簡易檢索 / 詳目顯示

研究生: 施又元
Shih, Yu-Yuan
論文名稱: 植物多酚pterostilbene及其衍生物3'-hydroxypterostilbene對非酒精性脂肪肝病與腸道微菌叢失調之影響
The effects of plant polyphenol pterostilbene and its derivative 3'-hydroxypterostilbene on non-alcoholic fatty liver disease and gut dysbiosis
指導教授: 陳與國
Chen, Yu-Kuo
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 109
語文別: 中文
論文頁數: 167
中文關鍵詞: 紫檀芪3'-Hydroxypterostilbene非酒精性脂肪肝病腸道微菌叢失調
外文關鍵詞: Pterostilbene, 3'-Hydroxypterostilbene, Non-alcoholic fatty liver disease, Gut dysbiosis
DOI URL: http://doi.org/10.6346/NPUST202100349
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 非酒精性脂肪肝病 (Non-alcoholic fatty liver disease, NAFLD) 是最常見與肝臟脂質累積相關的疾病,其與代謝症候群如肥胖和胰島素阻抗等具有密切關係。紫檀芪 (pterostilbene, Pt) 是天然存在於藍莓中的一種酚類化合物,具有抗氧化、抗癌和改善胰島素阻抗等作用。本研究探討Pt及其衍生物3'-hydroxypterostilbene (OHPt) 對游離脂肪酸 (free fatty acid, FFA) 誘導HepG2細胞脂質堆積及高脂飲食 (high fat diet, HFD) 誘導C57BL/6J小鼠NAFLD與腸道微菌叢失調之影響。Pt和OHPt顯著降低FFA誘導HepG2細胞中的脂質蓄積,且透過SIRT1/AMPK及胰島素訊息傳遞路徑改善FFA誘導HepG2細胞脂肪變性並增加脂解作用。在體內研究中,給予Pt和OHPt減少了餵養HFD小鼠的體重、體脂肪與脂肪細胞大小,使血清中與血脂、血糖、動脈粥樣硬化及肝臟發炎反應相關之生化值下降,以及減緩肝臟脂肪油滴累積與發炎細胞浸潤,調控SIRT1/AMPK途徑,抑制SREBP-1及SREBP-2途徑,減少脂肪合成,刺激脂肪酸β-氧化,活化胰島素訊息傳遞路徑與緊密連接蛋白,減輕胰島素阻抗並保持腸道屏障完整性,抑制細菌內毒素和NF-κB發炎途徑,降低發炎反應。Pt和OHPt顯著提升肥胖小鼠腸道菌群中Bacteroidetes及Akkermansia muciniphila益菌數,顯著降低Firmicutes、F/B ratio及Erysipelotrichaceae Allobaculum菌群數,提高代謝產物短鏈脂肪酸,以及豐富肥胖小鼠盲腸菌群中Porphyromonadaceae Parabacteroides和Ruminococcaceae Oscillospira益菌菌群數量,並減少與肥胖及NAFLD相關的Ruminococcaceae和Erysipelotrichaceae Allobaculum,改善由HFD所造成的腸道微菌叢失調。綜合以上所述,Pt和OHPt在體外與體內模式中,皆可有效減緩脂質累積,且可改善HFD誘導引起的肥胖、胰島素阻抗、NAFLD及腸道微菌叢失調,OHPt的功效優於Pt,可為預防和預後NAFLD,提供更多元的選擇。

    Non-alcoholic fatty liver disease (NAFLD) is the most common disease associated with liver lipid accumulation, and it is closely related to metabolic syndrome, such as obesity and insulin resistance. Pterostilbene (Pt) is a phenolic compound naturally found in blueberries. It has anti-oxidant, anti-cancer and anti-insulin resistance properties. The present study was carried out to investigate the effects of Pt and its derivative 3'-hydroxypterostilbene (OHPt) on free fatty acids (FFA)-induced steatosis in HepG2 cell model and high fat diet (HFD)-induced NAFLD and gut dysbiosis in C57BL/6J mice. Pt and OHPt significantly reduced FFA-induced lipid accumulation in HepG2 cells, and ameliorated FFA-induced steatosis in HepG2 cells and enhanced lipolysis through SIRT1/AMPK and insulin signaling pathways. In the in vivo study, Pt and OHPt treatment decreased the body weight, body fat and adipocyte size in HFD-fed mice, reduced serum biochemical parameters related to blood lipids, blood glucose, atherosclerosis index and liver inflammation, and reduced the accumulation of fatty oil droplets and the infiltration of inflammatory cells in the liver. The data showed that Pt and OHPt up-regulated SIRT1/AMPK pathway and subsequently down regulated the protein expression of SREBP‑1 and SREBP‑2 to activate fatty acid β-oxidation to inhibit fatty acid synthesis. Pt and OHPt administration activated the insulin signaling pathway and tight junction protein and ameliorated the insulin resistance and intestinal barrier defect in the HFD-fed mice, and through the regulation of lipopolysaccharide and NF-κB activation to inhibit chronic inflammation. Pt and OHPt had an impact on gut microbiota, increased relative abundance of Bacteroidales and Akkermansia muciniphila, decreasing Firmicutes, F/B ratio and Erysipelotrichaceae Allobaculum but also increased the SCFAs content in obese mice, and Porphyromonadaceae Parabacteroides and Ruminococcaceae Oscillospira were increased, while Ruminococcaceae and Erysipelotrichaceae Allobaculum were decreased in obese mice cecal microbiota, and then improve HFD induced gut dysbiosis. Based on the above results, Pt and OHPt can effectively reduced lipid accumulation in vitro and in vivo models, and ameliorate HFD-induced obesity, insulin resistance, NAFLD and gut dysbiosis. Besides, OHPt is more effective than Pt and can provide more options for the prevention and prognosis of NAFLD.

    目錄
    摘要I
    AbstractII
    謝誌IV
    目錄VII
    圖目錄XI
    表目錄XV
    壹、前言1
    貳、文獻回顧2
    一、非酒精性脂肪肝病 (Nonalcoholic fatty liver disease, NAFLD)2
    二、高脂血症 (Hyperlipidemia)3
    三、脂肪代謝相關機制 (Lipid metabolism signaling pathway)3
    四、胰島素阻抗 (Insulin resistance)5
    五、胰島素訊息傳遞路徑 (Insulin signaling pathway)5
    六、膽鹼與氧化三甲胺 (Choline and trimethylamine N-oxide, TMAO)5
    七、膽固醇合成與膽汁酸代謝路徑 (Cholesterol synthesis and bile acids metabolism pathway)6
    八、發炎反應路徑 (Inflammatory response pathway)7
    九、緊密連接 (Tight junction, TJ)8
    十、腸道微菌叢 (Gut microbiota)9
    十一、短鏈脂肪酸 (Short-chain fatty acids, SCFAs)10
    十二、NAFLD C57BL/6J小鼠動物模式11
    十三、植物多酚12
    參、材料與方法24
    一、實驗架構24
    (一)實驗Ⅰ:建立NAFLD之細胞模式24
    (二)實驗Ⅱ:Pt及OHPt對FFA誘導HepG2細胞脂質累積之影響25
    (三)實驗Ⅲ:建立NAFLD與腸道微菌叢失調之動物模式26
    (四)實驗Ⅳ:Pt及OHPt對HFD誘導C57BL/6J小鼠NAFLD與腸道微菌叢失調之影響27
    二、實驗材料與儀器設備28
    (一)實驗樣品28
    (二)實驗細胞株28
    (三)化學藥品與試劑28
    (四)血液生化分析試紙34
    (五)動物實驗飼料及油品34
    (六)酵素套組34
    (七)儀器設備35
    三、 實驗方法38
    實驗Ⅰ:建立NAFLD之細胞模式38
    實驗Ⅱ:Pt及OHPt對FFA誘導HepG2細胞脂質累積之影響38
    (一)人類肝癌細胞株HepG2細胞之解凍、繼代及保存38
    (二)FFA誘導脂質累積39
    (三)細胞存活率分析 (MTT assay)39
    (四)油紅O染色 (Oil red O staining)40
    (五)測定細胞內TG (Intracellular TG assay)41
    (六)西方墨點法 (Western blot)42
    實驗Ⅲ:建立NAFLD與腸道微菌叢失調之動物模式44
    (一)實驗動物飼養44
    (二)實驗動物犧牲44
    (三)測定血清中生化值46
    (四)測定肝臟中TG及TC含量46
    (五)組織切片分析47
    (六)分析糞便之腸道微菌叢48
    實驗Ⅳ:Pt及OHPt對HFD誘導C57BL/6J小鼠NAFLD與腸道微菌叢失調之影響50
    (一)實驗動物飼養50
    (二)實驗動物犧牲51
    (三)測定血清中生化值52
    (四)測定肝臟中TG及TC含量55
    (五)組織切片分析55
    (六)西方墨點法 (Western blot)57
    (七)分析糞便及盲腸糞便之腸道微菌叢62
    (八)分析糞便中SCFAs62
    (九)實驗數據統計分析63
    肆、結果與討論64
    一、OA、PA和OA+PA對HepG2細胞毒性之影響64
    二、Pt與OHPt對HepG2細胞毒性之影響64
    三、FFA與Pt或OHPt共處理對HepG2細胞毒性之影響64
    四、OA、PA和OA+PA誘導HepG2細胞產生脂質累積之影響65
    五、Pt與OHPt對FFA誘導HepG2細胞脂質累積之影響65
    六、Pt與OHPt對FFA誘導HepG2細胞TG累積之影響66
    七、Pt與OHPt對FFA誘導HepG2細胞脂肪酸生合成和脂肪酸β-氧化之影響67
    八、Pt與OHPt對FFA誘導HepG2細胞胰島素訊息傳遞之影響67
    九、實驗飼料組成分、熱量和小鼠攝食量68
    十、HFD對C57BL/6J小鼠的外型和脂肪組織外觀之影響及臟器與脂肪組織重量變化69
    十一、HFD對C57BL/6J小鼠體重變化和血清生化值之影響69
    十二、HFD對C57BL/6J小鼠肝臟脂肪變性之影響70
    十三、HFD誘導C57BL/6J小鼠肥胖之大腸組織病理學分析70
    十四、HFD對C57BL/6J小鼠腸道微菌叢之影響71
    十五、Pt和OHPt對餵食HFD C57BL/6J小鼠體重和攝食量變化之影響72
    十六、Pt和OHPt對餵食HFD C57BL/6J小鼠脂肪組織重量與脂肪細胞大小之影響73
    十七、Pt和OHPt對餵食HFD C57BL/6J小鼠血清生化值之影響74
    十八、Pt和OHPt對餵食HFD C57BL/6J小鼠血清中膽鹼、TMAO和LPS含量之影響76
    十九、Pt和OHPt對餵食HFD C57BL/6J小鼠器官組織與肝臟脂肪累積之影響76
    二十、Pt和OHPt對餵食HFD C57BL/6J小鼠脂肪組織脂肪酸β-氧化與胰島素訊息傳遞路徑之影響77
    二十一、Pt和OHPt對餵食HFD C57BL/6J小鼠肝臟組織脂肪酸生合成和SIRT1/AMPK路徑脂肪酸β-氧化之影響78
    二十二、Pt和OHPt對餵食HFD C57BL/6J小鼠肝臟組織胰島素訊息傳遞路徑之影響79
    二十三、Pt和OHPt對餵食HFD C57BL/6J小鼠肝臟組織膽固醇生合成與膽汁酸代謝路徑之影響80
    二十四、Pt和OHPt對餵食HFD C57BL/6J小鼠肝臟組織發炎反應相關蛋白之影響81
    二十五、Pt和OHPt對餵食HFD C57BL/6J小鼠大腸組織完整性與緊密連接蛋白之影響82
    二十六、Pt和OHPt對餵食HFD C57BL/6J小鼠糞便腸道微菌叢之影響83
    二十七、Pt和OHPt對餵食HFD C57BL/6J小鼠糞便短鏈脂肪酸之影響84
    二十八、Pt和OHPt對餵食HFD C57BL/6J小鼠盲腸糞便腸道微菌叢之影響85
    伍、結論87
    陸、實驗圖表88
    柒、參考文獻153

    行政院衛生福利部。2021。中華民國109年國人主要死因統計資料。
    Aguirre L., Palacios-Ortega S., Fernández-Quintela A., Hijona E., Bujanda L., & Portillo M. P. (2019). Pterostilbene reduces liver steatosis and modifies hepatic fatty acid profile in obese rats. Nutrients. 11(5): 961.
    Andrade J. M., Paraíso A. F., de Oliveira M. V., Martins A. M., Neto J. F., Guimarães A. L., de Paula A. M., Qureshi M., & Santos S. H. (2014). Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition. 30(7-8): 915-919.
    Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., deRoos P., Liu H., Cross J. R., Pfeffer K., Coffer P. J., & Rudensky A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 504(7480): 451-455.
    Bargut T. C., Frantz E. D., Mandarim-de-Lacerda C. A., & Aguila M. B. (2014). Effects of a diet rich in n-3 polyunsaturated fatty acids on hepatic lipogenesis and beta-oxidation in mice. Lipids. 49(5): 431-444.
    Bastías-Pérez M., Serra D., & Herrero L. (2020). Dietary options for rodents in the study of obesity. Nutrients. 12(11): 3234.
    Becerril S., Rodríguez A., Catalán V., Ramírez B., Unamuno X., Gómez-Ambrosi J., & Frühbeck G. (2019). iNOS gene ablation prevents liver fibrosis in leptin-deficient ob/ob mice. Genes (Basel). 10(3): 184.
    Benedict M., & Zhang X. (2017). Non-alcoholic fatty liver disease: an expanded review. World J Hepatol. 9(16): 715-732.
    Bäckhed F., Manchester J. K., Semenkovich C. F., & Gordon J. I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 104(3): 979-984.
    Briand F., Brousseau E., Quinsat M., Burcelin R., & Sulpice T. (2018). Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the diet-induced NASH (DIN) hamster model. Eur J Pharmacol. 818: 449-456.
    Brown A. E., & Walker M. (2016). Genetics of insulin resistance and the metabolic syndrome. Curr Cardiol Rep. 18: 75.
    Campbell C. L., Yu R., Li F., Zhou Q., Chen D., Qi C., Yin Y., & Sun J. (2019). Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice. Diabetes Metab Syndr Obes. 12: 97-107.
    Chen L., Ma M. Y., Sun M., Jiang L. Y., Zhao X. T., Fang X. X., Man Lam S., Shui G. H., Luo J., Shi X. J., & Song B. L. (2019). Endogenous sterol intermediates of the mevalonate pathway regulate HMGCR degradation and SREBP-2 processing. J Lipid Res. 60: 1765-1775.
    Chen Q., Wang E., Ma L., & Zhai P. (2012). Dietary resveratrol increases the expression of hepatic 7α-hydroxylase and ameliorates hypercholesterolemia in high-fat fed C57BL/6J mice. Lipids Health Dis. 11: 56.
    Chen Y., Zhang H., Chen Y., Jia P., Ji S., Zhang Y., & Wang T. (2021). Resveratrol and its derivative pterostilbene ameliorate intestine injury in intrauterine growth-retarded weanling piglets by modulating redox status and gut microbiota. J Anim Sci Biotechnol. 12: 70.
    Cheng T. C., Lai C. S., Chung M. C., Kalyanam N., Majeed M., Ho C. T., Ho Y. S., & Pan M. H. (2014). Potent anti-cancer effect of 3'-hydroxypterostilbene in human colon xenograft tumors. PLoS One. 9: e111814.
    Chu D. M., Ma J., Prince A. L., Antony K. M., Seferovic M. D., & Aagaard K. M. (2017). Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 23: 314-326.
    Cobbina E., & Akhlaghi F. (2017). Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev. 49: 197-211.
    Dalby M. J., Ross A. W., Walker A. W., & Morgan P. J. (2017). Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice. Cell Rep. 21: 1521-1533.
    Dietrich P., & Hellerbrand C. (2014). Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol. 28: 637-653.
    Ding L., Chang M., Guo Y., Zhang L., Xue C., Yanagita T., Zhang T., & Wang Y. (2018). Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 17: 286.
    Duarte N., Coelho I. C., Patarrão R. S., Almeida J. I., Penha-Gonçalves C., & Macedo M. P. (2015). How inflammation impinges on NAFLD: a role for Kupffer cells. Biomed Res Int. 2015: 984578.
    Etxeberria U., Hijona E., Aguirre L., Milagro F. I., Bujanda L., Rimando A. M., Martínez J. A., & Portillo M. P. (2017). Pterostilbene-induced changes in gut microbiota composition in relation to obesity. Mol Nutr Food Res. 61.
    Fabbrini E., & Magkos F. (2015). Hepatic steatosis as a marker of metabolic dysfunction. Nutrients. 7: 4995-5019.
    Fabbrini E., Sullivan S., & Klein S. (2010). Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 51: 679-689.
    Fang K., Wu F., Chen G., Dong H., Li J., Zhao Y., Xu L., Zou X., & Lu F. (2019). Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC Complement Altern Med. 19: 255.
    Fisher-Wellman K. H., Ryan T. E., Smith C. D., Gilliam L. A., Lin C. T., Reese L. R., Torres M. J., & Neufer P. D. (2016). A direct comparison of metabolic responses to high-fat diet in C57BL/6J and C57BL/6NJ mice. Diabetes. 65: 3249-3261.
    Forbes-Hernández T. Y., Giampieri F., Gasparrini M., Afrin S., Mazzoni L., Cordero M. D., Mezzetti B., Quiles J. L., & Battino M. (2017). Lipid Accumulation in HepG2 Cells Is Attenuated by Strawberry Extract through AMPK Activation. Nutrients. 9: 621.
    Gómez-Zorita S., Fernández-Quintela A., Lasa A., Aguirre L., Rimando A. M., & Portillo M. P. (2014). Pterostilbene, a dimethyl ether derivative of resveratrol, reduces fat accumulation in rats fed an obesogenic diet. J Agric Food Chem. 62: 8371-8378.
    Gómez-Lechón M. J., Donato M. T., Martínez-Romero A., Jiménez N., Castell J. V., & O'Connor J. E. (2007). A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact. 165: 106-116.
    Gómez-Zorita S., González-Arceo M., Trepiana J., Aguirre L., Crujeiras A. B., Irles E., Segues N., Bujanda L., & Portillo M. P. (2020). Comparative effects of pterostilbene and its parent compound resveratrol on oxidative stress and inflammation in steatohepatitis induced by high-fat high-fructose feeding. Antioxidants (Basel). 9: 1042.
    Gómez-Zorita S., Milton-Laskibar I., Macarulla M. T., Biasutto L., Fernández-Quintela A., Miranda J., Lasa A., Segues N., Bujanda L., & Portillo M. P. (2021). Pterostilbene modifies triglyceride metabolism in hepatic steatosis induced by high-fat high-fructose feeding: a comparison with its analog resveratrol. Food Funct. 12: 3266-3279.
    Garcia D., Hellberg K., Chaix A., Wallace M., Herzig S., Badur M. G., Lin T., Shokhirev M. N., Pinto A. F. M., Ross D. S., Saghatelian A., Panda S., Dow L. E., Metallo C. M., & Shaw R. J. (2019). Genetic liver-specific AMPK activation protects against diet-induced obesity and NAFLD. Cell Rep. 26: 192-208.e6.
    Ghaben A. L., & Scherer P. E. (2019). Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 20: 242-258.
    Go G. W., & Mani A. (2012). Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med. 85: 19-28.
    Gou S. H., Huang H. F., Chen X. Y., Liu J., He M., Ma Y. Y., Zhao X. N., Zhang Y., & Ni J. M. (2016). Lipid-lowering, hepatoprotective, and atheroprotective effects of the mixture Hong-Qu and gypenosides in hyperlipidemia with NAFLD rats. J Chin Med Assoc. 79: 111-121.
    Guo Y., Zhao M., Bo T., Ma S., Yuan Z., Chen W., He Z., Hou X., Liu J., Zhang Z., Zhu Q., Wang Q., Lin X., Yang Z., Cui M., Liu L., Li Y., Yu C., Qi X., Wang Q., Zhang H., Guan Q., Zhao L., Xuan S., Yan H., Lin Y., Wang L., Li Q., Song Y., Gao L., & Zhao J. (2019). Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res. 29: 151-166.
    Gupta S., Pandak W. M., & Hylemon P. B. (2002). LXR alpha is the dominant regulator of CYP7A1 transcription. Biochem Biophys Res Commun. 293: 338-343.
    Hasan N., & Yang H. (2019). Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 7: e7502.
    He J., Zhang P., Shen L., Niu L., Tan Y., Chen L., Zhao Y., Bai L., Hao X., Li X., Zhang S., & Zhu L. (2020). Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 21: 6356.
    Hill J. O., Melanson E. L., & Wyatt H. T. (2000). Dietary fat intake and regulation of energy balance: implications for obesity. J Nutr. 130: 284S-288S.
    Hills R. D., Jr., Pontefract B. A., Mishcon H. R., Black C. A., Sutton S. C., & Theberge C. R. (2019). Gut microbiome: profound implications for diet and disease. Nutrients. 11: 1613.
    Hirsch J., & Han P. W. (1969). Cellularity of rat adipose tissue: effects of growth, starvation, and obesity. J Lipid Res. 10: 77-82.
    Hou X., Xu S., Maitland-Toolan K. A., Sato K., Jiang B., Ido Y., Lan F., Walsh K., Wierzbicki M., Verbeuren T. J., Cohen R. A., & Zang M. (2008). SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 283: 20015-20026.
    Houten S. M., Violante S., Ventura F. V., & Wanders R. J. (2016). The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and Its genetic disorders. Annu Rev Physiol. 78: 23-44.
    Hsu C. L., Lin Y. J., Ho C. T., & Yen G. C. (2012). Inhibitory effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells. Food Funct. 3: 49-57.
    Hu J., Lin S., Zheng B., & Cheung P. C. K. (2018). Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr. 58: 1243-1249.
    Kübeck R., Bonet-Ripoll C., Hoffmann C., Walker A., Müller V. M., Schüppel V. L., Lagkouvardos I., Scholz B., Engel K. H., Daniel H., Schmitt-Kopplin P., Haller D., Clavel T., & Klingenspor M. (2016). Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab. 5: 1162-1174.
    Karlsson F., Tremaroli V., Nielsen J., & Bäckhed F. (2013). Assessing the human gut microbiota in metabolic diseases. Diabetes. 62: 3341-3349.
    Kelly C. J., Zheng L., Campbell E. L., Saeedi B., Scholz C. C., Bayless A. J., Wilson K. E., Glover L. E., Kominsky D. J., Magnuson A., Weir T. L., Ehrentraut S. F., Pickel C., Kuhn K. A., Lanis J. M., Nguyen V., Taylor C. T., & Colgan S. P. (2015). Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 17: 662-671.
    Kim H., Seo K. H., & Yokoyama W. (2020). Chemistry of pterostilbene and its metabolic effects. J Agric Food Chem. 68: 12836-12841.
    Koh Y. C., Li S., Chen P. Y., Wu J. C., Kalyanam N., Ho C. T., & Pan M. H. (2019). Prevention of vascular inflammation by pterostilbene via trimethylamine-N-Oxide teduction and mechanism of microbiota regulation. Mol Nutr Food Res. 63: e1900514.
    Kristiansen M. N., Veidal S. S., Rigbolt K. T., Tølbøl K. S., Roth J. D., Jelsing J., Vrang N., & Feigh M. (2016). Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy. World J Hepatol. 8: 673-684.
    La Spina M., Galletta E., Azzolini M., Gomez Zorita S., Parrasia S., Salvalaio M., Salmaso A., & Biasutto L. (2019). Browning effects of a chronic pterostilbene supplementation in mice fed a high-fat diet. Int J Mol Sci. 20: 5377.
    Landy J., Ronde E., English N., Clark S. K., Hart A. L., Knight S. C., Ciclitira P. J., & Al-Hassi H. O. (2016). Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J Gastroenterol. 22: 3117-3126.
    Lee P. S., Chiou Y. S., Nagabhushanam K., Ho C. T., & Pan M. H. (2020). 3'-Hydroxypterostilbene potently alleviates obesity exacerbated colitis in mice. J Agric Food Chem. 68: 5365-5374.
    Ley R. E., Peterson D. A., & Gordon J. I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 124: 837-848.
    Li Y., Xu S., Mihaylova M. M., Zheng B., Hou X., Jiang B., Park O., Luo Z., Lefai E., Shyy J. Y., Gao B., Wierzbicki M., Verbeuren T. J., Shaw R. J., Cohen R. A., & Zang M. (2011). AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13: 376-388.
    Lu Y., Fan C., Li P., Lu Y., Chang X., & Qi K. (2016). Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep. 6: 37589.
    Malik S. A., Acharya J. D., Mehendale N. K., Kamat S. S., & Ghaskadbi S. S. (2019). Pterostilbene reverses palmitic acid mediated insulin resistance in HepG2 cells by reducing oxidative stress and triglyceride accumulation. Free Radic Res. 53: 815-827.
    McCormack D., & McFadden D. (2012). Pterostilbene and cancer: current review. J Surg Res. 173: e53-61.
    Milton-Laskibar I., Marcos-Zambrano L. J., Gómez-Zorita S., Fernández-Quintela A., Carrillo de Santa Pau E., Martínez J. A., & Portillo M. P. (2021). Gut microbiota induced by pterostilbene and resveratrol in high-fat-high-fructose fed rats: putative role in steatohepatitis onset. Nutrients. 13: 1738.
    Morrison D. J., & Preston T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 7: 189-200.
    Odamaki T., Kato K., Sugahara H., Hashikura N., Takahashi S., Xiao J. Z., Abe F., & Osawa R. (2016). Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16: 90.
    Ohashi T., Nakade Y., Ibusuki M., Kitano R., Yamauchi T., Kimoto S., Inoue T., Kobayashi Y., Sumida Y., Ito K., Nakao H., Umezawa K., & Yoneda M. (2019). Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice. PLoS One. 14: e0210068.
    Pan M. H., Wu J. C., Ho C. T., & Lai C. S. (2018). Antiobesity molecular mechanisms of action: resveratrol and pterostilbene. Biofactors. 44: 50-60.
    Panasevich M. R., Wankhade U. D., Chintapalli S. V., Shankar K., & Rector R. S. (2018). Cecal versus fecal microbiota in Ossabaw swine and implications for obesity. Physiol Genomics. 50: 355-368.
    Park M., Yoo J. H., Lee Y. S., & Lee H. J. (2019). Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice. Nutrients. 11: 494.
    Patterson E., Ryan P. M., Cryan J. F., Dinan T. G., Ross R. P., Fitzgerald G. F., & Stanton C. (2016). Gut microbiota, obesity and diabetes. Postgrad Med J. 92: 286-300.
    Pawlak M., Lefebvre P., & Staels B. (2015). Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 62: 720-733.
    Polyzos S. A., Kountouras J., & Mantzoros C. S. (2019). Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism. 92: 82-97.
    Pullinger C. R., Eng C., Salen G., Shefer S., Batta A. K., Erickson S. K., Verhagen A., Rivera C. R., Mulvihill S. J., Malloy M. J., & Kane J. P. (2002). Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest. 110: 109-117.
    Ramakrishna R., Kumar D., Bhateria M., Gaikwad A. N., & Bhatta R. S. (2017). 16-Dehydropregnenolone lowers serum cholesterol by up-regulation of CYP7A1 in hyperlipidemic male hamsters. J Steroid Biochem Mol Biol. 168: 110-117.
    Rasines-Perea Z., & Teissedre P. L. (2017). Grape polyphenols' effects in human cardiovascular diseases and diabetes. Molecules. 22: 68.
    Rayalam S., Yang J. Y., Ambati S., Della-Fera M. A., & Baile C. A. (2008). Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res. 22: 1367-1371.
    Recena Aydos L., Aparecida do Amaral L., Serafim de Souza R., Jacobowski A. C., Freitas Dos Santos E., & Rodrigues Macedo M. L. (2019). Nonalcoholic fatty liver disease induced by high-fat diet in C57bl/6 models. Nutrients. 11: 3067.
    Ricchi M., Odoardi M. R., Carulli L., Anzivino C., Ballestri S., Pinetti A., Fantoni L. I., Marra F., Bertolotti M., Banni S., Lonardo A., Carulli N., & Loria P. (2009). Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol. 24: 830-840.
    Rydström J., Teixeira da Cruz A., & Ernster L. (1970). Factors governing the steady state of the mitochondrial nicotinamide nucleotide transhydrogenase system. Biochem J. 116: 12p-13p.
    Sawada N. (2013). Tight junction-related human diseases. Pathol Int. 63: 1-12.
    Schoeler M., & Caesar R. (2019). Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 20: 461-472.
    Sen T., Cawthon C. R., Ihde B. T., Hajnal A., DiLorenzo P. M., de La Serre C. B., & Czaja K. (2017). Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav. 173: 305-317.
    Serreli G., Melis M. P., Zodio S., Naitza M. R., Casula E., Peñalver P., Lucas R., Loi R., Morales J. C., & Deiana M. (2020). Altered paracellular permeability in intestinal cell monolayer challenged with lipopolysaccharide: modulatory effects of pterostilbene metabolites. Food Chem Toxicol. 145: 111729.
    Shi A., Li T., Zheng Y., Song Y., Wang H., Wang N., Dong L., & Shi H. (2021). Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1. Front Pharmacol. 12: 693048.
    Shu L., Zhao H., Huang W., Hou G., Song G., & Ma H. (2020). Resveratrol upregulates mmu-miR-363-3p via the PI3K-Akt pathway to improve insulin resistance induced by a high-fat diet in mice. Diabetes Metab Syndr Obes. 13: 391-403.
    Spencer M. D., Hamp T. J., Reid R. W., Fischer L. M., Zeisel S. H., & Fodor A. A. (2011). Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 140: 976-986.
    Sun H., Liu X., Long S. R., Teng W., Ge H., Wang Y., Yu S., Xue Y., Zhang Y., Li X., & Li W. (2019). Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats. Eur J Pharmacol. 859: 172526.
    Tang W., Yao X., Xia F., Yang M., Chen Z., Zhou B., & Liu Q. (2018). Modulation of the gut microbiota in rats by Hugan Qingzhi tablets during the treatment of high-fat-diet-induced nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018: 7261619.
    Thomas S. S., Cha Y. S., & Kim K. A. (2020). Effect of vegetable oils with different fatty acid composition on high-fat diet-induced obesity and colon inflammation. Nutr Res Pract. 14: 425-437.
    Tsai H. Y., Ho C. T., & Chen Y. K. (2017). Biological actions and molecular effects of resveratrol, pterostilbene, and 3'-hydroxypterostilbene. J Food Drug Anal. 25: 134-147.
    Tung Y. C., Lin Y. H., Chen H. J., Chou S. C., Cheng A. C., Kalyanam N., Ho C. T., & Pan M. H. (2016). Piceatannol exerts anti-obesity effects in C57BL/6 mice through modulating adipogenic proteins and gut microbiota. Molecules. 21: 1419.
    Turchinovich A., Baranova A., Drapkina O., & Tonevitsky A. (2018). Cell-free circulating nucleic acids as early biomarkers for NAFLD and NAFLD-associated disorders. Front Physiol. 9: 1256.
    Vancamelbeke M., & Vermeire S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 11: 821-834.
    Velasquez M. T., Ramezani A., Manal A., & Raj D. S. (2016). Trimethylamine N-oxide: the good, the bad and the unknown. Toxins (Basel). 8: 326.
    Velez M., Kohli S., & Sabbah H. N. (2014). Animal models of insulin resistance and heart failure. Heart Fail Rev. 19: 1-13.
    Vozenilek A. E., Vetkoetter M., Green J. M., Shen X., Traylor J. G., Klein R. L., Orr A. W., Woolard M. D., & Krzywanski D. M. (2018). Absence of nicotinamide nucleotide transhydrogenase in C57BL/6J mice exacerbates experimental atherosclerosis. J Vasc Res. 55: 98-110.
    Wang G., Yang X., Wang J., Zhong D., Zhang R., Zhang Y., Feng L., & Zhang Y. (2021). Walnut green husk polysaccharides prevent obesity, chronic inflammatory responses, nonalcoholic fatty liver disease and colonic tissue damage in high-fat diet fed rats. Int J Biol Macromol. 182: 879-898.
    Whiting D. R., Guariguata L., Weil C., & Shaw J. (2011). IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 94: 311-321.
    Xiong X., Lu W., Zhang K., & Zhou W. (2020). Pterostilbene reduces endothelial cell apoptosis by regulation of the Nrf2-mediated TLR-4/MyD88/NF-κB pathway in a rat model of atherosclerosis. Exp Ther Med. 20: 2090-2098.
    Yach D., Hawkes C., Gould C. L., & Hofman K. J. (2004). The global burden of chronic diseases: overcoming impediments to prevention and control. Jama. 291: 2616-2622.
    Yang H., Xuefeng Y., Shandong W., & Jianhua X. (2020). COX-2 in liver fibrosis. Clin Chim Acta. 506: 196-203.
    Yang S., Li X., Yang F., Zhao R., Pan X., Liang J., Tian L., Li X., Liu L., Xing Y., & Wu M. (2019). Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front Pharmacol. 10: 1360.
    Yu W., Fan L., Wang M., Cao B., & Hu X. (2021). Pterostilbene improves insulin resistance caused by advanced glycation end products (AGEs) in hepatocytes and mice. Mol Nutr Food Res. 65: e2100321.
    Yuan Y., Liu Q., Zhao F., Cao J., Shen X., & Li C. (2019). Holothuria Leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via short-chain fatty acids production and lipid metabolism regulation. Int J Mol Sci. 20: 4738.
    Zhang H., Chen Y., Chen Y., Li Y., Jia P., Ji S., Zhou Y., & Wang T. (2020). Dietary pterostilbene supplementation attenuates intestinal damage and immunological stress of broiler chickens challenged with lipopolysaccharide. J Anim Sci. 98: skz373.
    Zhang J., & Liu F. (2014). Tissue-specific insulin signaling in the regulation of metabolism and aging. IUBMB Life. 66: 485-495.
    Zhang Q., Kong X., Yuan H., Guan H., Li Y., & Niu Y. (2019). Mangiferin improved palmitate-induced-insulin resistance by promoting free fatty acid metabolism in HepG2 and C2C12 cells via PPARα: mangiferin improved insulin resistance. J Diabetes Res. 2019: 2052675.
    Zhang Q., Yuan H., Zhang C., Guan Y., Wu Y., Ling F., Niu Y., & Li Y. (2018). Epigallocatechin gallate improves insulin resistance in HepG2 cells through alleviating inflammation and lipotoxicity. Diabetes Res Clin Pract. 142: 363-373.
    Zhang Y., Wang Z., Jin G., Yang X., & Zhou H. (2017). Regulating dyslipidemia effect of polysaccharides from Pleurotus ostreatus on fat-emulsion-induced hyperlipidemia rats. Int J Biol Macromol. 101: 107-116.
    Zhang Y., & Zhang Y. (2016). Pterostilbene, a novel natural plant conduct, inhibits high fat-induced atherosclerosis inflammation via NF-κB signaling pathway in Toll-like receptor 5 (TLR5) deficient mice. Biomed Pharmacother. 81: 345-355.
    Zhao L. (2013). The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 11: 639-647.
    Zhao R., Long X., Yang J., Du L., Zhang X., Li J., & Hou C. (2019). Pomegranate peel polyphenols reduce chronic low-grade inflammatory responses by modulating gut microbiota and decreasing colonic tissue damage in rats fed a high-fat diet. Food Funct. 10: 8273-8285.
    Zhou D., Pan Q., Shen F., Cao H. X., Ding W. J., Chen Y. W., & Fan J. G. (2017). Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep. 7: 1529.

    無法下載圖示 校外公開
    2026/08/17
    QR CODE