Effects of Momordica charantia polysaccharide on in vitro ruminal fermentation and cellulolytic bacteria. Italian Journal of Animal Science. 16(2): 226-233.
    Karr, S. 2017. Epidemiology and management of hyperlipidemia. Am J Manag Care. 23(9 Suppl): 139-148.
    Kenny, O., T. J. Smyth, C. M. Hewage, and N. P. Brunton. 2013. Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem. 141(4): 4295-4302.
    Kim, J. H., P. S. Sung, E. B. Lee, W. Hur, D. J. Park, E. C. Shin, M. P. Windisch, and S. K. Yoon. 2017. GRIM-19 restricts HCV replication by attenuating intracellular lipid accumulation. Front Microbiol. 8: 576.
    Kinoshita, H., and Y. Ogata. 2018. Effect of bitter melon extracts on lipid levels in Japanese subjects: A randomized controlled study. Evid Based Complement Alternat Med. 2018: 4915784.
    Kota, S. K., S. K. Kota, S. Jammula, S. V. Krishna, and K. D. Modi. 2012. Hypertriglyceridemia-induced recurrent acute pancreatitis: A case-based review. Indian J Endocrinol Metab. 16(1): 141-143.
    Kou, S., B. Han, Y. Wang, T. Huang, K. He, Y. Han, X. Zhou, X. Ye, and X. Li. 2016. Synergetic cholesterol-lowering effects of main alkaloids from Rhizoma Coptidis in HepG2 cells and hypercholesterolemia hamsters. Life Sci. 151: 50-60.
    Kwan, B. C., F. Kronenberg, S. Beddhu, and A. K. Cheung. 2007. Lipoprotein metabolism and lipid management in chronic kidney disease. J Am Soc Nephrol. 18(4): 1246-1261.
    Lakatos, J., and A. Hárságyi. 1988. Serum total, HDL, LDL cholesterol, and triglyceride levels in patients with rheumatoid arthritis. Clin Biochem. 21(2): 93-96.
    Lee-Huang, S., P. L. Huang, H. C. Chen, P. L. Huang, A. Bourinbaiar, H. I. Huang, and H. F. Kung. 1995. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene. 161(2): 151-156.
    Lee, E. S., M. H. Kwon, H. M. Kim, H. B. Woo, C. M. Ahn, and C. H. Chung. 2020. Curcumin analog CUR5-8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity. Metabolism. 103: 154015.
    Lee, G., H. Jang, Y. Y. Kim, S. S. Choe, J. Kong, I. Hwang, J. Park, S. S. Im, and J. B. Kim. 2019. SREBP1c-PAX4 axis mediates pancreatic beta-cell compensatory responses upon metabolic stress. Diabetes. 68(1): 81-94.
    Levitan, Irena, Yun Fang, Avia Rosenhouse-Dantsker, and Victor Romanenko 2010. Cholesterol binding and cholesterol transport proteins: structure and function in health and disease. J. R. Harris. Dordrecht, Springer Netherlands: 509-549.
    Lewis, D. R., K. Kamisoglu, A. W. York, and P. V. Moghe. 2011. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 3(4): 400-420.
    Li, J., H. Wu, Y. Liu, and L. Yang. 2020. High fat diet induced obesity model using four strainsof mice: kunming, C57BL/6, BALB/c and ICR. Exp Anim. 69(3): 326-335.
    Li, Y. H., K. C. Ueng, J. S. Jeng, M. J. Charng, T. H. Lin, K. L. Chien, C. Y. Wang, T. H. Chao, P. Y. Liu, C. H. Su, S. C. Chien, C. W. Liou, S. C. Tang, C. C. Lee, T. Y. Yu, J. W. Chen, C. C. Wu, and H. I. Yeh. 2017. 2017 Taiwan lipid guidelines for high risk patients. J Formos Med Assoc. 116(4): 217-248.
    Li, Y., S. Xu, M. M. Mihaylova, B. Zheng, X. Hou, B. Jiang, O. Park, Z. Luo, E. Lefai, J. Y. Shyy, B. Gao, M. Wierzbicki, T. J. Verbeuren, R. J. Shaw, R. A. Cohen, and M. Zang. 2011. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13(4): 376-388.
    Lim, J. D., S. R. Lee, T. Kim, S. A. Jang, S. C. Kang, H. J. Koo, E. Sohn, J. P. Bak, S. Namkoong, H. K. Kim, I. S. Song, N. Kim, E. H. Sohn, and J. Han. 2015. Fucoidan from fucus vesiculosus protects against alcohol-induced liver damage by modulating inflammatory mediators in mice and HepG2 cells. Mar Drugs. 13(2): 1051-1067.
    Lin, C. M., Y. L. Lin, N. M. Tsai, H. Y. Wu, S. Y. Ho, C. H. Chen, Y. K. Liu, Y. H. Chiu, L. P. Ho, R. P. Lee, and K. W. Liao. 2012. Inhibitory effects of chloroform extracts derived from Corbicula fluminea on the release of pro-inflammatory cytokines. J Agric Food Chem. 60(16): 4076-4082.
    Liu, Y. T., O. N. Nfor, L. Wang, S. Y. Hsu, C. C. Lung, D. M. Tantoh, M. C. Wu, H. R. Chang, and Y. P. Liaw. 2020. Interaction between sex and LDLR rs688 polymorphism on hyperlipidemia among Taiwan biobank adult participants. Biomolecules. 10(2): 244.
    Mahwish, F. Saeed, M. S. Arshad, M. U. Nisa, M. T. Nadeem, and M. U. Arshad. 2017. Hypoglycemic and hypolipidemic effects of different parts and formulations of bitter gourd (Momordica Charantia). Lipids Health Dis. 16(1): 211.
    Marques, L. R., T. A. Diniz, B. M. Antunes, F. E. Rossi, E. C. Caperuto, F. S. Lira, and D. C. Gonçalves. 2018. Reverse cholesterol transport: molecular mechanisms and the non-medical approach to enhance HDL cholesterol. Front Physiol. 9: 526.
    McLean, K. J., M. Hans, and A. W. Munro. 2012. Cholesterol, an essential molecule: diverse roles involving cytochrome P450 enzymes. Biochem Soc Trans. 40(3): 587-593.
    Milić, S., D. Lulić, and D. Štimac. 2014. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol. 20(28): 9330-9337.
    Mittendorfer, B., M. Yoshino, B. W. Patterson, and S. Klein. 2016. VLDL triglyceride kinetics in lean, overweight, and obese men and women. J Clin Endocrinol Metab. 101(11): 4151-4160.
    Miyaoka, Y., D. Jin, K. Tashiro, S. Masubuchi, M. Ozeki, F. Hirokawa, M. Hayashi, S. Takai, and K. Uchiyama. 2018. A novel hamster nonalcoholic steatohepatitis model induced by a high-fat and high-cholesterol diet. Exp Anim. 67(2): 239-247.
    Narwal, V., R. Deswal, B. Batra, V. Kalra, R. Hooda, M. Sharma, and J. S. Rana. 2019. Cholesterol biosensors: A review. Steroids. 143: 6-17.
    Nelson, R. H. 2013. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care. 40(1): 195-211.
    Oda, H J. 1995. Changes in serum lipoprotein metabolism induced by dietary protein and xenobiotics. Journal of Japanese Society of Nutrition, and Food Science. 48(5): 357-364
    Oh, R. C., T. R. Hustead, S. M. Ali, and M. W. Pantsari. 2017. Mildly elevated liver transaminase levels: causes and evaluation. Am Fam Physician. 96(11): 709-715.
    Olofsson, S. O., P. Stillemark-Billton, and L. Asp. 2000. Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends Cardiovasc Med. 10(8): 338-345.
    Orešič, M., T. Hyötyläinen, A. Kotronen, P. Gopalacharyulu, H. Nygren, J. Arola, S. Castillo, I. Mattila, A. Hakkarainen, R. J. Borra, M. J. Honka, A. Verrijken, S. Francque, P. Iozzo, M. Leivonen, N. Jaser, A. Juuti, T. I. Sørensen, P. Nuutila, L. Van Gaal, and H. Yki-Järvinen. 2013. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia. 56(10): 2266-2274.
    Ostlund, R. E., Jr. 2002. Phytosterols in human nutrition. Annu Rev Nutr. 22: 533-549.
    Ou, T. H., Y. T. Tung, T. H. Yang, and Y. W. Chien. 2019. Melatonin improves fatty liver syndrome by inhibiting the lipogenesis pathway in hamsters with high-fat diet-induced hyperlipidemia. Nutrients. 11(4): 748.
    Ozalp, F. O., M. Canbek, M. Yamac, G. Kanbak, L. J. Van Griensven, M. Uyanoglu, H. Senturk, K. Kartkaya, and A. Oglakci. 2014. Consumption of Coprinus comatus polysaccharide extract causes recovery of alcoholic liver damage in rats. Pharmaceutical biology. 52(8): 994-1002.
    Pérez-Méndez, Ó, H. G. Pacheco, C. Martínez-Sánchez, and M. Franco. 2014. HDL-cholesterol in coronary artery disease risk: function or structure? Clin Chim Acta. 15(429): 111-122.
    Parikh, N. H., P. K. Parikh, and C. Kothari. 2014. Indigenous plant medicines for health care: treatment of diabetes mellitus and hyperlipidemia. Chin J Nat Med. 12(5): 335-344.
    Park, M., J. H. Yoo, Y. S. Lee, and H. J. Lee. 2019. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice. Nutrients. 11(3): 494.
    Peter, E. L., P. B. Nagendrappa, A. Kaligirwa, P. E. Ogwang, and C. D. Sesaazi. 2021. The safety and efficacy of Momordica charantia L. in animal models of type 2 diabetes mellitus: A systematic review and meta-analysis. Phytother Res. 35(2): 637-656.
    Pundir, C. S., and V. Narwal. 2018. Biosensing methods for determination of triglycerides: A review. Biosens Bioelectron. 100: 214-227.
    Saad, D. Y., M. M. Soliman, A. A. Baiomy, M. H. Yassin, and H. B. El-Sawy. 2017. Effects of Karela (Bitter Melon; Momordica charantia) on genes of lipids and carbohydrates metabolism in experimental hypercholesterolemia: biochemical, molecular and histopathological study. BMC Complement Altern Med. 17(1): 319.
    Saeed, Sabahat, and Perween Tariq. 2005. Antibacterial activities of Mentha piperita, Pisum sativum and Momordica charantia. Pak. J. Bot. 37: 997-1001.
    Sakr, H. F., A. M. Hussein, E. A. Eid, and M. AlKhateeb. 2018. Possible mechanisms underlying fatty liver in a rat model of male hypogonadism: A protective role for testosterone. Steroids. 135: 21-30.
    Sarwar, N., J. Danesh, G. Eiriksdottir, G. Sigurdsson, N. Wareham, S. Bingham, S. M. Boekholdt, K. T. Khaw, and V. Gudnason. 2007. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 115(4): 450-458.
    Schade, D. S., L. Shey, and R. P. Eaton. 2020. Cholesterol review: A metabolically important molecule. Endocr Pract. 26(12): 1514-1523.
    Skulas-Ray, A. C., P. M. Kris-Etherton, W. S. Harris, J. P. Vanden Heuvel, P. R. Wagner, and S. G. West. 2011. Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr. 93(2): 243-252.
    Srivastava, N., A. B. Cefalu, M. Averna, and R. A. K. Srivastava. 2018. Lack of correlation of plasma HDL with fecal cholesterol and plasma cholesterol efflux capacity suggests importance of HDL functionality in attenuation of atherosclerosis. Front Physiol. 9: 1222.
    Stone, B. G., and C. D. Evans. 1992. Evidence for a common biliary cholesterol and VLDL cholesterol precursor pool in rat liver. J Lipid Res. 33(11): 1665-1675.
    Sung, Y. Y., T. Yoon, S. J. Kim, W. K. Yang, and H. K. Kim. 2011. Anti-obesity activity of Allium fistulosum L. extract by down-regulation of the expression of lipogenic genes in high-fat diet-induced obese mice. Mol Med Rep. 4(3): 431-435.
    Torres, N., M. Guevara-Cruz, L. A. Velázquez-Villegas, and A. R. Tovar. 2015. Nutrition and atherosclerosis. Arch Med Res. 46(5): 408-426.
    Tosheska Trajkovska, K., and S. Topuzovska. 2017. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Anatol J Cardiol. 18(2): 149-154.
    Tzeng, T. F., H. J. Lu, S. S. Liou, C. J. Chang, and I. M. Liu. 2014. Lipid-lowering effects of zerumbone, a natural cyclic sesquiterpene of Zingiber zerumbet Smith, in high-fat diet-induced hyperlipidemic hamsters. Food Chem Toxicol. 69: 132-139.
    Vincken, J. P., L. Heng, A. de Groot, and H. Gruppen. 2007. Saponins, classification and occurrence in the plant kingdom. Phytochemistry. 68(3): 275-297.
    Virdi, J., S. Sivakami, S. Shahani, A. C. Suthar, M. M. Banavalikar, and M. K. Biyani. 2003. Antihyperglycemic effects of three extracts from Momordica charantia. J Ethnopharmacol. 88(1): 107-111.
    Wang, H., and T. B. Ng. 1998. Ribosome inactivating protein and lectin from bitter melon (Momordica charantia) seeds: sequence comparison with related proteins. Biochem Biophys Res Commun. 253(1): 143-146.
    Wang, X. Y., J. P. Luo, R. Chen, X. Q. Zha, and L. H. Pan. 2015. Dendrobium huoshanense polysaccharide prevents ethanol-induced liver injury in mice by metabolomic analysis. Int J Biol Macromol. 78: 354-362.
    Wang, X. Y., J. P. Luo, R. Chen, X. Q. Zha, and H. Wang. 2014. The effects of daily supplementation of Dendrobium huoshanense polysaccharide on ethanol-induced subacute liver injury in mice by proteomic analysis. Food Funct. 5(9): 2020-2035.
    Wang, Y. Y., J. Zhu, H. Ma, Z. C. Ding, L. Li, and J. K. Yan. 2019. Antidiabetic activity of a polysaccharide-protein complex from Asian Clam (Corbicula fluminea) in streptozotoxin-induced diabetic rats and its underlying mechanism. Food Funct. 10(9): 5574-5586.
    Waxman, D. J. 1986. Rat hepatic cholesterol 7 alpha-hydroxylase: biochemical properties and comparison to constitutive and xenobiotic-inducible cytochrome P-450 enzymes. Arch Biochem Biophys. 247(2): 335-345.
    Wong, T. Y., S. M. Lin, and L. K. Leung. 2015. The flavone luteolin Suppresses SREBP-2 expression and post-translational activation in hepatic Cells. PLoS ONE. 10(8): e0135637.
    Yang, Y., D. L. Smith, Jr., K. D. Keating, D. B. Allison, and T. R. Nagy. 2014. Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity (Silver Spring). 22(10): 2147-2155.
    Yao, H. T., P. F. Lee, C. K. Lii, Y. T. Liu, and S. H. Chen. 2018. Freshwater clam extract reduces liver injury by lowering cholesterol accumulation, improving dysregulated cholesterol synthesis and alleviating inflammation in high-fat, high-cholesterol and cholic acid diet-induced steatohepatitis in mice. Food Funct. 9(9): 4876-4887.
    Yokogoshi, H., H. Mochizuki, K. Nanami, Y. Hida, F. Miyachi, and H. Oda. 1999. Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J Nutr. 129(9): 1705-1712.
    Yoshida, A., M. Kouwaki, Y. Matsutani, Y. Fukuchi, and M. Naito. 2004. Usefulness of serum total cholesterol/triglyceride ratio for predicting the presence of small, dense LDL. J Atheroscler Thromb. 11(4): 215-219.
    Zhang, J., H. Du, M. Shen, Z. Zhao, and X. Ye. 2020. Kangtaizhi granule alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats and HepG2 cells via AMPK/mTOR signaling pathway. J Immunol Res. 2020(20): 3413186.
    Zhang, P., Q. Su, X. Ye, P. Guan, C. Chen, Y. Hang, J. Dong, Z. Xu, and W. Hu. 2020. Trends in LDL-C and Non-HDL-C Levels with Age. Aging Dis. 11(5): 1046-1057.
    Zhang, X. X., M. Wei, L. X. Shang, Y. M. Lu, L. Zhang, Y. D. Li, J. H. Zhang, Q. Xing, Z. K. Tu-Erhong, B. P. Tang, and X. H. Zhou. 2020. LDL-C/HDL-C is associated with ischaemic stroke in patients with non-valvular atrial fibrillation: a case-control study. Lipids Health Dis. 19(1): 217.
    Zhu, H., Z. He, E. Kwek, J. Liu, W. Hao, N. Liang, Y. Zhao, K. Y. Ma, W. S. He, and Z. Y. Chen. 2018. Dose-dependent uicreases in liver cholesterol but not plasma cholesterol from consumption of one to five whole eggs and no effects from egg whites on liver or plasma cholesterol in hamsters. J Agric Food Chem. 66(48): 12805-12814.
    Zou, Z. Y., Y. R. Hu, H. Ma, M. Feng, X. G. Li, and X. L. Ye. 2016. Epiberberine reduces serum cholesterol in diet-induced dyslipidemia Syrian golden hamsters via network pathways involving cholesterol metabolism. Eur J Pharmacol. 774(5): 1-9.

    無法下載圖示 校外公開
    2026/08/15
    QR CODE