簡易檢索 / 詳目顯示

研究生: 魏嘉儀
Wei, Chia-I
論文名稱: 透過廢液COD還原硫酸鹽以回收硫化鈉之可行性研究
Feasibility study of waste COD for sulfate reduction to recover sodium sulfide
指導教授: 郭文健
Kuo, Wen-chien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: 硫酸鹽還原COD:SO4-S厭氧濾床SRBIPA高級氧化程序超音波處理
外文關鍵詞: Sulfate reduction, COD:SO4-S, Anaerobic Filter, SRB, IPA, Advanced Oxidation Processes (AOPs), ultrasonic treatment
DOI URL: http://doi.org/10.6346/NPUST202100342
相關次數: 點閱:20下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本實驗旨在嘗試利用模擬工業廢液COD將硫酸鹽還原並回收硫化物之研究,針對硫平衡的掌握來解決反應槽內過多硫化氫的困擾,使硫酸鹽還原菌(Sulfate Reducing Bacteria, SRB)將SO42-還原成H2S、HS-、S2-等硫化物。
      透過三次生化產硫潛能試驗(Biochemical Sulfide Potential test, BSP test)找出最適合SRB生長之條件,在第一次BSP試驗中,不同初始濃度(COD 2,000 mg/L及1,000 mg/L)控制組在COD:SO4-S比=10:1時SRB所消耗之COD占比分別為25.81%及73.85%,說明較低濃度情況下SRB與其他厭氧菌競爭更具優勢。在兩次BSP試驗中,SRB均無法順利使用異丙醇(isopropyl alcohol, IPA),當使用IPA為碳源時,SO4-S僅在高的COD:SO4-S比例會有去除結果,最高去除率僅40%( COD:SO4-S比=20:1)。IPA難以被SRB利用原因推測與水與異丙醇出現分層造成微生物利用上的困難,及異丙醇本身生物可利用性低等特性有關。
      另外,於屏科大後山模場建立厭氧濾床實驗模型(Anaerobic Filter, AF),從使用蔗糖(SUC)馴養的初始階段到使用以IPA配製合成進流水。SUC階段可以看到在不同的COD負荷下,COD和SO4-S分別皆有較好的去除效果,尤其SO4-S的去除效果在各階段最高可以達到92%。在使用IPA為進料基質後,COD去除率依然保持約48.87%,但SO4-S的去除效率僅剩下16.95%,說明SRB無法有效利用IPA為碳源;且氣體未檢測出甲烷,也排除IPA是因甲烷菌生長代謝而被利用,猜測有其他厭氧菌代替SRB利用IPA(如:酒精發酵之微生物或乳酸菌),為了解COD和SO4-S再經SRB處理的變化情形,對12月平均數值進行質能平衡,平均進出料COD分別為94.5 g/d 和71.4 g/d,相差的部分為經過槽體後所消耗的COD量,因未發現任何甲烷的產生,故僅使用SO4-S的消耗進行COD的計算,SO4-S消耗需要18.9 g/d的COD,COD回收率為95.66%。平均進出料的SO4-S分別為21.7 g/d及12.2 g/d、槽內的S2-濃度為0.8 g/d、鹼液內硫化物經計算為0.5 g/d以及H2S氣體計算後可得2.2 g/d,得回收率72.53%,判斷可能原因為S2-與金屬離子形成沉澱物,使得出流液的硫化物低估。鹼液吸收瓶可以發現一定濃度的硫化物,說明通過將H2S打入鹼液中可有效的回收產生的硫化物,若將此方法如用於工業上,除了可以降低因H2S毒性造成的安全問題及鏽蝕金屬的問題,對於硫化物的回收也可達到循環再利用的目的。
      本研究另採用高級氧化程序(如:超音波處理)等方式將含IPA及硫酸鹽廢液進行處理,實驗結果發現COD去除率最高可達41.74%,而SO42-去除率最高可達24.16%,說明高級氧化程序能處理含IPA及SO42-之廢水。最終將高級氧化程序結合生物處理系統,先將含IPA及SO42-之廢水進行超音波處理後,再將剩餘廢液與SRB進行反應,發現IPA及SO42-皆有出現去除效果,但COD和SO4-S去除率皆未超過50%,出流水後續還是必需進行其他污水操作單元,增加處理成本。

    The purpose of this study was trying to use simulated industrial waste COD to reduce sulfate and recover sulfide, aiming at the control of sulfur balance to solve the problem of excessive hydrogen sulfide in the reaction tank, made Sulfate Reducing Bacteria (SRB) to reduce SO42- to H2S, HS-, S2- and other sulfides.
      Through three Biochemical Sulfide Potential test (BSP test) to find the most suitable conditions for the growth of SRB, in the first BSP test, different initial concentrations (COD 2,000 mg/L and 1,000 mg/L) control group When the COD:SO4-S=10:1, the proportion of COD consumed by SRB is 25.81% and 73.85%, respectively, indicating that SRB has an advantage in competition with other anaerobic bacteria at lower concentrations. In the two BSP tests, SRB failed to use isopropyl alcohol (IPA) smoothly. When IPA is used as the carbon source, SO4-S will only be removed at a high COD:SO4-S ratio, and the highest removal The rate is only 40% (COD:SO4-S =20:1). The reason why IPA is difficult to be used by SRB is presumed to be related to the difficulty of microbial utilization caused by the stratification of water and isopropanol, and the low bioavailability of isopropanol itself.
      In addition,established an Anaerobic Filter (AF) experimental model was in container located at National Pingtung University of Science and Technology, from the initial stage of domestication with sucrose (SUC) to the use of isopropyl alcohol (isopropyl alcohol, IPA) to prepare synthetic influent water for the purpose of hoped that the biological treatment can be used to treat the waste liquid containing high concentration of sulfate and organic matter. In the SUC stage, it can be seen on the different COD loads, COD and SO4-S have better removal effects, especially the removal effect of SO4-S can reach up to 92% in each stage. After using IPA as the feed matrix, the COD removal rate still remains about 48.87%, but the SO4-S removal efficiency is only 16.95%, indicating that SRB cannot effectively use IPA as a carbon source, the gas is not detected as methane, it is also eliminated IPA is used due to the growth and metabolism of methane bacteria. It is speculated that other anaerobic bacteria will replace SRB to use IPA such as alcohol-fermenting microorganisms or lactic acid bacteria. In order to understand the changes of COD and SO4-S after SRB treatment, the average value of December was carried out to balance the mass and energy. The average feed and discharge COD were 94.5 g/d and 71.4 g/d, respectively. The difference is the difference after passing through the tank. The amount of COD consumed was not found to produce any methane, so only the consumption of SO4-S was used to calculate the COD. The consumption of SO4-S requires 18.9 g/d of COD, and the COD recovery rate is 95.66%. The average incoming and outgoing SO4-S are 21.7 g/d and 12.2 g/d, respectively, the S2- concentration in the tank is 0.8 g/d, the sulfide in the lye is calculated to be 0.5 g/d and the H2S gas can be calculated 2.2 g/d, the recovery rate was 72.53%. It was judged that the possible cause was the formation of precipitates between S2- and metal ions, which made the sulfide in the effluent underestimated. A certain concentration of sulfide can be found in the lye absorption bottle, indicating that the sulfide produced can be effectively recovered by pumping H2S into the lye. If this method is used in industry, in addition to reducing the safety problems caused by H2S toxicity and the problem of rusty metal, the recovery of sulfide can also achieve the purpose of recycling.
      Therefore, in this study, Advanced Oxidation Processes (AOPs) such as ultrasonic treatment were used to treat the waste liquid containing IPA and sulfate. The experimental results found that the removal rate of COD was as high as 41.74%, and the removal rate of SO42- was as high as 24.16%, indicating that the advanced oxidation process can treat wastewater containing IPA and SO42-. Finally, the advanced oxidation process was combined with the biological treatment system. The wastewater containing IPA and SO42- was treated with ultrasonic waves, and then the remaining waste liquid was reacted with SRB. It was found that both IPA and SO42- had the removal effect, but COD and SO4-S removal rate does not exceed 50%, and other sewage operation units must be carried out after the effluent water, which increases the treatment cost.

    目錄
    摘要 I
    Abstract III
    謝誌 VI
    目錄 VII
    表目錄 X
    圖目錄 XII
    第一章 前言 1
    1.1 研究起源 1
    1.2 研究目的 1
    第二章 文獻回顧 2
    2.1 厭氧生物處理 2
    2.1.1 厭氧生物處理系統介紹 2
    (1) 水解階段 2
    (2) 酸化階段 2
    (3) 甲烷化階段 2
    2.1.2 硫酸鹽還原菌(Sulfate Reducing Bacteria, SRB) 3
    2.1.3甲烷菌及硫酸鹽還原菌的競爭關係 4
    2.2異丙醇 4
    2.2.1異丙醇的物化特性 4
    2.2.2異丙醇作用與來源 4
    2.2.3異丙醇的毒性濃度及健康危害 5
    2.2.4 異丙醇的降解途徑 5
    2.3 高級氧化程序 (Advanced Oxidation Processes, AOPs) 6
    2.3.1臭氧法: 6
    2.3.2 Fenton化學氧化法: 7
    2.3.3超音波氧化法 (Ultrasonic Oxidation) 8
    2.4 經生物處理的硫循環 9
    2.5硫在液、氣相的平衡與利用 10
    2.5.1硫在液相中的平衡 10
    2.5.2硫在氣、液相中的平衡 11
    2.5.3 H2S的回收 11
    2.6 硫酸根離子 12
    2.6.1 硫酸根離子(SO42-)的物化特性 12
    2.6.2 工業上硫酸鹽的來源與毒性 12
    2.6.3 硫酸鹽對厭氧系統的影響 12
    第三章 材料與方法 14
    3.1實驗流程架構圖 14
    3.2 批次BSP 試驗 15
    3.2.1 BSP試驗植種來源及基質 15
    3.2.2 BSP試驗實驗流程及設備 17
    3.2.3 BSP試驗分析方法之建立 18
    3.3 屏科大後山厭氧濾床模型(Anaerobic Filter, AF) 19
    3.3.1 屏科大後山AF植種與進料基質來源 21
    3.3.2 分析方法之建立 22
    3.4 超音波高級氧化程序實驗流程 25
    第四章 結果與討論 27
    4.1 BSP 試驗 27
    4.1.1 第一次BSP 試驗 27
    4.1.2 第一次BSP試驗小結 32
    4.1.3 第二次BSP 試驗 33
    4.1.4 第二次BSP實驗小結 41
    4.1.5 第三次BSP試驗 41
    4.1.6 第三次BSP試驗小結 48
    4.2 厭氧濾床實驗模型(Anaerobic Filter, AF) 48
    4.2.1 第一次蔗糖馴養(SUC)階段 48
    4.2.2 異丙醇(IPA)階段 54
    4.2.3 第二次蔗糖(SUC)階段 56
    4.2.4 厭氧濾床實驗模型小結 60
    4.2.5 質能平衡 61
    4.3高級氧化程序 63
    4.3.1使用高級氧化程序處理含異丙醇和SO42-廢液 63
    4.3.2高級氧化程序小結 65
    第五章 結論與建議 66
    5.1 結論 66
    5.2 建議 67
    參考文獻 69
    附錄 76
    作者簡介 128

    表目錄
    表2-1 異丙醇之物理化學性質 2
    表2-2 臭氧氧化法機制比較 7
    表2-3 Fenton法的優缺點 8
    表2-4 超音波氧化法的優缺點 8
    表2-5 SO42-硫酸根離子物理化學性質 12
    表3-1 BSP試驗各階段條件 15
    表3-2 第一次及第二次BSP試驗配比(COD濃度2,000 mg/L) 16
    表3-3 第一次及第二次BSP試驗配比(COD濃度1,000 mg/L) 17
    表3-4 第三次BSP試驗配比(COD濃度6,000 mg/L) 17
    表3-5 BSP試驗分析方法 19
    表3-6 進流基質之營養鹽與微量元素成份及濃度 21
    表3-7 AF濾床各階段操作條件 22
    表3-8 離子層析儀(Ion Chromatography, IC)操作條件說明 24
    表3-9 水質分析方法 25
    表3-10 小型超音波細胞破碎機Q500操作參數 26
    表4-1 第一次BSP控制組(SUC)實驗結果 27
    表4-2 第一次BSP實驗組(IPA) (COD = 2,000 mg/L)實驗結果 28
    表4-3 第一次BSP實驗組(IPA) (COD =1,000 mg/L)實驗結果 28
    表4-4第二次BSP實驗控制組(SUC)實驗結果 34
    表4-5 第二次 BSP實驗組(IPA) (COD = 2,000 mg/L)實驗結果 36
    表4-6 第二次BSP實驗組(IPA) (COD = 1,000 mg/L)實驗結果 38
    表4-7 第二次BSP test控制組(SUC)COD回收率 41
    表4-8 BSP試驗中經超音波處理(350 W)改質前後的IPA差異 42
    表4-9 第三次BSP實驗控制組(SUC)與未經超音波處理實驗組實驗結果 43
    表4-10 第三次BSP實驗經超音波處理實驗組之實驗結果 46
    表4-11 108/12/19~109/5/17操作平均數據 49
    表4-12 109/6/21~109/7/19日操作平均數據 54
    表4-13 109/8/26~109/12/31操作平均數據 57
    表4-14 AF模型各項數值平均 62
    表4-15超音波功率250 W下IPA的降解情形 63
    表4-16超音波功率350 W下IPA的改質情形 64
    表4-17不同氧化劑濃度下IPA的降解情形 64
    表4-18不同氧化劑濃度下SO42-的降解情形 65

    圖目錄
    圖2-1 生物硫循環 9
    圖2-2 溶解性硫化物在不同pH下所佔比例圖 10
    圖3-1 沖洗濾材上菌體過程 16
    圖3-2 收集至血清瓶 16
    圖3-3 BSP試驗流程說明 18
    圖3-4 縮口反應瓶 (125 mL) 18
    圖3-5 恆溫旋轉培養箱 18
    圖3-6 Matala-FSM365 high density濾材 20
    圖3-7 AF濾床模型操作模型示意圖 20
    圖3-8 反應中硫的不同樣態 22
    圖3-9 離子層析儀(Ion Chromatography, IC) 23
    圖3-10 攜帶式多種氣體分析儀 24
    圖3-11 超音波前處理設備(實驗室規模) 26
    圖4-1 第一次BSP試驗控制組 COD去除率(COD 2,000 mg/L) 29
    圖4-2 第一次BSP試驗控制組 SO4-S去除率(COD 2,000 mg/L) 29
    圖4-3 第一次BSP試驗控制組SRB消耗COD占比(COD 2,000 mg/L) 30
    圖4-4 第一次BSP試驗控制組COD去除率(COD 1,000 mg/L) 31
    圖4-5第一次BSP試驗控制組SO4-S去除率(COD 1,000 mg/L) 31
    圖4-6 第一次BSP試驗控制組SRB消耗COD占比(COD 1,000 mg/L) 31
    圖4-7 第一次BSP試驗實驗組 COD去除率 32
    圖4-8第二次BSP試驗控制組COD去除率 34
    圖4-9 第二次BSP試驗控制組SO4-S去除率 35
    圖4-10 第二次BSP試驗控制組SRB消耗COD占比 35
    圖4-11 第二次BSP試驗實驗組COD去除率(初始COD 2,000 mg/L) 36
    圖4-12 第二次BSP試驗實驗組SO4-S去除率(初始COD 2,000 mg/L) 36
    圖4-13 第二次BSP試驗實驗組SRB消耗COD占比(初始COD 2,000 mg/L) 37
    圖4-14 第二次BSP試驗實驗組COD去除率(初始COD 1,000 mg/L) 38
    圖4-15 第二次BSP試驗實驗組SO4-S去除率(初始COD 1,000 mg/L) 38
    圖4-16 第二次BSP試驗實驗組SRB消耗COD占比(初始COD 1,000 mg/L) 39
    圖4-17 第二次BSP實驗每日產氣累積圖(COD=2,000 mg/L) 40
    圖4-18 第二次BSP實驗每日產氣累積圖(COD=1,000 mg/L) 40
    圖4-19 第三次BSP試驗控制組COD去除率 43
    圖4-20 第三次BSP試驗控制組SO4-S去除率 44
    圖4-21 第三次BSP試驗未經超音波處理之實驗組COD去除率 44
    圖4-22第三次BSP試驗未經超音波處理之實驗組SO4-S去除率 45
    圖4-23 第三次BSP試驗經超音波處理之COD去除率(COD 6,000 mg/L) 46
    圖4-24 第三次BSP試驗經超音波處理之 SO4-S去除率(COD 6,000 mg/L) 47
    圖4-25 第三次BSP test氧化程序+生物處理系統 COD去除率(COD 6,000 mg/L) 47
    圖4-26 第三次BSP test氧化程序+生物處理系統 SO4-S去除率(COD 6,000 mg/L) 47
    圖4-27 第一次蔗糖(SUC)階段AF 出流液 pH 及 ORP 變化圖 50
    圖4-28 第一次蔗糖(SUC)階段AF進出流COD變化(第一、第二階段) 51
    圖4-29 第一次蔗糖(SUC)階段AF進出流COD變化(第三階段~第六階段) 52
    圖4-30 第一次蔗糖(SUC)階段AF進出流SO4-S變化 52
    圖4-31 第一次蔗糖(SUC)階段實際COD消耗與消耗SO4-S所需COD的變化 53
    圖4-32 第一次蔗糖(SUC)階段SRB消耗COD占比 53
    圖4-33異丙醇(IPA)階段AF進出流COD變化 55
    圖4-34異丙醇(IPA)階段AF進出流SO4-S變化 55
    圖4-35實際消耗的COD與反應SO4-S所需COD量比較 56
    圖4-36 第二次蔗糖階段(COD:SO4-S=10:1)AF進出流COD變化 58
    圖4-37 第二次蔗糖階段(COD:SO4-S=10:1)AF進出流SO4-S變化 58
    圖4-38 第二次蔗糖階段實際消耗的COD與反應SO4-S所需COD量比較(COD:SO4-S=3,000:300) 59
    圖4-39 第二次蔗糖階段(COD:SO4-S=5:1)AF進出流COD變化 60
    圖4-40 第二次蔗糖階段(COD:SO4-S=5:1)AF進出流SO4-S變化 60
    圖4-41質能平衡圖 62

    司洪濤,呂冠霖,黃香玖,2003,氧化技術在高濃度COD廢水處理之應用,經濟部工業局產業資訊網,第 5-10頁。
    檢自:https://proj.ftis.org.tw/eta/tech/Tb019.pdf

    行政院環境保護署毒物及化學物質局網頁。
    檢自: https://topic.epa.gov.tw/chemiknowledgemap/sp-chemical-5-20-5.html?Chn=&Eng=&Cas=

    朱傑生,2002,臭氧處理系統案例介紹,永光化學。

    李芸,2017,Fenton/過硫酸鹽降解常見手工染料效能之研究,國立雲林科技大學環境與安全衛生工程系,碩士論文。

    卓威廷,2009,稻草及有機廢棄物高溫厭氧共消化之研究,國立屏東科技大學環境工程與科學系碩士論文。

    范姜仁茂,2001,預臭氧程序提升綜合工業區廢水生物可分解性之研究,中央大學環境工程研究所,碩士論文。

    張簡成勳,2005,二相式高溫厭氧醱酵有機廢棄物之設計及操作維護,國立屏東科技大學環境工程與科學系,碩士論文。

    陳文懿,硫酸鹽生物還原程序之基礎研究,1988,國立交通大學土木工程研究所,碩士論文。

    黃雯婕,2018,有機廢棄物厭氧醱酵結合固態醱酵之生質能源效益探討,國立屏東科技大學環境工程與科學系碩士論文。

    曾迪華,1995,UV/H2O2氧化程序於水處理之應用,工業汙染防治季刊56期。
    楊易霖,2003,有機廢棄物之厭氧醱酵-前處理及溫度之影響,國立屏東科技大學環境工程與科學系,碩士論文。

    鍾佳琪,2010,以垂直流式人工濕地處理含硫酸鹽廢水之研究,國立中山大學海洋環境及工程學系研究所,碩士論文。

    鄭凱義,2005,以厭氧生物處理法去除廢水中異丙醇及丙酮之研究,台灣大學環境工程學研究所,碩士論文。

    蘇弘毅,1995,UV/H2O2技術在化工業上之應用,工業汙染防治季刊56期。

    蘇姿月,1999,以厭氧固定化細胞進行含硫酸鹽廢水前處理之研究,屏東國立科技大學環境工程學系,碩士論文。

    Barrera, E.L., Spanjers, H., Romero, O., Rosa, E., Dewulf, J., 2014, “Characterization of the sulfate reduction process in the anaerobic digestion of a very high strength and sulfate rich vinasse”, Chem. Eng. J., Volume 248, pp. 383-393.

    Bear, J., Cheng, A. H. D., Sorek, S., Ouazar, D., Herrera, I., 1999, “Seawater Intrusion in Coastal Aquifers, Concepts, Methods and Practices”, Kluwer Academic Publishers.

    Brimblecombe, P. Hammer, C. Rohde, H., 1989, Evolution of the Global Biogeochemical Sulphur Cycle, Volume 39, p. 77.

    Briones, A. M., Daugherty, B.J., Angenent, L.T., Rausch, K., Tumbleson, M., Raskin, L., 2009, “Characterization of microbial trophic structures of two anaerobic bioreactors processing sulfate-rich waste streams”, Water Research, Volume 43, Issue 18, pp. 4451-4460.

    Chen, W. S., Huang, Y. L., 2011, “Removal of dinitrotoluenes and trinitrotoluene from industrial wastewater by ultrasound enhanced with titanium dioxide”, Ultrasonics Sonochemistry, Volume 18, Issue 5, pp. 1232-1240.

    Chen, H., Wei, Y., Xie, C. Wang, H., Chang, S., Xiong, Y., Du, C., Xiao, B., Yu, G., 2020, “Anaerobic treatment of SUCtamate-rich wastewater in a continuous UASB reactor: effect of hydraulic retention time and methanogenic degradation pathway”, Chemosphere, Volume 245, 125672.

    Cheremisinoff, P. N., 1988, “Industrial Odour Control”, Butterworth-Heinemann Ltd, Oxford.

    Eugene, W. R., Rodger, B. B., Andrew, D. E., Lenore, S. C.,2012, “Standard methods for examination of water and wastewater,” 22nd edition, p. 326, 676.

    Fakkaew, K., Polprasert, C.,2021, “Air stripping pre-treatment process to enhance biogas production in anaerobic digestion of chicken manure wastewater”, Bioresource Technology Reports, Volume 14, 100647.

    Gostelow, P., Parsons, S. A., Stuetz, R. M.,2001, “Odour measurements for sewage treatment works”, Water Research, Volume 35, Issue 3, pp. 579-597.

    Gou, M., Wang, H., Li, J., Sun, Z., Nie, Y., Nobu, M. K., Tang, Y., 2020, “Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate”, Environ. Sci. Pollut. Res., Volume 27, pp. 1406-1416.

    Han, C., Yao, Y., Lv, S., Wu, Y., Lu, A., Yan, C., Liu, Y., Luo, X., Ni, X., 2018, “Study on the components of isopropanol aqueous solution”, Optik, Volume 155, pp. 307-314.

    Hilton, M. G., Archer, D. B., 1988, “Anaerobic digestion of sulfate-rich molasses wastewater: inhibition of hydrogen sulfide production”, Biotechnol Bioeng, Volume 31, pp. 885-888.

    Howitt, S. M., 2005, “The role of cysteine residues in the sulphate transporter, SHST1: Construction of a functional cysteine-less transporter”, Biochimica et Biophysica, Acta 1669, pp. 95-100.

    Hu, Y., Jing, Z., Sudo, Y., Niu, Q., Du, J., Wu, J., Li, Y. Y., 2015, “Effect of influent COD/SO42− ratios on UASB treatment of a synthetic sulfate-containing wastewater”, Chemosphere, Volume 130, pp. 24-33.

    Janssen, A. J. H., Lettinga, G., de Keizer, A., 1999, “Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: Colloidal and interfacial aspects of biologically produced sulphur particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 151, Issues 1-2, pp. 389-397.

    Kang, J. H., Yoon, Y., Song, J.,2020, “Effects of pH on the simultaneous removal of hydrogen sulfide and ammonia in a combined absorption and electro-oxidation system”, Journal of Hazardous Materials, Volume 382, 121011.

    Kiyuna, L. S. M., Fuess, L. T., Zaiat, M.,2017, “Unraveling the influence of the COD/sulfate ratio on organic matter removal and methane production from the biodigestion of sugarcane vinasse”, Bioresource Technology, Volume 232, pp.103-112.

    Kuo, W, G., 1992, “Decolorizing dye wastewater with Fenton's reagent”, Water Research, Volume 26, pp.881-886.

    Lin, C.-C., Tsai, C.-W., 2019, “Degradation of isopropyl alcohol using UV and persulfate in a large reactor”, Separation and Purification Technology, Volume 209, pp. 88-93.
    Lopes, S. I. C., Wang, X., Capela, M. I., Lens, P. N. L., 2007, “Effect of COD/SO42− ratio and sulfide on thermophilic (55 °C) sulfate reduction during the acidification of sucrose at pH 6”, Water Research, Volume 41, Issue 11, pp. 2379-2392.

    M’Arimi, M, M., Mecha, C, A., Kiprop, A, K., Ramkat, R., 2020, “Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review”, Renewable and Sustainable Energy Revie, Volume 121, 109669.

    Nanzai, B., Okitsu, K., Takenaka, N., Bandow, H., Maeda, Y., 2008, “Sonochemical degradation of various monocyclic aromatic compounds: Relation between hydrophobicities of organic compounds and the decomposition rates”, Ultrasonics Sonochemistry, Volume 15, Issue 4, pp. 478-483.

    Neville, A., 2004, “The confused world of sulfate attack on concrete”, Cem. Concr. Res., Volume 34, pp. 1275-1296.

    O'Flaherty, V., Lens, P., Leahy, B., Colleran, E., 1998, “Long-term competition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater”, Water Res, Volume 32, pp. 815-825.

    Okitsu, K., Suzuki, T., Takenaka, N., Bandow, H., Nishimura, R., Maeda, Y., 2006 “Acoustic Multibubble Cavitation in Water:  A New Aspect of the Effect of a Rare Gas Atmosphere on Bubble Temperature and Its Relevance to Sonochemistry”, J. Phys. Chem. B, Volume 110, 20081.

    Parkin, G. F., and Owen, W. F., 1986, “Fundamentals of Anaerobic Digestion of Wastewater Sludges”, J. Wat. Poll. Control, Volume 112, pp.867-920.

    Steffan, R, J., Mcclay, K., Vainberg, S., Condee, C, W., Zhang, D., 1997, “Biodegradation of the Gasoline Oxygenates Methyl tert-Butyl Ether, Ethyl tert-Butyl Ether, and tert-Amyl Methyl Ether by Propane-Oxidizing Bacteria”, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Volume 63, pp.42-51.

    Velasco, A., Ram´ırez, M., Volke-Sepulveda, T., Gonz´alez-S´anchez, A., Revah, S., 2008, “Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation”, Journal of Hazardous Materials, Volume 151, Issues 2-3, pp. 407-413.

    Vermorel, N., San-Valero, P., Izquierdo, M., Gabaldón, C., Penya-roja , J.M., 2017, “Anaerobic degradation of 2-propanol: Laboratory and pilot-scale studies” , Chemical Engineering Science , Volume 172, pp.42-51.

    Vossoughi, M., ShakeriI, M., Alemzadeh, I., 2003, “Performance of anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO4 ratios”, Chemical Engineering and Processing: Process Intensification, Volume 42, Issue 10, pp. 811-816.

    Wang, C.Y., Jiqng, W. Q., Zhou, Y., Wang, Y. N., Chen, Z. Y., 2000, “Synthesis of α-Fe ultrafine particles in a saturated salt solution/isopropanol/PVP microemulsion and their structural characterization”, Materials Research Bulletin, Volume 35, Issue 1, pp. 53-58.

    Wang, H., Caic, W. W., Liu, W. Z., Li, J. Q., Wang, B., Yang, S. H.,
    Wang, A. J., 2018, “Application of sulfate radicals from ultrasonic activation: Disintegration of extracellular polymeric substances for enhanced anaerobic fermentation of sulfate-containing waste-activated sludge”, Chemical Engineering Journal, Volume 352, pp. 380-388.

    Zhang, X., Zuo, Z., Yu, P., Li, T., Guang, M., chen, Z., Wang, L., 2021, “Rice peptide nanoparticle as a bifunctional food-grade Pickering stabilizer prepared by ultrasonication: Structural characteristics, antioxidant activity, and emulsifying properties”, Food Chemistry, Volume 343, 128545.

    下載圖示
    QR CODE