簡易檢索 / 詳目顯示

研究生: 林盈淇
Lin, Ying-Chi
論文名稱: 應用乳酸菌產生胞外多醣製作優格冰淇淋
Using lactic acid bacteria producing exopolysaccharide to manufacture frozen yogurt
指導教授: 邱秋霞
Chiu, Chiu-Hsia
郭嘉信
Guo, Jia-Hsin
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 109
語文別: 中文
論文頁數: 183
中文關鍵詞: 優格冰淇淋乳酸菌胞外多醣天然粘稠劑天然屏障
外文關鍵詞: Frozen yogurt, Lactic acid bacteria, Exopolysaccharides, Natural thickener, Natural barrier
DOI URL: http://doi.org/10.6346/NPUST202100381
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 中文摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 X
    表目錄 XII
    1. 前言 1
    2. 文獻回顧 3
    2.1 冰淇淋 3
    2.1.1 冰淇淋之簡介 3
    2.1.2 冰淇淋中常見之食品添加物 4
    2.1.2.1 甜味劑 4
    2.1.2.2 乳化劑 4
    2.1.2.3 粘稠劑 5
    2.1.3 冰淇淋之種類 8
    2.2 優格冰淇淋 9
    2.3 乳酸菌 10
    2.3.1 乳酸菌之簡介 10
    2.3.2 乳酸菌之分類 11
    2.3.3 乳酸菌之代謝途徑 15
    2.3.4 乳酸菌代謝產物之生理活性及其應用 18
    2.4 胞外多醣 21
    2.4.1 多醣之簡介 21
    2.4.2 乳酸菌胞外多醣 26
    2.4.3 乳酸菌胞外多醣之生產及分離 28
    2.4.5 乳酸菌胞外多醣之物理特性及應用 32
    2.5 反應曲面法 32
    3. 材料與方法 39
    3.1 實驗架構 39
    3.2 試藥及培養基 42
    3.2.1 試藥 42
    3.2.2 培養基 44
    3.3 儀器設備 50
    3.4 實驗菌株 52
    3.4.1 乳酸菌菌株篩選及分離 52
    3.4.1.1 簡易革蘭氏染色 52
    3.4.1.2 觸酶 (catalase) 試驗 55
    3.4.1.3 凝乳試驗 55
    3.4.1.4 產酸能力試驗 55
    3.4.1.5 黏度測試 55
    3.4.2 乳酸菌菌株之特性探討 56
    3.4.2.1 乳酸菌菌株之生長曲線 56
    3.4.2.2 乳酸菌菌株之形態及大小 56
    3.4.3 乳酸菌菌株之耐受性試驗 57
    3.4.3.1 乳酸菌菌株之耐酸性試驗 57
    3.4.3.2 乳酸菌菌株之耐膽鹽試驗 57
    3.4.4 乳酸菌菌株保存 57
    3.4.5 乳酸菌菌酛製備 58
    3.4.6 乳酸菌菌酛計數 58
    3.4.7 乳酸菌菌種鑑定 58
    3.4.7.1 API 50 CHL菌種快速鑑定 58
    3.4.7.2 VITEK® 2 Compact菌種快速鑑定 59
    3.4.7.3 16S rDNA菌種鑑定 59
    3.5 乳酸菌生產胞外多醣之製備及萃取 60
    3.5.1 乳酸菌胞外多醣之製備 60
    3.5.2 乳酸菌胞外多醣之萃取 60
    3.5.3 乳酸菌胞外多醣之定量 60
    3.6 以實驗設計法進行最適培養條件之探討 61
    3.6.1 乳酸菌選定及最適碳源種類探討 61
    3.6.2 乳酸菌發酵最適碳源濃度探討 61
    3.6.3 乳酸菌發酵最適培養時間探討 61
    3.6.4 乳酸菌發酵最適發酵溫度探討 62
    3.6.5 以Box-Behnken Design進行最適培養條件之探討 62
    3.7 分析項目及方法 64
    3.7.1 pH值之測定 64
    3.7.2 可滴定酸之測定 64
    3.7.3 胞外多醣單醣組成分析 64
    3.7.4 胞外多醣結構分析 65
    3.8 優格冰淇淋之製備及分析 68
    3.8.1 優格冰淇淋之製備 68
    3.8.2 優格冰淇淋之分析項目 71
    3.8.2.1 沙門氏桿菌之檢驗 71
    3.8.2.2 腸桿菌科之檢驗 71
    3.8.2.3 水中大腸桿菌群之檢驗 73
    3.8.2.4 優格冰淇淋之膨脹率 74
    3.8.2.5 優格冰淇淋之融化速率 74
    3.8.2.6 優格冰淇淋之質地分析 75
    3.9統計方法 75
    4. 結果與討論 76
    4.1 乳酸菌菌株之篩選與分離 76
    4.1.1 篩選之乳酸菌菌株所產生之黏度表現 82
    4.1.2 篩選之乳酸菌菌株所產生之胞外多醣定量分析 84
    4.2 乳酸菌菌株之生長特性 86
    4.2.1 乳酸菌菌株之生長曲線 86
    4.2.2 乳酸菌菌株之菌體型態及大小 86
    4.3 乳酸菌菌株之耐受性試驗 91
    4.3.1 乳酸菌菌株之耐酸性試驗 91
    4.3.2 乳酸菌菌株之耐膽鹽性試驗 95
    4.4 乳酸菌菌株之菌種鑑定 98
    4.4.1 API 50 CHL菌種快速鑑定 98
    4.4.2 VITEK® 2 Compact菌種快速鑑定 98
    4.4.3 16S rDNA菌種鑑定 107
    4.5 以反應曲面法探討乳酸菌最適發酵條件 112
    4.5.1 實驗因子之選定 112
    4.5.1.1 實驗菌株之選定及最適碳源種類之探討 112
    4.5.2 實驗因子階層探討 116
    4.5.2.1 L. plantarum ECo-8發酵之最適碳源添加濃度之探討 116
    4.5.2.2 L. plantarum ECo-8發酵之最適培養時間之探討 118
    4.5.2.3 L. plantarum ECo-8發酵之最適培養溫度之探討 120
    4.5.3 L. plantarum ECo-8最適培養條件之探討 120
    4.5.3.1 L. plantarum ECo-8發酵液之黏度表現 124
    4.5.3.2 L. plantarum ECo-8發酵液之胞外多醣含量 132
    4.6 乳酸菌胞外多醣之單醣組成及官能基特性分析結果 136
    4.7 優格冰淇淋成品分析結果 139
    4.7.1 優格冰淇淋理化特性結果 139
    4.7.2 優格冰淇淋貯藏期間乳酸菌菌數之變化 141
    4.7.3 優格冰淇淋食品衛生菌之檢測結果 145
    5. 結論 148
    6. 參考文獻 151

    國家衛生和計畫生育委員會食品藥品監督管理總局。2016。食品微生物學檢驗-沙門氏菌檢驗。中華人民共和國食品安全國家標準GB 4789.4。中國。
    經濟部標準檢驗局。2006。水果及蔬菜汁飲料檢驗法-糖類之測定 (HPLC法),總號12634,類號N6223。中華民國國家標準 (CNS)。臺灣。
    經濟部標準檢驗局。2017。乳品冰淇淋 (已包裝),總號6508,類號N5171。中華民國國家標準 (CNS)。臺灣。
    立行科技。2021年6月12日。取自:http://www.analab.com.tw/upload/adlist/201611/R002~R012.pdf。
    江念哲。2015。以不同乳酸菌製備添加豆漿及台灣五葉松松針粉末之優格。國立屏東科技大學食品科學系研究所碩士論文。
    江倉政。2013。以不同來源之乳酸菌Lactobacillus rhamnosus發酵切達乾酪之研究。國立屏東科技大學食品科學系研究所碩士論文。
    林佩璇。2006。糖類之添加對乳酸菌胞外多醣生成之研究。中國文化大學生活應用科學研究所碩士論文。
    林慶文、李素珍、劉嘉睿。2002。乳品微生物學。國立編譯館。102-335頁。臺北。
    林慶文。1991。乳品加工學。華香園出版社。第三版。109-345頁。臺北。
    邱秋霞。2006。Lactobacillus plantarum NTU102生理特性及其在保健食品與水產養殖應用之探討。國立台灣大學生命科學院微生物與生化學研究所博士論文。
    侯景祥。2017。優格低脂冰淇淋產品配方及製程之研究。國立屏東科技大學食品科學系研究所碩士論文。
    洪思媛。2019。火龍果莖多醣之體外抗氧化及抗腫瘤活性探討。國立屏東科技大學食品科學系碩士論文。
    洪從恕。2013。應用模糊分群法推估路段速率之研究。國立交通大學運輸科技與管理學系研究所碩士論文。
    衛生福利部食品藥物管理署。2013。食品微生物檢驗方法-乳酸菌之檢驗法。部授食字第1021950329號公告修正。臺灣。
    衛生福利部食品藥物管理署。2013。食品微生物檢驗方法-包裝飲用水及盛裝飲用水中大腸桿菌群檢驗。部授食字第1021951151號公告訂定。臺灣。
    衛生福利部食品藥物管理署。2013。食品微生物檢驗方法-沙門氏桿菌之檢驗。部授食字第1021951187號公告修正。臺灣。
    傅馨儀。2016。利用Bacillus subtilis E20及Saccharomyces cerevisiae P13共醱酵改善醱酵脫脂豆粉製程黏稠問題並應用於金目鱸飼料。國立屏東科技大學食品科學系研究所碩士論文。
    黃上品。2017。食品微生物。Gole高元智庫。87-148頁。臺南。
    黃盈瑄。2018。冰淇淋、霜淇淋、義式冰淇淋?你對冰品了解有多少?食力foodNEXT 2021年5月23日取自:https://www.foodnext.net/life/lifesafe/paper/5975134536。
    黃美瑩、朱惠真、曾亮瑋。2018。飼料中添加益生菌 Leuconostoc mesenteroides B4及其異麥芽寡糖與葡聚糖產物對點帶石斑 (Epinephelus coioides) 成長之影響。水產研究Journal of Taiwan Fisheries Research 26: 1-19。
    黃惠如。2011。哪種冰淇淋最健康?康健雜誌,第165期。2021年5月23日取自:https://www.commonhealth.com.tw/article/66117。
    葉怡成。2009。高等實驗計畫。五南圖書出版股份有限公司。39-52頁。臺北。
    詹現璞、吳廣輝。2011。海藻酸钠的特性及其在食品中的應用。食品工程,第1期,7-9頁。
    蔡文城、蔡岳廷。2019。食品微生物檢驗技術。九州圖書文物有限公司。287-335頁。臺北。
    劉虹每。2013。利用反應曲面法探討金針花一氧化氮清除活性成分最適化乙醇萃取條件。東海大學食品科學研究所碩士論文。
    劉榮標。1964。細菌之簡易染色法。國立台灣大學農學院獸醫學系。
    衛生福利部食品藥物管理署。2018。食品微生物檢驗方法-腸桿菌科之檢驗 (草案)。衛授食字第1071901433號預告訂定。臺灣。
    衛生福利部食品藥物管理署。2021。食品衛生標準-食品添加物使用範圍及限量暨規格標準。衛授食字第1101300017號令修正。臺灣。
    衛生福利部食品藥物管理署。2020。食品中微生物衛生標準。衛授食字第1091302247號令修正。臺灣。
    鄭明慈、林珈伊、吳宜庭。2009。乳品加工之 How to ICE CREAM。國立台中高農食品加工科專題研習報告。
    賴亞妏。2020。應用微生物發酵火龍果果皮開發機能性飲品之可行性。國立屏東科技大學食品科學系研究所碩士論文。
    行政院環境保護署環境檢驗所。2013。水中大腸桿菌群檢測方法-濾魔法。環署檢字第1020029281號公告。臺灣。
    Abraham A., Afewerki B., Ghebremedhin H., Reddy K. S., Teklehaimanot B., Tsegay B. 2018. Extraction of Agar and Alginate from Marine Seaweeds in Red Sea Region. International Journal of Marine Biology and Research 3(2): 1-8.
    Akbari M., Davoudi Z., Eskandari M. H. 2019. Application and functions of fat replacers in low-fat ice cream: A review. Trends in Food Science & Technology 86: 34-40.
    Alba K., Kontogiorgos V. 2019. Seaweed Polysaccharides (Agar, Alginate Carrageenan). Encyclopedia of Food Chemistry 240-250.
    Ale E. C., Binetti A. G., Reinheimer J. A., Rojas M. F. 2020. Lactobacillus fermentum: Could EPS production ability be responsible for functional properties? Food Microbiology 90: 103465.
    Alfaro L., Bankston D., Bechtel P. J., Boeneke C., Hayes D., Sathivel S., Xu Z. 2015. Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil. LWT - Food Science and Technology 62: 1184-1191.
    Angelin J. and Kavitha M. 2020. Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules 162: 853-865.
    Antonia R., Ana A., Birgit N., Declan B., Marianne C., Konstantinos K., Lieve H., Lucy R., Robert D., Roland L., Rosina G. 2017. Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA Journal 15: e04664.
    AOAC. 2000. Salmonella in Foods with a Low Microbial Load, Detection. Official Method 2000.06. Washington D. C. U.S.A.
    Argyri A. A., Karatzas K. A. G., Nychas G. J. E., Panagou E. Z., Tassou C. C., Tsakalidou E., Zoumpopoulou G. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology 33: 282-291.
    Atalar I., Gul O., Kurt A., Yazici F. 2021. Improved physicochemical, rheological and bioactive properties of ice cream: Enrichment with high pressure homogenized hazelnut milk. International Journal of Gastronomy and Food Science 24: 100358.
    Avvari R. K. 2021. Characterizing flow due to segmental contraction of the small intestine and their impact on digestion. Ain Shams Engineering Journal.
    Axelsson L. 2004. Lactic acid bacteria: classification and physiology. Food Science Technology 139: 1-66.
    Ayyash M., Abdalla A. K., AlKalbani N. S., Baig A., Liu S. Q., Shah N. P., Turner M. S. 2021. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. Journal of Dairy Science 104: 8363-8379.
    Bai M., Bilige M., Dan T., Guo S., Hung T., Kwok L. Y., Wang J., Wang Y., Zhang H. 2020. Probiotic Lactobacillus casei Zhang improved the properties of stirred yogurt. Food Bioscience 37: 100718.
    Bajpai V. K., Aeron A., Dubey R. C., Kang S. C., Kim K., Lim J., Maheshwari D. K., Majumder R., Park Y. H., Rather I. A., Shukla S. 2016. Exopolysaccharide and lactic acid bacteria: Perception, functionality and prospects. Bangladesh J. Pharmacol 11: 1-23.
    Begley M., Gahan C. G., Hill C. 2005. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29: 625-651.
    Bernardeau M., Henri-Dubernet S., Vernoux J. P., Guéguen M. 2008. Safety assessment of dairy microorganisms: The Lactobacillus genus. International Journal of Food Microbiology 126: 278-285.
    Bezerra M., Araujo A., Correia R., Santos K. 2015. Caprine frozen yoghurt produced with fresh and spray dried jambolan fruit pulp (Eugenia jambolana Lam) and Bifidobacterium animalis subsp. lactis BI-07. Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology 62: 1099-1104.
    Box G., Behnken D. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475.
    Breig S. J. M., Luti K. J. K. 2021. Response surface methodology: A review on its applications and challenges in microbial cultures. Materials Today: Proceedings 42: 2277-2284.
    Brown-Esters O., Mc Namara P., Savaiano D. 2012. Dietary and biological factors influencing lactose intolerance. Int. Dairy J. 22: 98-103.
    Bustos A. Y., Fadda S., Taranto M. P., Valdez G. F. D. 2018. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Research International 112: 250-262.
    Caspi R., Foerster H., Fulcher C. A., Karp P. D., Kothari A., Krummenacker M., Mueller L., Latendresse M., Paley S., Rhee S., Subhraveti P., Zhang P. 2007a. Pathway: homolactic fermentation. MetaCyc. SRI International. U.S.A.
    Caspi R., Foerster H., Fulcher C. A., Karp P. D., Kothari A., Krummenacker M., Mueller L., Latendresse M., Paley S., Rhee S., Subhraveti P., Zhang P. 2007b. Pathway: heterolactic fermentation. MetaCyc. SRI International. U.S.A.
    Chauhan K., Patel K. C., Trivedi U. 2007. Statistical screening of medium components by Plackett–Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresource Technology 98: 98-103.
    Choi H. J., Do K. H., Kim J., Moon Y., Park S. H., Yang H. 2012. Pro-inflammatory NF-κB and early growth response gene 1 regulate epithelial barrier disruption by food additive carrageenan in human intestinal epithelial cells. Toxicology Letters 211: 289-295.
    Clarke C. 2012. The science of ice cream. Cambridge: Royal Society of Chemistry. UK.
    Daba G. M., Elkhateeb W. A. 2020. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. Biocatalysis and Agricultural Biotechnology 28: 101750.
    Daba G. M., Elkhateeb W. A., Elnahas M. O. 2021. Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules 173: 79-89.
    Degner B. M., Chung C., Hutkins R., McClements D. J., Schlegel V. 2014. Factors influencing the freeze-thaw stability of emulsion-based foods. Comprehensive Reviews in Food Science and Food Safety 13: 98-113.
    Deshmukh R. 2017. Ice cream market by product type: Global opportunity analysis and industry forecast. 2017-2023. Allied Market Research. Retrieved Jun 10, 2021, from the World Wide Web: https://www.alliedmarketresearch.com/ice-cream-market.
    Dong H., Dong C., Tang X., Zhang Z. 2017. Structural insight into lipopolysaccharide transport from the Gram-negative bacterial inner membrane to the outer membrane. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1862: 1461-1467.
    Eha K., Heinmaa I., Kaleda A., Laos K., Pehk T. 2021. Impact of short-term heat treatment on the structure and functional properties of commercial furcellaran compared to commercial carrageenans. Heliyon 7: e06640.
    Gallary C. 2014. What’s the Difference Between Sherbet and Sorbet? Kitchn. Retrieved May 23, 2021, from the World Wide Web: https://www.thekitchn.com.
    Guldfeldt L. U., Behrndt H., Johansen E., Sorensen K. I., Stroman P., Williams D. 2001. Effect of starter cultures with a genetically modified peptidolytic or lytic system on cheddar cheese ripening. Int. Dairy J. 11: 373-382.
    Guner A., Ardic M., Dogruer Y., Keles A. 2007. Production of yogurt ice cream at different acidity. Int. J. Food Sci. Technol., 42: 948-952.
    Haj-Mustafa M., Abdi R., Sheikh-Zeinoddin M., Soleimanian-Zad S. 2015. Statistical study on fermentation conditions in the optimization of exopolysaccharide production by Lactobacillus rhamnosus 519 in skimmed milk base media. Biocatalysis and Agricultural Biotechnology 4: 521-527.
    Hansen E. 2002. Commercial bacterial starter cultures for fermented food of the future. Int. J. Food Microbiol 78: 119-131.
    Hikmate A., Antonio G., Carmen M. D., Charles M. A. P. F., Cho G. S., Horst N., Lavilla L. L., Muñoz C., Jan K., Pérez B., Rohtraud P., Vincenzina F. 2015. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Frontiers in Microbiology 6: 1197.
    Huang Y., Sui Y., Wang J., Wang X., Wu F., Yang L. 2013. Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. Journal of Dairy Science 96: 2816-2825.
    Hutkins R. 2018. Microbiology and Technology of Fermented Foods, 2nd Edition. Wiley-Blackwell P.25-136. U.S.A.
    Imran M. Y. M., Ahamed A. A. P., Alharbi N. S., Dhanasekaran D., Jayaraj K. A., Muralitharan G., Thajuddin N., Reehana N. 2016. Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules 93: 731-745.
    International Dairy Federation. 2020. Ice cream sales & trends. Retrieved August 20, 2021, from the World Wide Web: https://www.idfa.org/ice-cream-sales-trends.
    Khan M., Anjum A. A., Awan A. R., Nawaz M. 2020. In vitro characterization of probiotic properties and anti-campylobacter activity of Lactobacillus spp. isolated from poultry, fermented foods and human faeces. J. Anim. Plant Sci. 30: 336-344.
    Korcz E. and Varga L. 2021. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology 110: 375-384.
    Kumar R., Bansal P., Dhanda S., Singh J. 2020. Purification, partial structural characterization and health benefits of exopolysaccharides from potential probiotic Pediococcus acidilactici NCDC 252. Process Biochemistry 99: 79-86.
    Kumari A., Bhalla T. C., Monika A. K. 2016. Probiotic attributes of indigenous Lactobacillus spp. isolated from traditional fermented foods and beverages of north-western Himalayas using in vitro screening and principal component analysis. J. Food Sci. Technol. 53: 2463-2475.
    Kurt A., Cengiz A., Kahyaoglu T. 2016. The effect of gum tragacanth on the rheological properties of salep based ice cream mix. Carbohydrate Polymers 143: 116-123.
    Lafrance R., Alemán-Castillo S. E., Castillo-Ruiz O., Esparza-Araiza M. J., León-Félix J., Martínez-Montoya H., Valdéz-Torres J. B., Villicaña C. 2021. Optimization of PCR-based TYLCV molecular markers by response surface methodology. Gene 785: 145606.
    LeBlanc J. G., Juarez del V. M., Laino J. E., Savoy de G., Sinderen D. V., Taranto M. P., Valdez G. F. D., Vannini V. 2011. B-Group vitamin production by lactic acid bacteria– current knowledge and potential applications. J. Appl. Microbiol 111: 1297-1309.
    Liao N., Jin H., Li H., Pang B., Shao D., Shi J., Xu X., Yan L. 2020. Potential of lactic acid bacteria derived polysaccharides for the delivery and controlled release of oral probiotics. Journal of Controlled Release 323: 110-124.
    Li O., Liu A., Lu C., Jiang X. H., Qian C. D., Wang P. M., Wu X. C., Zheng D. Q. 2014a. Increasing viscosity and yields of bacterial exopolysaccharides by repeatedly exposing strains to ampicillin. Carbohydrate Polymers 110: 203-208.
    Li S., Huang R., Shah N. P., Tao X., Wei H., Xiong Y. 2014b. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. Journal of Dairy Science 97: 7334-7343.
    Li X. W., Liu K., Liu Q. M., Luo J. P., Lv S., Pan L. H., Shi T. T., Zha X. Q. 2020. Exopolysaccharides from yoghurt fermented by Lactobacillus paracasei: Production, purification and its binding to sodium caseinate. Food Hydrocolloids 102: 105635.
    Liu Z., Qiu L., Tao X., Wei H., Xiongpeng X., Zhang F., Zhang Z. 2017. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. Journal of Dairy Science 100: 6895-6905.
    López-Martínez M. I., Miguel M., Moreno-Fernández S. 2021. Development of functional ice cream with egg white hydrolysates. International Journal of Gastronomy and Food Science 15: 100334.
    Malang S. K., Lacroix C., Maina N. H., Schwab C., Tenkanen M. 2015. Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiology 46: 418-427.
    Mattarelli P., Sgorbati B. 2018. Chapter 5-Chemotaxonomic Features in the Bifidobacteriaceae Family. The Bifidobacteria and Related Organisms 99-114.
    Michael G. 2019. Fermented Foods. Food Microbiology, John Wiley & Sons, Ltd P.855-900. U.S.A.
    Moradi M., Guimarães J. T., Molaei R. 2021. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology 143: 109722.
    Mozzi F., Oliver G., de Giori G. S., de Valdez G. F. 1995. Influence of temperature on the ezopolysaccharides thermophilic lactic acid bacteria. Milchwissenschaft 50: 80-82.
    Nambiar R. B., Jayaramudu J., Perumal A. B., Phiri G., Sadiku E. R., Sellamuthu P. S. 2018. Characterization of an exopolysaccharide produced by Lactobacillus plantarum HM47 isolated from human breast milk. Process Biochemistry 73: 15-22.
    Nami Y., Bakhshayesh R. V., Eslami S., Haghshenas B., Hejazi M. A., Jalaly H. M., Lotfi H. 2018. Novel autochthonous lactobacilli with probiotic aptitudes as a main starter culture for probiotic fermented milk. Lebensm. Wiss. Technol. 98: 85-91.
    Novik G., Astapovich N., Ryabaya N. 2007. Production of hydrolases by lactic acid bacteria and bifidobacteria and their antibiotic resistance. Appl. Biochem. Microbiol 43: 164-169.
    O'Callaghan A., Sinderen D. V. 2016. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Microbiol 7: 925.
    Ong L., Henriksson A., Shah NP. 2006. Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. International Dairy Journal, 16: 446-456.
    Patel S., Goyal A., Majumder A. 2012. Potentials of exopolysaccharides from lactic acid bacteria. Indian J. Microbiol 52: 3-12.
    Payal A., Anandharamakrishnan C., Elumalai A., Moses J. A., Senthil V. M. V. 2021. An investigation on gastric emptying behavior of apple in the dynamic digestion model ARK® and its validation using MRI of human subjects – A pilot study. Biochemical Engineering Journal 108134.
    Pereira L. M. S., Milan T. M., Tapia-Blácido D. R. 2021. Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy 151: 106166.
    Plackett R. L. and Burman J. P. 1944. The design of optimum multifactorial experiments. Biometrica 33: 305- A.325.
    Polak-Berecka M., Choma A., Cybulska J., Gamian A., Górska S., Waśko A. 2015. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydrate Polymers 117: 501-509.
    Pratama H. B., Supijo M. C., Sutopo. 2020. Experimental design and response surface method in geothermal energy: A comprehensive study in probabilistic resource assessment. Geothermics 87: 101869.
    Ruas-Madiedo P. and Reyes-Gavilán C. G. D. L. 2005. Invited Review: Methods for the screening, isolation and characterization of exopolysaccharides produced by lactic acid bacteria. Journal of Dairy Science 88: 843-856.
    Ruas-Madiedo P., Hernández-Barranco A., Margolles A., Reyes-Gavilán C. G. D. L. 2005. A Bile Salt-Resistant Derivative of Bifidobacterium animalis Has an Altered Fermentation Pattern When Grown on Glucose and Maltose. Applied and Environmental Microbiology 71: 6564-6570.
    Saadat Y. R., Gargari B. P., Khosroushahi A. Y. 2019. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers 217: 79-89.
    Samakradhamrongthai R. S., Aumpa P., Jannu T., Khawsud A., Renaldi G., Supawan T. 2021. Inulin application on the optimization of reduced-fat ice cream using response surface methodology. Food Hydrocolloids 119: 106871.
    Sarwar A., Al-Dalali S., Aziz T.,Cao Y., Chao C., Din J. U., Fatima H.Yang Z., Zhang J. 2021. Characterization of synbiotic ice cream made with probiotic yeast Saccharomyces boulardii CNCM I-745 in combination with inulin. LWT 141: 110910.
    Schmid J., Rehm B., Sieber V. 2015. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Frontiers in Microbiology 6: 496-497.
    Shah N. P. 2007. Functional cultures and health benefits. Int. Dairy J. 17:1262-1277.
    Sharma A., Ahmad T., Gupta G., Hakeem K. R., Kaur B. 2020a. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. Journal of Microbiological Methods 170: 105862.
    Sharma N., Angural S., Gupta N., Kondepudi K. K., Puri N., Rana M. 2020b. Phytase producing lactic acid bacteria: Cell factories for enhancing micronutrient bioavailability of phytate rich foods. Trends in Food Science & Technology 96: 1-12.
    Sim J. Y., Enteshari M., Martínez-Monteagudo S. I., Rathnakumar K. 2021. Hydrodynamic cavitation: Process opportunities for ice-cream formulations. Innovative Food Science & Emerging Technologies 70: 102675.
    Sindhu R. K., Choden S., Das J., Goyal A., Kumar P., Neha. 2021. Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review. Carbohydrate Polymer Technologies and Applications 2: 100044.
    Singh R. P. and Bandler D. K. 2020 Dairy product. Encyclopedia Britannica. Retrieved June 14, 2021, from the World Wide Web: https://www.britannica.com/topic/dairy-product/Ice-cream-and-other-frozen-desserts.
    Skryplonek K., Dmytrów I., Fonseca C., Gomes D., Henriques M., Mituniewicz-Małek A., Pereira C., Viegas J. 2019. Characteristics of lactose-free frozen yogurt with κ-carrageenan and corn starch as stabilizers. Journal of Dairy Science 102: 7838-7848.
    Soumya M. P. and Nampoothiri K. M. 2021. An overview of functional genomics and relevance of glycosyltransferases in exopolysaccharide production by lactic acid bacteria. International Journal of Biological Macromolecules 184: 1014-1025.
    Spector M. P. 2009. Metabolism, Central (Intermediary). Encyclopedia of Microbiology (Third Edition). 242-264.
    Terpou A., Bosnea L., Kanellaki M., Kopsahelis N., Papadaki A. 2019. Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LW T105: 242-249.
    Tian L., Duan X., Hu S., Jia J., Liu X., Tan W., Yang L., Zhang Q. 2021. Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk. Food Chemistry 341: 128163.
    U.S. Food and Drug Administration. Ice cream and frozen custard. Electronic Code of Federal Regulations §135.110. Retrieved August 20, 2021, from the World Wide Web: https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=e54b8eb5678cea336e79c0d72e07944d&mc=true&n=sp21.2.135.b&r=SUBPART&ty=HTML.
    Wang A., Li G., Wang L., Wang J., Xiao Z. 2020. Fabrication and characterization of emulsion stabilized by table egg‐yolk granules at different pH levels. J. Sci. Food Agric. 100: 1470-1478.
    Wang J., Yang Y., Yang Z., Zhao A., Zhao X. 2015. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules 74: 119-126.
    Yildiz H. and Karatas N. 2018. Microbial exopolysaccharides: Resources and bioactive properties. Process Biochemistry 72: 41-46.
    Zhang Y., Dai X., Jiang Y., Jin H., Man C. 2021. The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei. Journal of Dairy Science 104: 4023-4032.
    Zhang Z., Liu Z., Tao X., Wei H. 2016. Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydrate Polymers 153: 25-33.
    Zheng J., Felis G. E, Franz C. M A P, Gänzle M. G, Harris H. M B, Lebeer S., Mattarelli P., O'Toole P. W, Pot B., Salvetti E., Walter J., Watanabe K., Wittouck S., Wuyts S., Vandamme P. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology. 70: 2782-2858.
    Zhou Y., Cui Y., Qu X. 2019. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate Polymers 207: 317-332.
    Zhu Y., Chen S., He Y., Liu S., Pan W., Shen X., Wang X., Yin H., Zhou K., Zou L. 2019. Exopolysaccharides produced by yogurt-texture improving Lactobacillus plantarum RS20D and the immunoregulatory activity. International Journal of Biological Macromolecules 121: 342-349.

    無法下載圖示 校外公開
    2026/08/19
    QR CODE