簡易檢索 / 詳目顯示

研究生: 康晉誠
Kang,Chin-Cheng
論文名稱: 含流速聲學影響之消音器傳輸損失研究
A Study of Transmission Loss for Mufflers with Flow Acoustic Effects
指導教授: 林章生
Lin, Chang-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 車輛工程系所
Department of Vehicle Engineering
畢業學年度: 109
語文別: 中文
論文頁數: 117
中文關鍵詞: 有限元素分析傳輸損失四極參數流速條件傳遞矩陣法
外文關鍵詞: finite element analysis, transmission loss, four pole parameters, flow velocity conditions, transfer matrix method
DOI URL: http://doi.org/10.6346/NPUST202100352
相關次數: 點閱:21下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究係應用傳輸損失於消音器之性能評估,提出一使用四極參數理論為基礎的麥克風變換位置傳輸損失量測法;同時援引雙麥克風轉移函數法降低頻率響應函數(FRF)相位不符造成的量測誤差。本研究使用LabVIEW開發傳輸損失演算法,並利用單膨脹室、入口延伸膨脹室及亥姆霍茲共振腔的無流速的量測結果,比對理論解及有限元素分析(FEA) 以驗證演算法的有效性。然而,原始的傳輸損失量測並未考慮流體速度,與消音器的實際工作狀態並不一致,因此本研究將進行含流體速度的傳輸損失量測。在本研究完成無流速條件的演算法驗證後,將進行含流速條件的傳輸損失量測,並與無流速的量測結果比對,確認流速對傳輸損失量測的影響;最後應用在實際市售車輛的空氣濾清器總成。經過無流速和考慮流速條件的實驗結果顯示,因流速影響,亥姆霍茲共振腔的傳輸損失效果會有顯著的降低,且共振頻率亦有偏移的現象。單膨脹室和入口延伸膨脹室因流速影響,造成傳輸損失效果提升,唯獨入口延伸膨脹室在四分之一波長共振腔的共振頻率有不同影響,在共振頻率的傳輸損失效果降低。實際運用在空氣濾清器總成,可以發現亥姆霍茲共振腔因管道結構的變化,產生不同的流速影響。

    This study is the application of transmission loss (TL) to the performance evaluation of mufflers. We use four-pole parameters of an aeroacoustic element to propose a microphone position-change method for TL measurement. To reduce phase change of frequency response function (FRF) from measurement, the dual-microphone transfer function method is used. We employ LabVIEW to develop a TL measurement program, and measure TL performance about the Helmholtz resonator, the single expansion chamber and the extended inlet expansion chamber without flow velocity, and compare the difference between the experimental data, theoretical solutions and finite element analysis (FEA) results. However, due to the inconsistency of the operation condition of the practical mufflers, the study focuses on the influence of TL with flow velocity. We carry out the TL measurement with and without flow velocity, and confirm the influence of the flow velocity on the TL measurement. Furthermore, we apply the TL measurement in the air cleaner of commercial vehicles. The experimental results show that the influence of flow velocity on TL at the Helmholtz resonator significantly reduce and the resonance frequency shift, while the TL of single expansion chamber and the extended inlet expansion chamber increase because of the flow velocity. When measuring the TL of the air cleaner, we can find different effects of the Helmholtz resonator due to the various pipe structures.

    目錄
    摘要 I
    Abstract II
    誌謝 III
    目錄 IV
    表目錄 VI
    圖目錄 VII
    符號索引 XI
    第 1 章 緒論 1
    1.1前言 1
    1.2研究目的 6
    1.3文獻回顧 6
    1.4全文概述 9
    第 2 章 傳輸損失研究方法 11
    2.1傳遞矩陣法 11
    2.1.1均勻管 12
    2.1.2亥姆霍茲共振腔 13
    2.1.3單膨脹室 15
    2.1.4入口延伸膨脹室 17
    2.2有限元素分析 19
    2.3量測方法 27
    2.3.1雙聲源法 27
    2.3.2雙負載法 27
    2.3.3麥克風變換位置法 28
    第 3 章 傳輸損失量測介紹 29
    3.1四極參數法 29
    3.2量測頻率響應信號修正 33
    3.3麥克風間距 35
    3.4激勵信號驗證 35
    3.5實驗設備 38
    3.6實驗架設 45
    第 4 章 傳輸損失性能量測驗證 47
    4.1傳遞矩陣法與有限元素分析 47
    4.2亥姆霍茲共振腔 51
    4.3單膨脹室 62
    4.4入口延伸膨脹室 72
    4.5空氣濾清器總成 83
    第 5 章 結論 100
    第 6 章 未來展望 102
    參考文獻 103
    圖片來源 106
    附錄A有限元素軟體COMSOL之無流速傳輸損失分析介紹 107
    附錄B傳遞矩陣法之亥姆霍茲共振腔共振頻率偏移 110
    附錄C亥姆霍茲共振腔之聲學阻抗量測差異 115
    個人著作 117

    [1] J. Y. Chung, and D. A. Blaser, 1980, “Transfer Function Method of Measuring In-duct Acoustic Properties, Part 1: Theory; Part 2: Experiment,” Journal of the Acoustical Society of America, Vol. 68, Iss. 3, pp.907-921.
    [2] M. L. Munjal, and A. G. Doige, 1990, “Theory of a Two Source-location Method for Direct Experimental Evaluation of the Four-pole Parameters of an Aeroacoustic Element,” Journal of Sound and Vibration, Vol. 141, Iss. 2, pp.323-333.
    [3] ASTM International, 2006, “Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones, and a Digital Frequency Analysis System,” ASTM E1050-98, United States.
    [4] ASTM International, 2019, “Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method,” ASTM E2611-19, United States.
    [5] 鄔詩賢,黃敏祥,2014,「排煙消音器之聲學性能與結構參數之研究」,第二十二屆中華民國振動與噪音工程學術研討會,彰化。
    [6] 曹祐強,2016,消音器傳輸損失量測方式探討,碩士論文,國立臺北科技大學,車輛工程系研究所,臺北。
    [7] 洪才傑,2015,多腔室排氣管聲學性能實驗與有限元素模擬研究,碩士論文,國立中興大學,機械工程學研究所,臺中。
    [8] 吳佳修,2015,運用CAE數值方法於機車消音器傳輸損失之研究,碩士論文,國立臺北科技大學,車輛工程系研究所,臺北。
    [9] P. Chaitanya, and M. L. Munjal, 2011, “Effect of Wall Thickness on the End Corrections of the Extended Inlet and Outlet of a Double-tuned Expansion Chamber,” Applied Acoustics, Vol. 72, Iss. 1, pp.65-70.
    [10] A. Selamet, and I. J. Lee, 2003, “Helmholtz Resonator with Extended Neck,” Journal of the Acoustical Society of America, Vol. 113, Iss. 4, pp.1975-1985.
    [11] E. S. Webster, and C. E. Davies, 2010, “The Use of Helmholtz Resonance for Measuring the Volume of Liquids and Solids,” Sensors, Vol. 10, Iss. 12, pp.10663-10672.
    [12] W. Fan, and L. X. Guo, 2016, “An Investigation of Acoustic Attenuation Performance of Silencers with Mean Flow Based on Three-dimensional Numerical Simulation,” Shock and Vibration, Vol. 2016, 6797593.
    [13] H. Huang, Z. Chen, and Z. Ji, 2019, “One-way Fluid-to-acoustic Coupling Approach for Acoustic Attenuation Predictions of Perforated Silencers with Non-uniform Flow,” Advances in Mechanical Engineering, Vol. 11, Iss. 5, pp. 1-11.
    [14] H. Zhang, W. Fan and L. X. Guo, 2018, “A CFD Results-based Approach to Investigating Acoustic Attenuation Performance and Pressure Loss of Car Perforated Tube Silencers,” Applied Sciences, Vol. 8, Iss. 4, 545.
    [15] L. Zhang, H. M. Shi, X. H. Zeng, and Z. Zhuang, 2020, “Theoretical and Experimental Study on the Transmission Loss of a Side Outlet Muffler,” Shock and Vibration, Vol. 2020, 6927547.
    [16] H. Kim, 2011, Transmission Loss of Silencers with Flow from a Flow-impedance Tube Using Burst Signals, Doctoral dissertation, Department of Mechanical Engineering, Ohio State University, U.S.A..
    [17] H. Kim, and A. Selamet, 2011, “Acoustic Performance of a Helmholtz Resonator with Flow,” International Journal of Vehicle Noise and Vibration, Vol. 7, No. 4, pp.285-305.
    [18] H. Kim, and A. Selamet, 2020, “Effect of Flow on a Dual Helmholtz Resonator,” Journal of Mechanical Science and Technology, Vol. 34, Iss. 2, pp.581-588.
    [19] D. Lin, H. Andreas, K. Mikael, and A. Mats, 2016, “Sound Amplification at a Rectangular T-junction with Merging Mean Flows,” Journal of Sound and Vibration, Vol. 367, Iss. 14, pp. 69-83.
    [20] J. Gikadi, S. Föller, and T. Sattelmayer, 2014, “Impact of Turbulence on the Prediction of Linear Aeroacoustic Interactions: Acoustic Response of a Turbulent Shear Layer,” Journal of Sound and Vibration, Vol. 333, Iss. 24, pp. 6548-6559.
    [21] E. Selamet, A. Selamet, A. Iqbal, and H. Kim, 2011, “Effect of Flow on Helmholtz Resonator Acoustic: A Three-dimensional Computational Study vs. Experiments,” SAE Technical Paper, 2011-01-1521.
    [22] E. Selamet, A. Selamet, A. Iqbal, and H. Kim, 2013, “Acoustic of a Helmholtz Resonator Aligned Parallel with Flow: A Computational Study vs. Experiments,” International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 2, pp. 210-213.
    [23] H. Huang, Z. Ji, and K. Han, 2020, “Acoustic Behavior Prediction and Analysis of Resonators in the Presence of Low Mach Number Flow,” Journal of Theoretical and Computational Acoustics, Vol. 28, No. 3, 1950015.
    [24] D. Guan, D. Zhao, and Z. Ren, 2020, “Aeroacoustic Attenuation Performance of a Helmholtz Resonator with a Rigid Baffle Implemented in the Presence of a Grazing Flow,” International Journal of Aerospace Engineering, Vol. 2020, pp.1-16.
    [25] F. P. Mechel, 2008, “Formulas of Acoustics,” Muffler Acoustics, 2nd Edition, pp. 793-841, Springer-Verlag, New York.
    [26] M. L. Munjal, 2014, “Acoustics of Ducts and Mufflers,” Theory of Acoustic Filters, 2nd ed., pp. 41-96, John Wiley and Sons, Inc., New York.
    [27] Sound Research Laboratories Ltd, 2004, “Noise Control in Industry,” Silencers, Mufflers and Sound Attenuators, pp.205, Taylor and Francis.
    [28] 張錦松,張錦輝,2016,「噪音振動控制」,消音器,第七版,第224頁,高立圖書。
    [29] R. W. Fox, A. T. McDonald, P. J. Pritchard and J. C. Leylegian, 2012, “Fluid Mechanics,” Fundamental Concepts, 8th ed., pp. 42-43, John Wiley and Sons, Inc., New York.
    [30] 陳順宇,鄭碧娥,2004,「統計學」,時間序列分析,第四版,第15-16頁,華泰書局。
    [31] S. H. Crandall, and W. D. Mark, 1973, “Random Vibration in Mechanical Systems,” Characterization of Random Vibration, pp.44-45, Academic Press.

    下載圖示
    QR CODE