簡易檢索 / 詳目顯示

研究生: 江坤豐
Chiang, Kun-Feng
論文名稱: 應用雷射雨滴譜儀修正臺灣地區降雨動能參數之可行性研究-以屏東地區為例
Study on Correction of The Rainfall Kinetic Energy by Laser Raindrops Spectrometer-A Case Study in Pingtung County
指導教授: 李明熹
Lee, Ming-Hsi
學位類別: 碩士
Master
系所名稱: 工學院 - 水土保持系所
Department of Soil and Water Conservation
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 雷射雨滴譜儀雨滴譜降雨動能降雨沖蝕指數
外文關鍵詞: OTT Parsivel2, Rain droplet size spectrum, Rainfall kinetic energy, Rainfall erosion index
DOI URL: http://doi.org/10.6346/NPUST202100357
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 臺灣目前所使用的降雨動能公式為Wischmeier and Smith(1958)根據Laws and Parsons(1943)於美國華盛頓地區量測之降雨資料所建立,其公式為一經驗公式,由於經驗公式具有地域性,不適合應用於自然環境與發展程度不同的區域;且臺灣地區的降雨及氣候型態與美國大不相同,除此之外,量測方法使得相關參數精度有不足之情況,可能使得公式推估結果之精度較低,亦會導致降雨動能有高估或低估之情形。
    因此,本研究為瞭解降雨動能經驗公式(Wischmeier and Smith)對臺灣地區之影響,以屏東地區為研究區域,於屏東科技大學氣象站內架設雷射雨滴譜儀(OTT Parsivel2),蒐集2017年1月至2020年12月每五分鐘之雨滴譜資料,利用雷射雨滴譜儀所量測之雨滴譜資料進行屏東地區之降雨特性分析,並修正臺灣目前所使用之降雨動能參數,建立適用於屏東地區之降雨動能參數公式,進而提供更有效應用於計算降雨沖蝕指數之參考。
    根據Wischmeier and Smith(1978)對有效雨場之定義,分割有效降雨事件共計120場,分析結果顯示,估算降雨動能有85 %數據高於實測降雨動能,而物理降雨動能有99.9 %數據低於實測降雨動能,表示屏東地區目前使用的降雨動能有高估之情形。在單位降雨動能和降雨強度回歸關係的部分,以屏東地區為例,在降雨強度於53 mm/hr時有臨界值,小於53 mm/hr時適用單位降雨動能e=0.0671log(I)+0.0996,判定係數 (R2) 為0.36;大於53 mm/hr時適用單位降雨動能e=0.0003(I)+0.2017,判定係數(R2)為0.03;最大30分鐘降雨強度(I30max)與降雨沖蝕指數(R)回歸關係部分,R=0.819(I30max)1.6799,判定係數(R2)為0.83。
    綜觀上述,本研究藉由雷射雨滴譜儀量測雨滴譜資料,利用儀器蒐集到之雨滴譜資料加以分析及探討,且建立屏東地區之單位降雨動能公式,可以用作未來降雨動能計算及降雨沖蝕指數推估之參考,以供水土保持相關研究及估算之依據。

    Currently, Taiwan’s unit rainfall kinetic formula was developed by Wischmeier and Smith(1958) based upon Laws and Parson’s(1943) rainfall data, in Washington, United States. The formula is an empirical formula , so it is not suitable for application due to its regional. In areas where the natural environment and the developed area are different, the rainfall patterns and climatic type in Taiwan are different from those in the United States. In addition, the measurement method makes the parameters, which may make the accuracy of the formula calculation results, which will cause rainfall energy to have an error.
    In order to understand the impact of the empirical formula of rainfall kinetic energy (Wischmeier and Smith) in Taiwan. This study chose the Pingtung County region as the research area and set up a laser raindrops spectrometer (OTT Parsivel2) in the weather station of Pingtung University of Science and Technology. The data were measured from January,2017 to December,2020, the rain droplet size spectrum every five minutes, using the rain droplet size spectrum measured by the laser raindrops spectrometer to analyze the rainfall characteristics of Pingtung County, and modify the rainfall kinetic energy parameters used in Taiwan to establish and apply the formula of unit rainfall kinetic energy in Pingtung County provides a more effective reference for calculating rainfall erosion index.
    According to the definition of effective rainfall events calculated by Wischmeier and Smith (1958), there are 120 effective rainfall events. The results show that 85 % of the estimated rainfall kinetic energy is higher than the measured rainfall kinetic energy, and 99.9 % of the physical rainfall kinetic energy is lower than the measured rainfall kinetic energy, which means that the rainfall kinetic energy is used to error in Taiwan. For the regression relationship between unit rainfall kinetic energy(e) and rainfall intensity(I), taking Pingtung County as an example, there is a critical value when the rainfall intensity is 53 mm/hr. When the rainfall intensity is below 53 mm/hr,e=0.0671log(I)+0.0996,(R2=0.36) is applicable;when the rainfall intensity is above 53 mm/hr,e=0.0003(I)+0.2017,(R2=0.03) is applicable;the power regression relationship between the maximum 30-minutes rainfall intensity and the rainfall erosion index, R=0.819(I30max)1.6799,(R2=0.83).
    On the whole, this study uses the laser raindrops spectrometer to measure the rain droplet size spectrum datas, analyzes and discusses the raindrops spectrum datas collected by the instrument, and establishes the unit rainfall kinetic energy formula in Pingtung County, which can be used for future rainfall kinetic energy calculation and the reference for estimation of rainfall erosion index shall be the basis of research and estimation related to supply water and soil conservation.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    表目錄 VIII
    圖目錄 IX
    第一章 緒論 1
    一、研究動機 1
    二、研究目的 3
    第二章 文獻回顧 4
    一、雨滴量測方法 4
    二、降雨動能參數 6
    第三章 研究區域與方法 11
    一、研究區域 11
    二、研究方法 17
    第四章 結果與討論 29
    一、 屏東科技大學測站雷射雨滴譜儀與傾斗式雨量計 29
    二、雨量分析 31
    三、雨滴終端速度 34
    四、雨滴粒徑分析 39
    五、雨滴粒徑及雨滴終端速度與雨滴總顆粒數百分比之關係 43
    六、降雨動能分析探討 45
    第五章 結論與建議 70
    一、 結論 70
    二、 建議 71
    參考文獻 72
    作者簡介 85

    1.王文玲,張微,高玉宏,2018,「基於Parsivel激光雨滴譜儀的夏季雨滴譜特徵分析」,黑龍江氣象,第35卷,第1期,第20-22頁。
    2.王可法,張卉慧,張偉,王佳,濮江平,2011,「Parsivel激光雨滴譜儀觀測降水中異常數據的判別及處理」,氣象科學,第31卷,第6期,第732-736頁。
    3.吳嘉俊,王阿碧,1996,「屏東老埤地區雨滴粒徑與沖蝕動能之研究」,中華水土保持學報,第27卷,第2期,第151-165頁。
    4.吳嘉俊,盧光輝,林俐玲,1996,土壤流失量估算手冊,國立屏東技術學院,屏東,第7-41頁。
    5.李明熹,王奕傑,莊純宛,2020,「臺灣南部地區降雨沖蝕指數之研究」,水保技術,第14卷,第2期,第8-27頁。
    6.李建堂,1997,「土壤沖蝕的量測方法」,國立臺灣大學地理學系地理學報,第23期,第89-106頁。
    7.洪麗娟,2009,1996-2008年台灣降雨的特性分析,碩士論文,國立中央大學,大氣物理研究所,桃園。
    8.徐千筑,2018,運用雷射雨滴譜儀進行降雨特性之量測與分析,碩士論文,國立屏東科技大學,水土保持系,屏東。
    9.郭庭佑,2020,臺灣地區雨滴譜分布特性與降雨動能之研究,碩士論文,國立屏東科技大學,水土保持系,屏東。
    10.曾吉暉,廖信豪,鳳雷,2016,「新一代一維雷射式雨滴譜儀降水平行觀測分析」,105年天氣分析與預報研討會,臺北。
    11.游繁結,2012,土壤沖蝕講義,國立中興大學,臺中,第30頁。
    12.黃俊德,1979,「台灣降雨沖蝕指數之研究」,中華水土保持學報,第10卷,第1期,第127-142頁。
    13.楊斯堯,詹錢登,黃文舜,曾國訓,2010,「運用時雨量資料推估降雨沖蝕指數」,中華水土保持學報,第41卷,第3期,第189-199頁。
    14.盧可昕,唐玉霜,林品芳,陳姿瑾,張保亮,2020,「中央氣象局雨滴譜儀觀測網資料品管與分析」,大氣科學期刊,第48期,第48-87頁。
    15.謝佩蓉,2012,近地面降水粒子落速之觀測研究,碩士論文,中國文化大學,地學研究所大氣科學組碩士班,臺北。
    16.Martínez, M. A. and Barros, A. P., 2015, “Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains,” Geomorphology, Vol. 228, pp. 28-40.
    17.Carvalho, N. O., 2008, “Hidrossedimentologia Prática,” in sedimentologia fluvial, pp 559, Interscience Publications, Brazil, Rio da Janeiro.
    18.Cerro, C., Bech, J., Codina, B., and Lorente, J., 1998, “Modeling Rain Erosivity Using Disdrometric Techniques,” Reprinted from the Soil Science Society of America Journal, Vol. 62, No. 3, pp. 731-735.
    19.Coutinho, M. A., and Tomás, P. P., 1995, “Characterization of raindrop size distributions at the Vale Formoso Experimental Erosion Center,” Catena, Vol. 25, pp. 187-197.
    20.Friedrich, K., Higgins, S., Masters, F. J., and Lopez, C. R., 2013, “Articulating and Stationary PARSIVEL Disdrometer Measurements in Conditions with Strong Winds and Heavy Rainfall,” Journal of Atmospheric and Oceanic Technology, Vol. 30, No. 9, pp. 2063-2080.
    21.Gunn, R., and Kinzer, G. D., 1949, “The Terminal Velocity of Fall for Water Droplets in Stagnant air,” Journal of the Atmospheric Sciences, Vol. 6, No. 4, pp. 243-248.
    22.Hudson, N. W., 1963, “Raindrop Size Distribution in High Intensity Storms,” Rhodesian Journal of Agricultural Research, Vol. 1, No. 1, pp. 6-11.
    23.Laws, J. O. and Parsons, D. A., 1943, “The Relation of Raindrop Size to Intensity,” Transactions, American Geophysical Union, Vol. 24, No. 2, pp. 452-460.
    24.Johannsen, L. L., Zambon, N., Strauss, P., Dostal, T., Neumann, M., Zumr, D., Cochrane, T. A., Günter, B., and Andreas, K., 2020, “Comparison Of three types of laser optical disdrometers under natural rainfall conditions,” Hydrological Sciences Journal, Vol. 65, No. 4, pp. 524-535.
    25.Marta, A. M., Santiago, B., Borja, L. and María, F. R., 2017, “Comparison Of precipitation measurements by Ott Parsivel2 and Thies LPM optical disdrometers,” Hydrological and Earth System Sciences, Vol. 22, No. 5, pp. 2811-2837.
    26.Neumann, M., Zumr, D., Laburda, T., Kavka, P., Johannsen, L. L., Balenovic, N., Balenovic N., Chladova Z., Fiser, O., Strauss P., Dostal, T., and Andreas, K., 2018, “Comparison of the rainfall kinetic energy measured by different distrometers,” Proceedings from the conference held 4-13 April, Vienna, Austria, pp. 13821.
    27.OTT HydroMet, 2016, “Operating instructions present weather sensor OTT Parsivel2,” OTT HydroMet GmbH, Germany., OTT HydroMet Resources, Available at:www.ott.com/resources , Accessed 01 April 2021.
    28.Park, S. G., Kim, H. L., Ham, Y. W. and Jung, S. H., 2017, “Comparative Evaluation of the OTT PARSIVEL2 Using a Collocated Two-Dimensional Video Disdrometer,” Journal of Atmospheric and Oceanic Technology, Vol. 34, No. 9, pp. 2059-2082.
    29.Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K. and Yoder, D. C., 1997, “Predicting Soil Erosion by Water:A Guide to Conservation Planning With the Revised Universal Soil Loss Equation(RUSLE),” in Rainfall Runoff Erosivity Factor, pp.19-65, U.S Department of Agriculture, America, Washington, D. C.
    30.Rosewell, C. J., 1986, “Rainfall Kinetic Energy in Eastern Australia,” Journal of Applied Meteorology and Climatology, Vol. 25, No. 11, pp. 1695-1701.
    31.Tokay, A., Petersen, W. A., Gatlin, P. and Wingo. M., 2013, “Comparison of Raindorp Size Distribution Measurements by Collocated Disdrometers,” Journal of Atmospheric and Oceanic Technology, Vol. 30, No. 8, pp. 1672-1690.
    32.Tokay, A., Wolff, D. B. and Petersen, W. A., 2014, “Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2,” Journal of Atmospheric and Oceanic Technology, Vol. 31, No. 6, pp. 1276-1288.
    33.Torres-Sempere, D., Creutin, J., Delrieu G. and Salles C., 1992, “Quantification of soil detachment by raindrop impact:performance of classical formulae of kinetic energy in Mediterranean storms,” IAHS Publ, No. 210, pp. 115-123.
    34.Usón, A. and Ramos, M. C., 2001, “An improved rainfall erosivity index obtained from experimental interrill soil loeese in soils with a Mediterranean climate,” Catena, Vol. 43, No. 4, pp. 293-305.
    35.Van Dijk, A. I. J. M., Bruijnzeel, L. A. and Rosewell C. J., 2002, “Review Rainfall Intensity-Kinetic Energy Relationship:a Critical Literature Appraisal,” Journal of Hydrology, Vol. 261, pp. 1-23.
    36.Wischmeier, W. H. and Smith, D. D., 1958, “Rainfall Energy and Its Relationship to Soil Loss,” Transactions American Geophysical Union, Vol. 39, No. 2, pp. 285-291.
    37.Wischmeier, W. H. and Smith, D. D., 1978, “Predicting Rainfall Erosion Losses:A Guide to Conservation Planning,” in Rainfall and runoff factor, pp.5-7, United States Department of Agriculture, America, Washington, D. C.

    無法下載圖示 校外公開
    2026/08/23
    QR CODE