簡易檢索 / 詳目顯示

研究生: 黃憶君
Huang, I-Chun
論文名稱: 乙二醇改質奈米零價鐵降解氯黴素
Degradation of chloramphenicol by nZVI modified with ethylene glycol
指導教授: 黃益助
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 109
語文別: 中文
論文頁數: 83
中文關鍵詞: 氯黴素奈米零價鐵乙二醇
外文關鍵詞: chloramphenicol (CAP), nZVI, ethylene glycol (EG)
DOI URL: http://doi.org/10.6346/NPUST202100409
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 氯黴素(CAP)在抑制細菌上具有好的效果,且生產成本低廉,於是被廣泛應用,但CAP對於人體健康擁有危害,因此在許多國家受到限制及控管更甚於禁止使用。奈米零價鐵(nZVI)具有高反應性、比表面積高、環境友善性、較低廉的成本、處理對象廣泛等優點,但其合成方式大多需在缺氧環境中進行,添加乙二醇(EG)能使nZVI在大氣條件下製備合成。本研究目的主要探討乙二醇改質的nZVI較傳統合成方法更具有優勢和耐久性,以及操作參數如CAP濃度、反應溫度、還原劑劑量的改變對於降解CAP之影響。結果顯示,在第0天,添加乙二醇之nZVI(S-nZVI-EG)對氯黴素的去除率為98.7 %、kobs為0.0495 min-1,傳統合成方式之nZVI(S-nZVI-N2)對氯黴素的去除率為93.7 %、kobs為0.032 min-1;經過30天的S-nZVI-EG對氯黴素的去除率降至41.1 %、kobs為0.0064 min-1,S-nZVI-N2對氯黴素的去除率僅剩5.0 %、kobs為0.0007 min-1,因此證明乙二醇改質後的nZVI不管是在降解CAP或者耐久性上皆更具有優勢。0.5 g的S-nZVI-EG能有效降解500 mg/L CAP,去除率可達到99.0 %;反應溫度從15 ℃升至35 ℃時,雖然CAP去除率可達到96.8~100 %,但35 ℃之kobs為15 ℃的2.2倍;S-nZVI-EG從0.1 g添加至0.5 g,CAP去除率從45.3 %提高至100 %,且0.5 g之kobs是0.1 g的15.1倍,證實提升反應溫度及增加劑量有利於CAP降解。

    Chloramphenicol (CAP) has a good effect on inhibiting bacteria, and the production cost is low, so it is widely used. However, CAP is harmful to human health, so it is restricted, controlled and even prohibited in many countries. Nano-scale zero valent iron (nZVI) particles possess many advantages, such as high reactivity, high specific surface area, environmental friendliness, low cost and wide range of treatment objects. But most of its synthesis methods need to be carried out in an anoxic environment, addition of ethylene glycol (EG) can make nZVI be preaped and synthesized under ambient conditions. This main objective of this study is to explore that nZVI modified by EG possess more advantages and durability than traditional synthesis methods, and the impact of changes in operating parameters such as CAP concentration, reaction temperature and reducing agent dosage on the degradation of CAP. The results show that, on day 0, the removal rate (r) of CAP by nZVI (S-nZVI-EG) modified by EG was 98.7%, and its kobs was 0.0495 min-1, the traditional synthesis method of nZVI (S-nZVI-N2) has a r of 93.7% for CAP and a kobs of 0.032 min-1. After 30 days, r of CAP by S-nZVI-EG decreased to 41.1% wirh a kobs of 0.0064 min-1, while r of CAP by S-nZVI-N2 was only 5.0% with a kobs of 0.0007 min-1. Therefore, it is proved that the EG modified nZVI has more advantages in terms of degradation of CAP and its durability. S-nZVI-EG (0.5 g) can effectively degrade 500 mg/L CAP, and the r can reach 99.0%. As the reaction temperature raised from 15℃ to 35℃, the r of CAP was 96.8-100%, but the kobs at 35℃ was 2.2 times of that at 15℃. As the addition dosage of S-nZVI-EG increased from 0.1g to 0.5g, the r of CAP raised from 45.3% to 100%, and the kobs of 0.5 g was 15.1 times as much as that of 0.1g. It is confirmed that increasing reaction temperature and dosage are beneficial for degradation of CAP.

    目錄
    摘要 I
    Abstract II
    謝誌 III
    目錄 IV
    表目錄 VI
    圖目錄 VII
    第一章 前言 1
    1.1研究動機 1
    1.2研究目的 1
    第二章 文獻回顧 2
    2.1氯黴素(Chloramphenicol, CAP) 2
    2.1.1氯黴素之特性 2
    2.1.2氯黴素之應用 2
    2.1.3氯黴素之毒性危害 3
    2.1.4相關法律規範 3
    2.1.5抗生素之處理技術 3
    2.2 奈米零價鐵 (Nanoscale zero-valent iron, nZVI) 5
    2.2.1改質方法 5
    2.3乙二醇改質nZVI之成效 7
    2.4 nZVI還原CAP機制 8
    2.5降解動力學模擬 8
    2.6活化能 9
    第三章 材料與方法 10
    3.1 研究架構 10
    3.2 實驗材料與分析設備 11
    3.2.1 藥品 11
    3.2.2 設備 11
    3.2.3 分析儀器 12
    3.2.4 實驗裝置 12
    3.2.5 氮氣箱 14
    3.3 實驗方法與步驟 14
    3.3.1 製備nZVI 14
    3.3.2 氯黴素初始濃度控制試驗 15
    3.3.3 nZVI降解氯黴素試驗 15
    3.4 品保品管 (QA/QC) 16
    3.4.1 檢量線(Calibration curve) 16
    3.4.2 方法偵測極限 (Method Detection Limit, MDL) 17
    3.4.3 重複樣品(Duplicate sample) 18
    3.4.4 查核樣品(Quality Check Sample) 18
    3.4.5 添加樣品(Spiked Sample) 18
    第四章 結果與討論 20
    4.1以XRD進行特性分析 20
    4.2以SEM-EDS進行特性分析 20
    4.2.1 三種nZVI之表面及元素組成分析 20
    4.2.2 暴露空氣第0天~第30天之nZVI元素組成分析 22
    4.3 批次試驗 23
    4.3.1 氯黴素控制試驗 23
    4.3.2 三種nZVI降解氯黴素對於耐久性比較 25
    4.3.3 S -nZVI -EG在不同操作參數對於降解CAP之影響 45
    參考文獻 55
    附錄 60

    參考文獻
    衛生福利部
    https://www.mohw.gov.tw/mp-1.html
    經濟部工業局
    https://www.moeaidb.gov.tw/ctlr?PRO=idx2015
    觀測資料查詢
    https://e-service.cwb.gov.tw/HistoryDataQuery/
    行政院農業委員會
    https://www.coa.gov.tw/index.php
    行政院環境保護署-環境檢驗所
    https://www.epa.gov.tw/niea/A048BA729D1F7D58

    陳建廷,2019,疏水性材料包覆海藻酸鈉固定奈米鈀鐵雙金屬選擇性降解四氯乙烯之研究,碩士論文,國立屏東科技大學,屏東縣。
    陳信憲,2014,電解加強分散性奈米鈀鐵複合金屬反應牆整治地下水中四氯乙烯之研究,碩士論文,國立屏東科技大學,屏東縣。
    朱冠達,2018,利用高效能液相層析串聯質譜儀偵測牛奶中氯黴素類殘留,碩士論文,大仁科技大學,屏東縣。
    張人介,2013,以監測pH、ORP及DO作為奈米零價鐵處理六價鉻廢水自動監控之研究,碩士論文,國立聯合大學,苗栗縣。
    黃秀華,2006,氣相層析質譜法偵測生物樣品中氯黴素,碩士論文,靜宜大學,台中市。
    黃郁涵,2015,重組抗-氯黴素單鏈抗體之製備與分析,碩士論文,國立中興大學,台中市。
    Bae, S., and Lee, W. ,2010, “ Inhibition of nZVI reactivity by magnetite during the reductive degradation of 1,1,1-TCA in nZVI/magnetite suspension, ” Applied Catalysis B: Environmental, 96(1), 10-17.
    Chatzitakis, A., Berberidou, C., Paspaltsis, I., Kyriakou, G., Sklaviadis, T., and Poulios, I.,2008, “Photocatalytic degradation and drug activity reduction of Chloramphenicol,”Water Research, 42(1), 386-394.
    Ehrlich, J., Bartz, Q. R., Smith, R. M., Joslyn, D. A., and Burkholder, P. R. ,1947., “Chloromycetin, a New Antibiotic From a Soil Actinomycete,” Science, 106(2757), 417.
    El-Temsah, Y. S., and Joner, E. J., 2013, “Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods, ” Chemosphere, 92(1), 131-137.
    Görmez, F., Görmez, Ö., Gözmen, B., and Kalderis, D., 2019, “Degradation of chloramphenicol and metronidazole by electro-Fenton process using graphene oxide-Fe3O4 as heterogeneous catalyst, ” Journal of Environmental Chemical Engineering, 7(2), 102990.
    Gopal, G., Sankar, H., Natarajan, C., and Mukherjee, A., 2020, “Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study,” Journal of Environmental Management, 254, 109812.
    Gottlieb, D., Carter, H. E., Legator, M., and Gallicchio, V., 1954, “The biosynthesis of chloramphenicol. I. Precursors stimulating the synthesis, ” J Bacteriol, 68(2), 243-251.
    Hu, X., Deng, Y., Zhou, J., Liu, B., Yang, A., Jin, T., and Fai Tsang, Y., 2020, “N- and O self-doped biomass porous carbon cathode in an electro-Fenton system for Chloramphenicol degradation, ”Separation and Purification Technology, 251, 117376.
    Jimenez, J. J., Arimura, G. K., Abou-Khalil, W. H., Isildar, M., and Yunis, A. A., 1987, “Chloramphenicol-Induced Bone Marrow Injury: Possible Role of Bacterial Metabolites of Chloramphenicol, ”Blood, 70(4), 1180-1185.
    Karthikeyan, P., and Meenakshi, S., 2019, “Synthesis and characterization of Zn–Al LDHs/activated carbon composite and its adsorption properties for phosphate and nitrate ions in aqueous medium, ”Journal of Molecular Liquids, 296, 111766.
    Kim, H.-S., Ahn, J.-Y., Hwang, K.-Y., Kim, I.-K., and Hwang, I., 2010, “ Atmospherically Stable Nanoscale Zero-Valent Iron Particles Formed under Controlled Air Contact: Characteristics and Reactivity, ” Environmental Science and Technology, 44(5), 1760-1766.
    Li, H., Yang, L., He, L., Ma, Y., Yan, X., Wu, L., and Zhang, Z., 2020, “Kinetics and mechanisms of chloramphenicol degradation in aqueous solutions using heat-assisted nZVI activation of persulfate, ”Journal of Molecular Liquids, 313, 113511.
    Liu, Y., and Wang, J., 2019, “Reduction of nitrate by zero valent iron (ZVI)-based materials: A review, ” Science of The Total Environment, 671, 388-403.
    Lofrano, G., Libralato, G., Adinolfi, R., Siciliano, A., Iannece, P., Guida, M., Giugni, M., Volpi Ghirardini, A., and Carotenuto, M., 2016, “Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects, ” Ecotoxicology and Environmental Safety, 123, 65-71.
    Morgada, M. E., Levy, I. K., Salomone, V., Farías, S. S., López, G., and Litter, M. I., 2009, “Arsenic (V) removal with nanoparticulate zerovalent iron: Effect of UV light and humic acids, ” Catalysis Today, 143(3), 261-268.
    Nguyen, C. H., Tran, M. L., Van Tran, T. T., and Juang, R.-S., 2021, “ Efficient removal of antibiotic oxytetracycline from water by Fenton-like reactions using reduced graphene oxide-supported bimetallic Pd/nZVI nanocomposites,” Journal of the Taiwan Institute of Chemical Engineers, 119, 80-89.
    Qiu, G., Chen, H., Srinivasa Raghavan, D. S., and Ting, Y.-P., 2021, “ Removal behaviors of antibiotics in a hybrid microfiltration-forward osmotic membrane bioreactor for real municipal wastewater treatment,” Chemical Engineering Journal, 417, 129146.
    Rajajayavel, S. R. C., and Ghoshal, S., 2015, “Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron,” Water Research, 78, 144-153.
    Ruiz-Torres, C. A., Araujo-Martínez, R. F., Martínez-Castañón, G. A., Morales-Sánchez, J. E., Guajardo-Pacheco, J. M., González-Hernández, J., Lee, T.-J., Shin, H.-S., Hwang, Y., and Ruiz, F., 2018, “Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition,” Chemical Engineering Journal, 336, 112-122.
    Shih, Y.-h., Chen, M.-y., Su, Y.-f., and Tso, C.-p., 2016, “Concurrent oxidation and reduction of pentachlorophenol by bimetallic zerovalent Pd/Fe nanoparticles in an oxic water,” Journal of Hazardous Materials, 301, 416-423.
    Stefaniuk, M., Oleszczuk, P., and Ok, Y. S., 2016, “Review on nano zerovalent iron (nZVI): From synthesis to environmental applications,” Chemical Engineering Journal, 287, 618-632.
    Su, Y.-f., Hsu, C.-Y., and Shih, Y.-h., 2012, “Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron,” Chemosphere, 88(11), 1346-1352.
    Sun, Y.-P., Li, X.-Q., Zhang, W.-X., and Wang, H. P., 2007, “A method for the preparation of stable dispersion of zero-valent iron nanoparticles, ” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308(1), 60-66.
    Tian, S., Dai, J., Jiang, Y., Chang, Z., Xie, A., He, J., Zhang, R., and Yan, Y., 2017, “Facile preparation of intercrossed-stacked porous carbon originated from potassium citrate and their highly effective adsorption performance for chloramphenicol, ”Journal of Colloid and Interface Science, 505, 858-869.
    Tran, M. L., Nguyen, C. H., Tran, T. T. V., and Juang, R.-S., 2020, “One-pot synthesis of bimetallic Pt/nZVI nanocomposites for enhanced removal of oxytetracycline: Roles of morphology changes and Pt catalysis, ” Journal of the Taiwan Institute of Chemical Engineers, 111, 130-140.
    Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Hallam, K. R., Scott, T. B., and Lieberwirth, I., 2009, “Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, ” Applied Clay Science, 43(2), 172-181.
    Woo, H., Park, J., Lee, S., and Lee, S., 2014, “Effects of washing solution and drying condition on reactivity of nano-scale zero valent irons (nZVIs) synthesized by borohydride reduction, ” Chemosphere, 97, 146-152.
    Wu, Y., Yue, Q., Ren, Z., and Gao, B., 2018, “Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of Chloramphenicol (CAP), ” Journal of Molecular Liquids, 262, 19-28.
    Xu, J., Lv, X., Li, J., Li, Y., Shen, L., Zhou, H., and Xu, X., 2012, “Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support, ” Journal of Hazardous Materials, 225-226, 36-45.
    Yang, J., Ji, G., Gao, Y., Fu, W., Irfan, M., Mu, L., Zhang, Y., and Li, A., 2020, “High-yield and high-performance porous biochar produced from pyrolysis of peanut shell with low-dose ammonium polyphosphate for chloramphenicol adsorption, ” Journal of Cleaner Production, 264, 121516.
    Yao, B., Liu, Y., and Zou, D., 2019, “Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles, ” Chemosphere, 226, 298-306.
    Zhang, J., Fu, D., Xu, Y., and Liu, C., 2010, “Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyist by response surface methodology, ”Journal of Environmental Sciences, 22(8), 1281-1289.
    Zhang, J., Zhu, Q., and Xing, Z., 2020, “Preparation of new materials by ethylene glycol modification and Al(OH)3 coating NZVI to remove sulfides in water, ” Journal of Hazardous Materials, 390, 122049.
    Zhao, C., Si, Y., Pan, B., Taha, A. Y., Pan, T., and Sun, G., 2020, “Design and fabrication of a highly sensitive and naked-eye distinguishable colorimetric biosensor for chloramphenicol detection by using ELISA on nanofibrous membranes, ” Talanta, 217, 121054.
    Zhu, F., Wu, Y., Liang, Y., Li, H., and Liang, W., 2020, “Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni, ” Chemical Engineering Journal, 389, 124276.

    無法下載圖示 校外公開
    2026/08/23
    QR CODE