簡易檢索 / 詳目顯示

研究生: 鍾尚汶
Chung, Shang-Wen
論文名稱: 研究紅豆蛋白的萃取條件及其加工特性
Study on the extraction conditions and processing characteristics of adzuki bean (Vigna angularis) protein
指導教授: 林貞信
Lin, Jenshinn
朱永麟
Chu, Yung-Lin
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 紅豆紅豆蛋白永續食品消費鹼萃取等電沉澱功能特性
外文關鍵詞: adzuki bean, adzuki bean protein, sustainable food consumption, alkali extraction-isoelectric precipitation, functional properties
DOI URL: http://doi.org/10.6346/NPUST202100402
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 世界人口總數年年攀升,為了應付人類龐大的糧食需求,農業、畜牧業、漁業的增擴皆對自然環境帶來一定的負荷,其中肉類之飲食要比蔬食飲食排放更多的溫室氣體,因此開發組織化植物蛋白(Texturized Vegetable Protein;TVP)為作為永續食品消費之重要目標之一。
    本研究以紅豆做為原料,使用鹼萃取等電沉澱法萃取蛋白質,使用冷凍乾燥處理不同粉水比(1:10、1:20)和酸鹼值(pH 8.0、pH 9.0、pH 10.0)萃取而得之蛋白後,分析粉水比及酸鹼值對蛋白質萃取率、純度、色澤、保水、保油、乳化及發泡性質之影響,經過數據分析後確立最適之萃取條件為pH 10.0、粉水比1:20,此時具有最高之蛋白質萃取率84.89%;以最適之萃取條件進行萃取,並使用低溫噴霧乾燥進行量化生產,分析噴霧乾燥紅豆蛋白、商業性蛋白及同萃取條件之冷凍乾燥紅豆蛋白的基本成分及蛋白質功能特性。在噴霧乾燥試驗中,噴霧乾燥紅豆蛋白之保水能力6.42 g/g顯著高於冷凍乾燥紅豆蛋白2.88 g/g,保油能力則相反分別為3.15 g/g及4.23 g/g,乳化活性結果中噴霧乾燥紅豆蛋白顯著高於冷凍乾燥紅豆蛋白,乳化穩定性結果則無顯著差異,發泡能力兩者間並無顯著之差異,而發泡穩定性則為噴霧乾燥紅豆蛋白顯著高於冷凍乾燥紅豆蛋白。

    The total population of the world is increasing year by year. Human's huge food demand has increased the agriculture, animal husbandry, and fishery industries and caused harm to the natural environment. In particular, a meat-based diet emits more greenhouse gases than a vegetable-based diet. Therefore, the development of Texturized Vegetable Protein (TVP) is one of the important goals for sustainable food consumption.
    In this study, adzuki bean was used as raw material, and the protein of it was extracted by alkali extraction-isoelectric precipitation method. In this study, adzuki bean was used as raw material, and the protein of it was extracted by alkali extraction-isoelectric precipitation method. Freeze-dry the protein extracted with different flour water ratio (1:10, 1:20) and pH value (8.0, 9.0, 10.0). Analyze the influence of flour water ratio and pH value on protein yield, purity, color, water-holding capacity, oil-holding capacity, emulsifying and foaming properties. It is established that the optimal extraction conditions are pH 10.0, flour water ratio 1:20 after statistical analysis. This condition has the highest protein extraction rate of 84.89%. Then use this extraction condition to extract the adzuki bean protein, and use low-temperature spray drying for quantitative production. Analyze the components and protein functional properties of spray-drying adzuki bean protein, commercial protein, and freeze-dried adzuki bean protein under the same extraction conditions. In the spray drying test, the water-holding capacity of spray-drying adzuki bean protein (6.42 g/g) was significantly higher than that of freeze-drying adzuki bean protein (2.88 g/g), while the oil-holding capacity was 3.15 g/g and 4.23 g/g, respectively. In the results of emulsifying test, spray-drying adzuki bean protein was significantly higher than freeze-drying adzuki bean protein, and there was no significant difference in the results of emulsification stability. There is no significant difference in foaming capacity between the two, and the foaming stability is that spray-drying adzuki bean protein is significantly higher than freeze-drying adzuki bean protein.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VIII
    表目錄 IX

    第1章 前言 1
    第2章 文獻回顧 2
    2.1 肉類似物 2
    2.2 植物性蛋白 4
    2.2.1 植物性蛋白的來源 4
    2.2.2 植物性蛋白質萃取方法 4
    2.3 紅豆 7
    2.3.1 紅豆之簡介 7
    2.3.2 紅豆之結構 7
    2.3.3 紅豆之機能性 9
    2.3.4 紅豆營養成分 10
    2.3.5 紅豆蛋白 10
    2.3.5.1 白蛋白 10
    2.3.5.2 球蛋白 10
    2.3.6 蛋白質特性 13
    2.4 製粉技術 14
    2.4.1 冷凍乾燥 14
    2.4.2 噴霧乾燥 16
    第 3 章 材料與方法 21
    3.1 實驗設計 21
    3.1.1 冷凍乾燥法製備蛋白粉試驗 24
    3.1.2 噴霧乾燥法製備蛋白粉試驗 24
    3.2 實驗原料 25
    3.3 實驗設備 26
    3.4 測定項目及分析方法 27
    3.4.1 一般組成分分析 27
    3.4.1.1 水分含量 27
    3.4.1.2 灰分含量 27
    3.4.1.3 粗蛋白含量 28
    3.4.1.4 粗脂肪含量 29
    3.4.1.5 總碳水化合物含量 29
    3.4.1.6 色澤 29
    3.4.2 蛋白質理化性質分析 30
    3.4.2.1 保水能力測試 30
    3.4.2.2 保油能力測試 30
    3.4.2.3 蛋白質溶解度測定 30
    3.4.2.4 乳化性及乳化穩定性測定 31
    3.4.2.5 發泡性及發泡穩定性測定 32
    3.4.3 實驗數據整理及統計分析 32
    第 4 章 結果與討論 33
    4.1 冷凍乾燥法製備蛋白粉 33
    4.1.1 基本成分分析 33
    4.1.2 紅豆蛋白產率及純度 35
    4.1.3 色澤分析 39
    4.1.4 保水能力及保油能力測試 42
    4.1.5 乳化活性及乳化穩定性 44
    4.1.6 發泡能力及發泡穩定性 47
    4.2 噴霧乾燥法製備蛋白粉 50
    4.2.1 基本成分分析 50
    4.2.2 色澤分析 52
    4.2.3 保水能力及保油能力測試 55
    4.2.4 蛋白質溶解度 57
    4.2.5 乳化活性及乳化穩定性 59
    4.2.5.1 乳化活性 59
    4.2.5.2 乳化穩定性 62
    4.2.6 發泡能力及 發泡穩定性 65
    第 5 章 結論與建議 68
    參考文獻 71
    作者簡介 77

    張建智。2017。國產單軸擠壓裝置不同模具擠壓加工脫脂大豆粉之研究。國立屏東科技大學食品科學系碩士學位論文。
    陳經學。2020。豌豆蛋白的分離及其加工上特性的研究。國立屏東科技大學食品科學系碩士學位論文。
    馮培格。2009。利用大豆萃取物粉對組織化大豆蛋白物理與機能性質之影響。國立屏東科技大學食品科學系碩士學位論文。
    趙亮瑜。2018。添加不同膠對組織化大豆蛋白之理化性質的影響。國立屏東科技大學食品科學系碩士學位論文。
    蔡寬慈。2020。白芝麻蛋白質的萃取與功能特性之探討。國立屏東科技大學食品科學系碩士學位論文。
    藍敬順。2011。大豆分離蛋白、米穀粉與澱粉對組織化全脂大豆蛋白品質之影響。國立屏東科技大學食品科學系碩士學位論文。
    Alhajj, N., O’Reilly, N. J., & Cathcart, H. (2021). Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. Powder Technology, 384, 313–331.
    Arntfield, S. D., & Maskus, H. D. (2011). Peas and other legume proteins. In Handbook of Food Proteins (pp. 233–266).
    Assegehegn, G., Brito-de la Fuente, E., Franco, J. M., & Gallegos, C. (2019). The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance. Journal of Pharmaceutical Sciences, 108(4), 1378–1395.
    Awika, J. M., & Duodu, K. G. (2017). Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. Journal of Functional Foods, 38, 686–697.
    Barac, M., Cabrilo, S., Pesic, M., Stanojevic, S., Zilic, S., Macej, O., & Ristic, N. (2010). Profile and Functional Properties of Seed Proteins from Six Pea (Pisum sativum) Genotypes. International Journal of Molecular Sciences, 11(12), 4973–4990
    Barac, M., Pesic, M., Stanojevic, S., Kostic, A., & Cabrilo, S. (2015). Techno-functional properties of pea (Pisum sativum) protein isolates: A review. Acta Periodica Technologica, 46, 1–18.
    Barakat, A., Jérôme, F., & Rouau, X. (2015). A Dry Platform for Separation of Proteins from Biomass-Containing Polysaccharides, Lignin, and Polyphenols. ChemSusChem, 8(7), 1161–1166.
    Bi, S., Wang, A., Lao, F., Shen, Q., Liao, X., Zhang, P., & Wu, J. (2021). Effects of frying, roasting and boiling on aroma profiles of adzuki beans (Vigna angularis) and potential of adzuki bean and millet flours to improve flavor and sensory characteristics of biscuits. Food Chemistry, 339, 127878.
    Carbonaro, M. (2006). 7S Globulins from Phaseolus vulgaris L.: Impact of Structural Aspects on the Nutritional Quality. Bioscience, Biotechnology, and Biochemistry, 70(11), 2620–2626.
    Chen, Y., Mutukuri, T. T., Wilson, N. E., & Zhou, Q. (Tony). (2021). Pharmaceutical protein solids: Drying technology, solid-state characterization and stability. Advanced Drug Delivery Reviews, 172, 211–233.
    Chéreau, D., Videcoq, P., Ruffieux, C., Pichon, L., Motte, J.-C., Belaid, S., Ventureira, J., & Lopez, M. (2016). Combination of existing and alternative technologies to promote oilseeds and pulses proteins in food applications. OCL, 23(4), D406.
    Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17(1), 25–39.
    Fu, Y., Chen, T., Chen, S. H. Y., Liu, B., Sun, P., Sun, H., & Chen, F. (2021). The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Trends in Food Science & Technology, 112, 188–200.
    Fukuda, T., Maruyama, N., Salleh, M. R. M., Mikami, B., & Utsumi, S. (2008). Characterization and Crystallography of Recombinant 7S Globulins of Adzuki Bean and Structure−Function Relationships with 7S Globulins of Various Crops. Journal of Agricultural and Food Chemistry, 56(11), 4145–4153.
    Fukuda, T., Prak, K., Fujioka, M., Maruyama, N., & Utsumi, S. (2007). Physicochemical Properties of Native Adzuki Bean ( Vigna angularis ) 7S Globulin and the Molecular Cloning of Its cDNA Isoforms. Journal of Agricultural and Food Chemistry, 55(9), 3667–3674.
    Ge, J., Sun, C.-X., Mata, A., Corke, H., Gan, R.-Y., & Fang, Y. (2021). Physicochemical and pH-dependent functional properties of proteins isolated from eight traditional Chinese beans. Food Hydrocolloids, 112, 106288.
    Han, K.-H., Kitano-Okada, T., Seo, J.-M., Kim, S.-J., Sasaki, K., Shimada, K., & Fukushima, M. (2015). Characterisation of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity. Journal of Functional Foods, 14, 692–
    Honda, Y., Saito, Y., Mishima, T., Katsumi, N., Matsumoto, K., Enomoto, T., & Miwa, S. (2020). Characterization of physicochemical and digestive properties of starches from various “dainagon” adzuki beans (Vigna angularis) cultivated in Japan. International Journal of Biological Macromolecules, 148, 1021–1028.
    Kawahara, S., Ishihara, C., Matsumoto, K., Senga, S., Kawaguchi, K., Yamamoto, A., Suwannachot, J., Hamauzu, Y., Makabe, H., & Fujii, H. (2019). Identification and characterization of oligomeric proanthocyanidins with significant anti-cancer activity in adzuki beans (Vigna angularis). Heliyon, 5(10), e02610.
    Lam, A. C. Y., Can Karaca, A., Tyler, R. T., & Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147.
    Liang, H.-N., & Tang, C.-H. (2013). PH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33(2), 309–319.
    Maldonado-Valderrama, J., Martín-Molina, A., Martín-Rodriguez, A., Cabrerizo-Vílchez, M. A., Gálvez-Ruiz, M. J., & Langevin, D. (2007). Surface Properties and Foam Stability of Protein/Surfactant Mixtures: Theory and Experiment. The Journal of Physical Chemistry C, 111(6), 2715–2723.
    Miano, A. C., & Augusto, P. E. D. (2015). From the sigmoidal to the downward concave shape behavior during the hydration of grains: Effect of the initial moisture content on Adzuki beans (Vigna angularis). Food and Bioproducts Processing, 96, 43–51.
    Mukai, Y., & Sato, S. (2011). Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. The Journal of Nutritional Biochemistry, 22(1), 16–21.
    Nikbakht Nasrabadi, M., Sedaghat Doost, A., & Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, 106789.
    O’Sullivan, J. J., Norwood, E.-A., O’Mahony, J. A., & Kelly, A. L. (2019). Atomisation technologies used in spray drying in the dairy industry: A review. Journal of Food Engineering, 243, 57–69.
    Oliete, B., Yassine, S. A., Cases, E., & Saurel, R. (2019). Drying method determines the structure and the solubility of microfluidized pea globulin aggregates. Food Research International, 119, 444–454.
    Plietz, P., Drescher, B., & Damaschun, G. (1987). Relationship between the amino acid sequence and the domain structure of the subunits of the 11S seed globulins. International Journal of Biological Macromolecules, 9(3), 161–165.
    Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology, 75, 93–104.
    Shi, Z., Yao, Y., Zhu, Y., & Ren, G. (2017). Nutritional composition and biological activities of 17 Chinese adzuki bean (Vigna angularis) varieties. Food and Agricultural Immunology, 28(1), 78–89.
    Souza, P. F. N. (2020). The forgotten 2S albumin proteins: Importance, structure, and biotechnological application in agriculture and human health. International Journal of Biological Macromolecules, 164, 4638–4649.
    Swanson, B. G. (1990). Pea and lentil protein extraction and functionality. Journal of the American Oil Chemists’ Society, 67(5), 276–280.
    Tian, Y., Taha, A., Zhang, P., Zhang, Z., Hu, H., & Pan, S. (2021). Effects of protein concentration, pH, and NaCl concentration on the physicochemical, interfacial, and emulsifying properties of β-conglycinin. Food Hydrocolloids, 118, 106784.
    Tirgar, M., Silcock, P., Carne, A., & Birch, E. J. (2017). Effect of extraction method on functional properties of flaxseed protein concentrates. Food Chemistry, 215, 417–424.
    Tjahjadi, C., Lin, S., & Breene, W. M. (1988). Isolation and Characterization of Adzuki Bean (Vigna angularis cv Takara) Proteins. Journal of Food Science, 53(5), 1438–1443.
    Wu, G., Bai, Z., Wan, Y., Shi, H., Huang, X., & Nie, S. (2020). Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway. Food Hydrocolloids, 101, 105456.
    Xi, C., Kang, N., Zhao, C., Liu, Y., Sun, Z., & Zhang, T. (2020). Effects of pH and different sugars on the structures and emulsification properties of whey protein isolate-sugar conjugates. Food Bioscience, 33, 100507.
    Yang, X., Ren, Y., Liu, H., Huo, C., & Li, L. (2021). Differences in the physicochemical, digestion and microstructural characteristics of soy protein gel acidified with lactic acid bacteria, glucono-δ-lactone and organic acid. International Journal of Biological Macromolecules, 185, 462–470.
    Yao, Y., Xue, P., Zhu, Y., Gao, Y., & Ren, G. (2015). Antioxidant and immunoregulatory activity of polysaccharides from adzuki beans (Vigna angularis). Food Research International, 77, 251–256.
    Ye, J., Deng, L., Wang, Y., McClements, D. J., Luo, S., & Liu, C. (2021). Impact of rutin on the foaming properties of soybean protein: Formation and characterization of flavonoid-protein complexes. Food Chemistry, 362, 130238.
    Yousif, A. M., Batey, I. L., Larroque, O. R., Curtin, B., Bekes, F., & Deeth, H. C. (2003). Effect of storage of adzuki bean (Vigna angularis) on starch and protein properties. LWT - Food Science and Technology, 36(6), 601–607.

    無法下載圖示 校外公開
    2026/08/23
    QR CODE