簡易檢索 / 詳目顯示

研究生: 鐘寶惠
CHUNG, PAO-HUI
論文名稱: 應用產果香與花香之自篩酵母菌發酵脫果皮咖啡果實
Application of self-isolation yeast producing floral and fruity aromas on depulped coffee berry fermentation
指導教授: 邱秋霞
Chiu, Chiu-Hsia
郭嘉信
Guo, Jia-Hsin
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 109
語文別: 中文
論文頁數: 172
中文關鍵詞: 咖啡品質咖啡果實發酵酵母菌蜜處理SPME-GC-MS揮發性化合物
外文關鍵詞: Coffee quality, Coffee berry fermentation, Yeast, Honey-processing, SPME-GC-MS, Volatile compounds
DOI URL: http://doi.org/10.6346/NPUST202100382
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 目錄
    摘要............I
    Abstract.......III
    謝誌............V
    目錄............VI
    圖目錄...........X
    表目錄............XII
    論文中英名詞對照表.XIV
    1.前言................................1
    2.文獻回顧...........................3
    2.1咖啡..............................3
    2.1.1咖啡之歷史簡介...................5
    2.1.2咖啡樹型與品種分類...............5
    2.1.2.1阿拉比卡 (Arabica)............7
    2.1.2.2羅布斯塔 (Robusta)............7
    2.1.2.3賴比瑞亞 (Liberica)............8
    2.1.3咖啡於世界及台灣之分布............9
    2.1.4咖啡之天然生物活性物質............15
    2.1.4.1生物鹼........................15
    2.1.4.2多酚類........................18
    2.1.4.3雙萜類........................23
    2.2咖啡之加工-從果實到咖啡烘焙豆.......26
    2.3咖啡香氣成分之生成.................34
    2.3.1咖啡豆於烘焙期間之香氣生成........35
    2.3.2提升咖啡品質之香氣物質及生成來源...36
    2.3.3 咖啡加工處理過程之香氣生成........37
    2.4咖啡豆於乾燥過程對咖啡品質之影響.....41
    2.5咖啡感官品評制度....................42
    2.6咖啡安全性..........................43
    3.材料與方法...........................44
    3.1實驗設計............................44
    3.1.1菌株分離及篩選.....................45
    3.1.2不同菌株發酵脫果皮咖啡果實生產香氣成分之最佳條件
    探討...............................................46
    3.1.3未發酵脫果皮咖啡果實與自然發酵脫果皮咖啡果實之
    香氣成分探討.......................................47
    3.1.4乾燥咖啡豆之最適條件探討.......................48
    3.1.5脫果皮咖啡果實接種酵母菌之試驗型生產實驗........50
    3.1.6酵母菌對脫果皮咖啡果實產生香氣之影響度試驗......51
    3.1.7酵母菌接種於脫果皮咖啡果實之先導型工廠試驗......53
    3.1.8酵母菌發酵咖啡烘焙豆及市售咖啡烘焙豆之香氣化合物
    比較..............................................54
    3.2實驗材料........................................55
    3.2.1試藥..........................................55
    3.2.2培養基........................................57
    3.2.3儀器設備......................................57
    3.3原料............................................59
    3.3.1脫果皮咖啡果實來源.................................................59
    3.4實驗菌株.........................................59
    3.4.1分離及篩選......................................59
    3.4.2菌株之選定......................................61
    3.4.2.1菌株之產果香及花香能力試驗......................61
    3.4.2.2酵母菌發酵脫果皮咖啡果實溫度之試驗...............62
    3.4.3菌株保存.........................................63
    3.4.4菌株之鑑定.......................................63
    3.4.5酵母菌菌株之型態及大小測定.........................63
    3.4.6酵母菌菌株之生長曲線試驗...........................65
    3.5分析項目及方法......................................65
    3.5.1一般成分分析......................................65
    3.5.1.1水分測定........................................65
    3.5.1.2粗脂肪測定......................................66
    3.5.1.3粗蛋白測定......................................66
    3.5.1.4灰分測定........................................68
    3.5.1.5碳水化合物測定..................................68
    3.5.2香氣成分之分析....................................68
    3.5.2.1香氣成分之萃取...................................68
    3.5.2.2氣相層析質譜儀之分析條件..........................71
    3.5.5.3香氣成分之鑑定...................................71
    3.5.3 pH值之測定........................................71
    3.5.4有機酸含量之測定...................................72
    3.5.5總酵母菌菌數之測定.................................73
    3.5.6咖啡烘焙豆之烘焙條件設定............................74
    3.5.6.1全熱風烘豆機分析條件:.............................74
    3.5.7赭麴毒素A之測定....................................76
    3.5.8感官品評試驗......................................76
    3.5.8.1精品咖啡協會咖啡杯測之規範.......................76
    3.6統計分析...........................................78
    4.結果與討論..........................................79
    4.1脫果皮咖啡果實與咖啡烘焙豆之一般成分分析.............79
    4.2未發酵與自然發酵之脫果皮咖啡果實香氣分析與比較.......81
    4.3酵母菌菌株之分離及篩選.............................86
    4.4酵母菌菌株之選定..................................86
    4.4.1酵母菌菌株進行產果香及花香能力之篩選..............86
    4.4.2酵母菌菌株進行脫果皮咖啡果實最適發酵條件之試驗.....94
    4.5菌種鑑定.........................................100
    4.6酵母菌菌株之外觀型態特徵分析.......................100
    4.7酵母菌菌株之生長曲線...............................105
    4.8脫果皮咖啡果實中酵母菌菌株生長測定及探討不同菌株於
    發酵脫果皮咖啡果實上對風味之影響.......................108
    4.9脫果皮咖啡果實及咖啡發酵豆之pH值及有機酸含量之
    探討................................................114
    4.10咖啡豆最適乾燥條件之探討..........................117
    4.11咖啡烘焙豆赭麴毒素A之試驗.........................121
    4.12先導型工廠試驗與試驗型生產之咖啡烘焙豆香氣成分分析
    之探討..............................................123
    4.13酵母菌發酵之咖啡烘焙豆與市售蜜處理咖啡烘焙豆之香氣
    化合物..............................................125
    4.14咖啡烘焙豆香氣化合物分析之穩定性..................129
    4.15咖啡之感官品評試驗...............................132
    4.16咖啡有機酸和香氣成分化合物與感官品評之相關性分析....136
    5.結論..............................................141
    6.參考文獻..........................................144
    7.附錄..............................................162

    6. 參考文獻

    中華民國國家標準CNS。1984。食品中水分之檢驗方法,總號5033,類號N6114。經濟部標準檢驗局。
    中華民國國家標準CNS。2005。食品中粗脂肪之檢驗方法,總號5036,類號N6117。經濟部標準檢驗局。
    中華民國國家標準CNS。2005。食品中粗蛋白質之檢驗方法,總號5035,類號N6116。經濟部標準檢驗局。
    中華民國國家標準CNS。2005。食品中粗灰分之檢驗方法,總號5034,類號N6115。經濟部標準檢驗局。
    行政院農委會農委會-農情報告資源網。2021年4月19日,取自: https://agr.afa.gov.tw/afa/afa_frame.jsp
    行政院農委會農糧署-農業統計資料查詢。2021年4月19日,取自: https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx
    林駿奇、蔡恕仁、周泳成。2013。臺東地區咖啡病蟲害非農藥防治技術。 臺東市: 農業委員會臺東區農業改良場。第3-7頁。
    食品營養成分資料庫(新版) 堅果及種子類之烘焙豆(曼特寧)。衛生福利部食品藥物管理署。2020年07月18日,取自https://consumer.fda.gov.tw/Food/tfndDetail.aspx?nodeID=178&f=0&id=2012
    莊琇君。2018。 探討綠原酸咖啡對糖尿病大鼠傷口癒合之影響。私立嘉南藥理大學,台南市。
    陳銘在、王慈穗、蕭惠文、林旭陽、劉芳銘。2020。108 年度食品中真菌毒素污染監測結果分析。食品藥物研究年報。11期第116-126頁。
    黃國棟。2003。焙炒條件對咖啡豆香形成影響之研究。國立屏東科技大學食品科學系碩士論文,台灣屏東。
    蔡昆霖、詹世鴻、洪菁霞。2016。咖啡綠原酸抗動脈硬化效果之研究。行政院國家科學委員會。專題研究成果報告。編號:RW10809-16834。
    衛生福利部食品藥物管理署。2018。食品中污染物質及毒素衛生標準。107.05.08衛授食字第1071300778號令訂定發布https://www.fda.gov.tw/TC/newsContent.aspx?cid=3&id=24021
    衛生福利部食品藥物管理署 2013。食品微生物之檢驗方法-黴菌及酵母菌數之檢驗。102 .09.06部授食字第1021950329 號公告修正。
    鄭榆靜。2017。可可酒香氣成分之探討。國立屏東科技大學食品科學系所,屏東縣。
    Akiyama, M., MURAKAMI, K., IKEDA, M., IWATSUKI, K., KOKUBO, S., WADA, A., TOKUNO, K., ONISHI, M., IWABUCHI, H. and TANAKA, K. 2005. Characterization of flavor compounds released during grinding of roasted robusta coffee beans. Food Science and Technology Research 11: 298-307.
    Aristizábal-Marulanda, V., Chacón-Perez, Y. and Alzate, C. A. C. 2017. The biorefinery concept for the industrial valorization of coffee processing by-products Handbook of Coffee Processing By-Products. p.63-92: Elsevier.
    Belitz, H. D., Grosch, W. and Schieberle, P. 2009. Coffee, tea, cocoa. Food Chemistry: 938-970.
    Bertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F. and Joët, T. 2012. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry 135: 2575-2583.
    Bezerra-Bussoli, C., Baffi, M. A., Gomes, E. and Da-Silva, R. 2013. Yeast diversity isolated from grape musts during spontaneous fermentation from a Brazilian winery. Current microbiology 67: 356-361.
    Blank, I., Sen, A. and Grosch, W. 1991. Aroma impact compounds of Arabica and Robusta coffee. Qualitative and quantitative investigations. 14th International Scientific Colloquium on Coffee: 117-129.
    Bonita, J. S., Mandarano, M., Shuta, D. and Vinson, J. 2007. Coffee and cardiovascular disease: In vitro, cellular, animal, and human studies. Pharmacological Research 55: 187-198.
    Boumba, V. A., Ziavrou, K. S. and Vougiouklakis, T. 2008. Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic science international 174: 133-151.
    Bressani, A. P. P., Martinez, S. J., Evangelista, S. R., Dias, D. R. and Schwan, R. F. 2018. Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. LWT 92: 212-219.
    Bressani, A. P. P., Martinez, S. J., Sarmento, A. B. I., Borém, F. M. and Schwan, R. F. 2020. Organic acids produced during fermentation and sensory perception in specialty coffee using yeast starter culture. Food Research International 128: 108773.
    Bucheli, P. and Taniwaki, M. 2002. Research on the origin, and on the impact of post-harvest handling and manufacturing on the presence of ochratoxin A in coffee. Food Additives & Contaminants 19: 655-665.
    Bueno, M., Marrufo-Curtido, A., Carrascón, V., Fernández-Zurbano, P., Escudero, A. and Ferreira, V. 2018. Formation and accumulation of acetaldehyde and strecker aldehydes during red wine oxidation. Frontiers in chemistry 6: 20.
    Bui-Klimke, T. R. and Wu, F. 2015. Ochratoxin A and human health risk: A review of the evidence. Critical reviews in food science and nutrition 55: 1860-1869.
    Cantergiani, E., Brevard, H., Krebs, Y., Feria-Morales, A., Amado, R. and Yeretzian, C. 2001. Characterisation of the aroma of green Mexican coffee and identification of mouldy/earthy defect. European Food Research and Technology 212: 648-657.
    Capece, A. and Romano, P. 2019. Yeasts and their metabolic impact on wine flavour. Yeasts in the Production of Wine: 43-80.
    Carrau, F. M., Medina, K., Boido, E., Farina, L., Gaggero, C., Dellacassa, E., Versini, G. and Henschke, P. A. 2005. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS microbiology letters 243: 107-115.
    Çelik, D., Bayraktar, E. and Mehmetoğlu, Ü. 2004. Biotransformation of 2-phenylethanol to phenylacetaldehyde in a two-phase fed-batch system. Biochemical engineering journal 17: 5-13.
    Charrier, A. and Berthaud, J. 1985. Botanical classification of coffee Coffee. p.13-47: Springer.
    Ciaramelli, C., Palmioli, A. and Airoldi, C. 2019. Coffee variety, origin and extraction procedure: Implications for coffee beneficial effects on human health. Food Chemistry 278: 47-55.
    Cid, M. C. and de Peña, M. P. 2016. Coffee: Analysis and Composition. In Benjamin Caballero, Paul M. Finglas, & Fidel Toldrá (Eds.), Encyclopedia of Food and Health. p.225-231. Oxford: Academic Press.
    Cordente, A. G., Curtin, C. D., Varela, C. and Pretorius, I. S. 2012. Flavour-active wine yeasts. Applied microbiology and biotechnology 96: 601-618.
    Dack, R. E., Black, G. W. and Koutsidis, G. 2017. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations. Food Chemistry 232: 595-601.
    Dai, J., Li, K., Song, N., Yao, W., Xia, H., Yang, Q., Zhang, X., Li, X., Wang, Z. and Yao, L. 2020. Zygosaccharomyces rouxii, an aromatic yeast isolated from chili sauce, is able to biosynthesize 2-phenylethanol via the Shikimate or Ehrlich pathways. Frontiers in microbiology 11: 597454.
    De Castro, R. D. and Marraccini, P. 2006. Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology 18: 175-199.
    De Maria, C., Trugo, L., Neto, F. A., Moreira, R. and Alviano, C. 1996. Composition of green coffee water-soluble fractions and identification of volatiles formed during roasting. Food Chemistry 55: 203-207.
    del Rosario Brunetto, M. a., Gutiérrez, L., Delgado, Y., Gallignani, M., Zambrano, A., Gómez, Á., Ramos, G. and Romero, C. 2007. Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chemistry 100: 459-467.
    del Terra, L., Lonzarich, V., Asquini, E., Navarini, L., Graziosi, G., Liverani, F. S. and Pallavicini, A. 2013. Functional characterization of three Coffea arabica L. monoterpene synthases: Insights into the enzymatic machinery of coffee aroma. Phytochemistry 89: 6-14.
    Dias, N. d. S., Zanetti, R., Santos, M. S., Peñaflor, M. F. G. V., Broglio, S. M. F., Delabie, J. H. C. and Scharf, I. 2013. The impact of coffee and pasture agriculture on predatory and omnivorous leaf-litter ants. Journal of insect science 13.
    Dong, W., Tan, L., Zhao, J., Hu, R. and Lu, M. 2015. Characterization of fatty acid, amino acid and volatile compound compositions and bioactive components of seven coffee (Coffea robusta) cultivars grown in Hainan Province, China. Molecules 20: 16687-16708.
    Dong, W., Hu, R., Chu, Z., Zhao, J. and Tan, L. 2017. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry 234: 121-130.
    Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K. and Chu, Z. 2019. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry 272: 723-731.
    Dorfner, R., Ferge, T., Kettrup, A., Zimmermann, R. and Yeretzian, C. 2003. Real-time monitoring of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting by resonant laser ionization time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry 51: 5768-5773.
    Dryahina, K., Smith, D. and Španěl, P. 2018. Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry 32: 739-750.
    Duangjai, A., Suphrom, N., Wungrath, J., Ontawong, A., Nuengchamnong, N. and Yosboonruang, A. 2016. Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative Medicine Research 5: 324-331.
    Dunkel, M., Schmidt, U., Struck, S., Berger, L., Gruening, B., Hossbach, J., Jaeger, I. S., Effmert, U., Piechulla, B. and Eriksson, R. 2009. SuperScent—a database of flavors and scents. Nucleic Acids Research 37: D291-D294.
    Evangelista, S. R., Miguel, M. G. d. C. P., de Souza Cordeiro, C., Silva, C. F., Pinheiro, A. C. M. and Schwan, R. F. 2014a. Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process. Food microbiology 44: 87-95.
    Evangelista, S. R., Silva, C. F., da Cruz Miguel, M. G. P., de Souza Cordeiro, C., Pinheiro, A. C. M., Duarte, W. F. and Schwan, R. F. 2014b. Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Research International 61: 183-195.
    Evangelista, S. R., Miguel, M. G. d. C. P., Silva, C. F., Pinheiro, A. C. M. and Schwan, R. F. 2015. Microbiological diversity associated with the spontaneous wet method of coffee fermentation. International journal of food microbiology 210: 102-112.
    Ferruzzi, M. G. 2010. The influence of beverage composition on delivery of phenolic compounds from coffee and tea. Physiology & Behavior 100: 33-41.
    Figueroa Campos, G. A., Sagu, S. T., Saravia Celis, P. and Rawel, H. M. 2020. Comparison of Batch and Continuous Wet-Processing of Coffee: Changes in the Main Compounds in Beans, By-Products and Wastewater. Foods 9: 1135.
    Frank, O., Blumberg, S., Kunert, C., Zehentbauer, G. and Hofmann, T. 2007. Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS. Journal of Agricultural and Food Chemistry 55: 1945-1954.
    Gamero, A., Quintilla, R., Groenewald, M., Alkema, W., Boekhout, T. and Hazelwood, L. 2016. High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Food Microbiology 60: 147-159.
    Güneşer, O., Karagül-Yüceer, Y., Wilkowska, A. and Kregiel, D. 2016. Volatile metabolites produced from agro-industrial wastes by Na-alginate entrapped Kluyveromyces marxianus. brazilian journal of microbiology 47: 965-972.
    Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P. and Schorr-Galindo, S. 2007. Impact of “ecological” post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. Journal of Food Composition and Analysis 20: 289-296.
    Guercia, E., Berti, F., Navarini, L., Demitri, N. and Forzato, C. 2016. Isolation and characterization of major diterpenes from C. canephora roasted coffee oil. Tetrahedron: Asymmetry 27: 649-656.
    Hazelwood, L. A., Daran, J.-M., Van Maris, A. J., Pronk, J. T. and Dickinson, J. R. 2008. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Applied and environmental microbiology 74: 2259-2266.
    Hirakawa, N., Okauchi, R., Miura, Y. and Yagasaki, K. 2005. Anti-invasive activity of niacin and trigonelline against cancer cells. Bioscience, biotechnology, and biochemistry 69: 653-658.
    Holscher, W. and Steinhart, H. 1995. Aroma compounds in green coffee. In George Charalambous (Ed.), Developments in Food Science. Vol. 37, p.785-803: Elsevier.
    Holt, S., Miks, M. H., de Carvalho, B. T., Foulquié-Moreno, M. R. and Thevelein, J. M. 2019. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS microbiology reviews 43: 193-222.
    Huch, M. and Franz, C. M. A. P. 2015. 21 - Coffee: fermentation and microbiota. In Wilhelm Holzapfel (Ed.), Advances in Fermented Foods and Beverages. p.501-513: Woodhead Publishing.
    Hu, K., Jin, G.-J., Mei, W.-C., Li, T. and Tao, Y.-S. 2018. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food chemistry 239: 495-501.
    International Coffee Organization. 2021. Historical Data on the Global Coffee Trade. from https://www.ico.org/new_historical.asp?section=Statistics
    Jham, G. N., Fernandes, S. A., Garcia, C. F. and Silva, A. A. d. 2002. Comparison of GC and HPLC for the quantification of organic acids in coffee. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques 13: 99-104.
    Khosravi, F., Iranmanesh, B. and Olia, S. S. S. J. 2015. Determination of Organic Acids in Fruit juices by UPLC. International Journal of Life Sciences 9: 41-44.
    Kim, H. G., Hwang, Y. P., Han, E. H., Choi, J. H., Kwon, K.-i., Chung, Y. C., Jeong, M. H., Jeong, T. C., Kang, W. and Jeong, H. G. 2012. The coffee diterpene kahweol inhibits metastasis by modulating expressions of MMPs and VEGF via STAT3 inactivation. Food Chemistry 133: 1521-1529.
    Kim, J. Y., Jung, K. S. and Jeong, H. G. 2004. Suppressive effects of the kahweol and cafestol on cyclooxygenase‐2 expression in macrophages. FEBS letters 569: 321-326.
    Kitzberger, C. S. G., dos Santos Scholz, M. B., Pereira, L. F. P., Vieira, L. G. E., Sera, T., Silva, J. B. G. D. and de Toledo Benassi, M. 2013. Diterpenes in green and roasted coffee of Coffea arabica cultivars growing in the same edapho-climatic conditions. Journal of Food Composition and Analysis 30: 52-57.
    Koffi, O., Samagaci, L., Goualie, B. and Niamke, S. 2017. Diversity of yeasts involved in cocoa fermentation of six major cocoa-producing regions in Ivory Coast. Eur Sci J 13: 496-516.
    Kruis, A. J., Bohnenkamp, A. C., Patinios, C., van Nuland, Y. M., Levisson, M., Mars, A. E., van den Berg, C., Kengen, S. W. and Weusthuis, R. A. 2019. Microbial production of short and medium chain esters: enzymes, pathways, and applications. Biotechnology advances 37: 107407.
    Ky, C. L., Louarn, J., Dussert, S., Guyot, B., Hamon, S. and Noirot, M. 2001. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chemistry 75: 223-230.
    Landaud, S., Latrille, E. and Corrieu, G. 2001. Top pressure and temperature control the fusel alcohol/ester ratio through yeast growth in beer fermentation. Journal of the Institute of Brewing 107: 107-117.
    Laukalēja, I. and Krūma, Z. 2018. Quality of specialty coffee: balance between aroma, flavour and biologically active compound composition. Research For Rural Development 1: 240-247.
    Lee, K. G. and Shibamoto, T. 2002. Analysis of volatile components isolated from Hawaiian green coffee beans (Coffea arabica L.). Flavour and fragrance journal 17: 349-351.
    Lee, L. W., Cheong, M. W., Curran, P., Yu, B. and Liu, S. Q. 2015. Coffee fermentation and flavor–An intricate and delicate relationship. Food Chemistry 185: 182-191.
    Lee, L. W., Cheong, M. W., Curran, P., Yu, B. and Liu, S. Q. 2016a. Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: I. Green coffee. Food Chemistry 211: 916-924.
    Lee, L. W., Cheong, M. W., Curran, P., Yu, B. and Liu, S. Q. 2016b. Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: II. Effects of different roast levels. Food Chemistry 211: 925-936.
    Lee, L. W., Tay, G. Y., Cheong, M. W., Curran, P., Yu, B. and Liu, S. Q. 2017a. Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: I. Green coffee. LWT 77: 225-232.
    Lee, L. W., Tay, G. Y., Cheong, M. W., Curran, P., Yu, B. and Liu, S. Q. 2017b. Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: II. Roasted coffee. LWT 80: 32-42.
    Maicas, S. and Mateo, J. J. 2005. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review. Applied microbiology and biotechnology 67: 322-335.
    Martin, V., Valera, M. J., Medina, K., Boido, E. and Carrau, F. 2018. Oenological impact of the Hanseniaspora/Kloeckera yeast genus on wines—a review. Fermentation 4: 76.
    Mathieu, F., Malosse, C., Cain, A. h. and Frérot, B. 1996. Comparative headspace analysis of fresh red coffee berries from different cultivated varieties of coffee trees. Journal of High Resolution Chromatography 19: 298-300.
    Molina, A. M., Swiegers, J. H., Varela, C., Pretorius, I. S. and Agosin, E. 2007. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Applied microbiology and biotechnology 77: 675-687.
    Montavon, P., Mauron, A.-F. and Duruz, E. 2003. Changes in green coffee protein profiles during roasting. Journal of Agricultural and Food Chemistry 51: 2335-2343.
    Moon, J. K. and Shibamoto, T. 2009. Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans. Journal of Agricultural and Food Chemistry 57: 5823-5831.
    Mori, A. L. B., Kalschne, D. L., Ferrão, M. A. G., da Fonseca, A. F. A., Ferrão, R. G. and de Toledo Benassi, M. 2016. Diterpenes in Coffea canephora. Journal of Food Composition and Analysis 52: 52-57.
    Napolitano, A., Fogliano, V., Tafuri, A. and Ritieni, A. 2007. Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. Journal of Agricultural and Food Chemistry 55: 10499-10504.
    Ong, P. K. and Acree, T. E. 1999. Similarities in the aroma chemistry of Gewürztraminer variety wines and lychee (Litchi chinesis Sonn.) fruit. Journal of Agricultural and Food Chemistry 47: 665-670.
    Ouattara, H. G. and Niamké, S. L. 2021. Mapping the functional and strain diversity of the main microbiota involved in cocoa fermentation from Cote d’Ivoire. Food microbiology 98: 103767.
    Papalexandratou, Z., Lefeber, T., Bahrim, B., Lee, O. S., Daniel, H.-M. and De Vuyst, L. 2013. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food microbiology 35: 73-85.
    Pereira, G. V. M., Soccol, V. T., Pandey, A., Medeiros, A. B. P., Andrade Lara, J. M. R., Gollo, A. L. and Soccol, C. R. 2014. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International journal of food microbiology 188: 60-66.
    Pereira, G. V. M., Neto, E., Soccol, V. T., Medeiros, A. B. P., Woiciechowski, A. L. and Soccol, C. R. 2015. Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Research International 75: 348-356.
    Pereira, G. V. M., de Carvalho Neto, D. P., Medeiros, A. B. P., Soccol, V. T., Neto, E., Woiciechowski, A. L. and Soccol, C. R. 2016. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on‐farm processing. International journal of food science & technology 51: 1689-1695.
    Pereira, G. V. M., Carvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S., Medeiros, A. B. P., Vandenberghe, L. P. S. and Soccol, C. R. 2019. Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry 272: 441-452.
    Perrone, D., Donangelo, C. M. and Farah, A. 2008. Fast simultaneous analysis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatography–mass spectrometry. Food Chemistry 110: 1030-1035.
    Petrovici, A. R. and Ciolacu, D. E. 2018. Natural flavours obtained by microbiological pathway generation of aromas and flavours. IntechOpen.
    Pezzopane, J. R. M., Pedro Júnior, M. J., Thomaziello, R. A. and Camargo, M. B. P. d. 2003. Coffee phenological stages evaluation scale. Bragantia 62: 499-505.
    Pires, E. J., Teixeira, J. A., Brányik, T. and Vicente, A. A. 2014. Yeast: the soul of beer’s aroma- a review of flavour-active esters and higher alcohols produced by the brewing yeast. Applied microbiology and biotechnology 98: 1937-1949.
    Poltronieri, P. and Rossi, F. 2016. Challenges in specialty coffee processing and quality assurance. Challenges 7: 19.
    Poyraz, İ. E., ÖZTÜRK, N., KIYAN, H. T. and DEMİRCİ, B. 2016. Volatile compounds of Coffea arabica L. green and roasted beans. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi-C Yaşam Bilimleri Ve Biyoteknoloji 5: 31-35.
    Procida, G., Lagazio, C., Cateni, F., Zacchigna, M. and Cichelli, A. 2020. Characterization of Arabica and Robusta volatile coffees composition by reverse carrier gas headspace gas chromatography–mass spectrometry based on a statistical approach. Food Science and Biotechnology 29: 1319-1330.
    Ramírez-Castrillón, M., Usman, L. M., Silva-Bedoya, L. M. and Osorio-Cadavid, E. 2019. Dominant yeasts associated to mango (Mangifera indica) and rose apple (Syzygium malaccense) fruit pulps investigated by culture-based methods. Anais da Academia Brasileira de Ciências 91: e20190052.
    Rao, L. J. M. and Ramalakshmi, K. 2011. Recent trends in soft beverages. CRC Press.
    Ruth, J. H. 1986. Odor thresholds and irritation levels of several chemical substances: a review. American Industrial Hygiene Association Journal 47: A-142-A-151.
    Saerens, S. M., Delvaux, F. R., Verstrepen, K. J. and Thevelein, J. M. 2010. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbial biotechnology 3: 165-177.
    Samanidou, V. F. 2015. Determination of polyphenols and major purine alkaloids in coffee: An overview Coffee in Health and Disease Prevention. p.971-981: Elsevier.
    Schillinger, U., Ban-Koffi, L. and Franz, C. 2010. Tea, coffee and cacao Fermented Foods and Beverages of the World, eds JP Tamang, and K. Kailasapathy (New York, NY: CRC Press, Taylor and Francis Group). p.353-375.
    Scholz, M. B. d. S., Pagiatto, N. F., Kitzberger, C. S., Pereira, L. F. P., Davrieux, F., Charmetant, P. and Leroy, T. 2014. Validation of near-infrared spectroscopy for the quantification of cafestol and kahweol in green coffee. Food Research International 61: 176-182.
    Silva, C. F., Batista, L. R., Abreu, L. M., Dias, E. S. and Schwan, R. F. 2008. Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food microbiology 25: 951-957.
    Smith, R. F. 1985. A history of coffee Coffee. p.1-12: Springer.
    Somporn, C., Kamtuo, A., Theerakulpisut, P. and Siriamornpun, S. 2011. Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor). International journal of food science & technology 46: 2287-2296.
    Sorsa, K., Cafaggi, F., Iamiceli, P., Ferrari, C., Swensson, L. and Law, S. 2016. Transnational private regulation, system level innovations and supply chain governance in the coffee sector: Evidence from Brazil, Italy and Finland. 93-114.
    Southard, A. E. 1918. The story of Abyssinia's coffees. The tea & coffee trade journal 34: 212-215.
    Specialty Coffee Association. 2019. Cupping. from https://sca.coffee/
    Speer, K. and Kölling-Speer, I. 2006. The lipid fraction of the coffee bean. Brazilian Journal of Plant Physiology 18: 201-216.
    Stalmach, A., Mullen, W., Nagai, C. and Crozier, A. 2006. On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed, paper-filtered coffee. Brazilian Journal of Plant Physiology 18: 253-262.
    Steen, I., Waehrens, S. S., Petersen, M. A., Münchow, M. and Bredie, W. L. 2017. Influence of serving temperature on flavour perception and release of Bourbon Caturra coffee. Food Chemistry 219: 61-68.
    Sttela, D., Pedro, D., Gerson, S. and Eder, P. 2015. Post-harvest effects on beverage quality and physiological performance of coffee beans. African Journal of Agricultural Research 10: 1457-1466.
    Swangkeaw, J., Vichitphan, S., Butzke, C. E. and Vichitphan, K. 2011. Characterization of β-glucosidases from Hanseniaspora sp. and Pichia anomala with potentially aroma-enhancing capabilities in juice and wine. World Journal of Microbiology and Biotechnology 27: 423-430.
    Teketay, D. 1999. History, botany and ecological requirements of coffee. Walia 20: 28-50.
    Tufariello, M., Fragasso, M., Pico, J., Panighel, A., Castellarin, S. D., Flamini, R. and Grieco, F. 2021. Influence of Non-Saccharomyces on Wine Chemistry: A Focus on Aroma-Related Compounds. Molecules 26: 644.
    Vilela, D. M., Pereira, G. V. d. M., Silva, C. F., Batista, L. R. and Schwan, R. F. 2010. Molecular ecology and polyphasic characterization of the microbiota associated with semi-dry processed coffee (Coffea arabica L.). Food microbiology 27: 1128-1135.
    Wang, C., Sun, J., Lassabliere, B., Yu, B. and Liu, S. Q. 2020a. Coffee flavour modification through controlled fermentations of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part I. Effects from individual yeasts. Food Research International 136: 109588.
    Wang, C., Sun, J., Lassabliere, B., Yu, B. and Liu, S. Q. 2020b. Coffee flavour modification through controlled fermentation of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part II. Mixed cultures with or without lactic acid bacteria. Food Research International 136: 109452.
    Weckerle, B., Toth, G. and Schreier, P. 2003. Linalool disaccharides as flavour precursors from green coffee beans (Coffea arabica). European Food Research and Technology 216: 6-10.
    Wintgens, J. 2009. Factors influencing the quality of green coffee. Coffee: growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers: 797-817.
    Wong, K. H., Abdul Aziz, S. and Mohamed, S. 2008. Sensory aroma from Maillard reaction of individual and combinations of amino acids with glucose in acidic conditions. International journal of food science & technology 43: 1512-1519.
    Xiang, X. F., Lan, Y. B., Gao, X. T., Xie, H., An, Z. Y., Lv, Z. H., Duan, C. Q. and Wu, G. F. 2020. Characterization of odor-active compounds in the head, heart, and tail fractions of freshly distilled spirit from Spine grape (Vitis davidii Foex) wine by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Food Research International 137: 109388.
    Xu, D., Zhang, H., Xi, J., Jin, Y., Chen, Y., Guo, L., Jin, Z. and Xu, X. 2020. Improving bread aroma using low-temperature sourdough fermentation. Food Bioscience 37: 100704.
    Yisak, H., Redi-Abshiro, M. and Chandravanshi, B. S. 2018. Selective determination of caffeine and trigonelline in aqueous extract of green coffee beans by FT-MIR-ATR spectroscopy. Vibrational Spectroscopy 97: 33-38.
    Zamora, R., Gallardo, E. and Hidalgo, F. J. 2007. Strecker degradation of phenylalanine initiated by 2, 4-decadienal or methyl 13-oxooctadeca-9, 11-dienoate in model systems. Journal of Agricultural and Food Chemistry 55: 1308-1314.
    Zhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S. and Wang, Y. 2017. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical reviews in food science and nutrition 57: 1239-1255.
    Zhang, S. J., De Bruyn, F., Pothakos, V., Contreras, G. F., Cai, Z., Moccand, C., Weckx, S. and De Vuyst, L. 2019. Influence of various processing parameters on the microbial community dynamics, metabolomic profiles, and cup quality during wet coffee processing. Frontiers in microbiology 10: 2621.

    無法下載圖示 校外公開
    2026/08/19
    QR CODE