簡易檢索 / 詳目顯示

研究生: 黃鈺軒
Huang, Yu-Shuan
論文名稱: 液態電漿拋光 6000系列鋁合金參數最佳化設計
Optimum Design of Parameters for Plasma Electrolytic Polishing 6000 Series Aluminum Alloy
指導教授: 陳晧隆
Chen, Hao-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程系所
Department of Mechanical Engineering
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: 液態電漿拋光鋁合金 6000系列表面粗糙度田口穩健製程設計法
外文關鍵詞: Plasma Electrolytic Polishing, Aluminum Alloy 6000 Series, Surface Roughness, Taguchi Method
DOI URL: http://doi.org/10.6346/NPUST202100427
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 6000系列鋁合金具備質輕、易加工、耐蝕性與抗氧化性佳等優點,已經廣泛被應用於機械、電機及電子產業製作機台框架或精密元件,由於應用性廣泛對此材料表面性質的要求也較高。鋁合金表面處理方法很多,隨環境保護條件升高,表面處理方法也必須符合環保條件。本研究使用液態電漿拋光方法,採用較環保的電解液,並搭配田口穩健設計L9(34)直交表及實驗分三階段進行,尋找最佳化參數組合。
    第一階段實驗以L9(34)直交表探索三種電解液於三種控制因子中找出最佳的拋光電解液。控制因子為直流電壓、拋光時間、電解液莫耳濃度、電解液種類。處理後碳酸氫鈉與檸檬酸電解液的表面粗糙度降低,在草酸電解液中,為了達到設定電壓,需要更大的電流,在電壓與電流都很大的情況並不屬於拋光,結果表面粗糙度值變大。
    第二階段實驗中,保留第一階段實驗的碳酸氫鈉與檸檬酸電解液將會產生較大電流的草酸替換成冰醋酸,並且把貢獻度最小的拋光時間替換成電解液溫度,實驗在低溫、常溫與高溫環境中電解液對拋光的影響。控制因子為直流電壓、電解液莫耳濃度、電解液種類、電解液的溫度。結果顯示冰醋酸跟草酸一樣伴隨著較大電流造成侵蝕現象,表面粗糙度值變大,而在碳酸氫鈉與檸檬酸電解液的工件表面粗糙度降低。
    第三階段實驗中,前二階段結果顯示電流會造成表面粗糙度增加,選用不會有電流產生的檸檬酸當作電解液,控制因子為直流電壓、拋光時間、電解液莫耳濃度、電解液的溫度。結果顯示NO 8,參數組合A3 B2 C1 D3之表面粗糙度改善率為17.42 %,A因子(直流電壓)之貢獻度68.83 %為最大,其後為C因子(電解液莫耳濃度)19.54 %、B因子(拋光時間)11.47 %、最後D因子(電解液溫度)貢獻度最小。經優化後參數組合A3 B2 C2 D1之表面粗糙度改善率為23.86 %與原直交表最佳組別相比,增加27 %。

    The aluminum alloy 6000 series have been widely used in machinery, electrical and electronic industries to make machine frames or precision components, that there are advantages light weight, easy processing, good corrosion resistivity and resistance to oxidation. Due to its wide range of applications, the requirement of surface property on this material is strict. There are many ways of surface treatment methods for aluminum alloys. As environmental protection conditions increase, the surface treatment methods must also comply with environmental protection conditions.
    This research uses a plasma electrolytic polishing method, apply a more environmentally friendly electrolyte, and uses Taguchi's robust design of the L9 (34) orthogonal table. The experiment is carried out in three stages to find the optimization parameter combination.
    In the first stage of the experiment, the L9 (34) orthogonal table was used to explore the three different electrolytes and find the best polishing electrolyte among the three control factors. The control factors are DC voltage, polishing time, electrolyte concentration, and electrolytic solution type. After treatment of sodium hydrogen carbonate and citric acid electrolyte solution, surface roughness is reduced. In oxalic acid electrolyte solution, to achieve the set voltage, a larger current is required. When the voltage and current are both large, it does not in the scope of polishing, and the surface roughness becomes larger.
    In the second stage of the experiment, the sodium hydrogen carbonate and citric acid electrolyte were still be used. Oxalic acid solution was be replace to glacial acetic acid that owing to it easy generates a larger current. The polishing time was be replace to electrolyte temperature. To experiment at low temperature, room temperature and high temperature environment and observe influence of electrolyte on polishing. The control factors are the DC voltage, electrolyte concentration, the type of electrolyte, and the temperature of the electrolyte. The results show that glacial acetic acid and oxalic acid with larger current will cause erosion, and the surface roughness value becomes larger, while the surface roughness of the component with sodium bicarbonate and citric acid electrolyte reduce.
    In the third stage of the experiment, above the results of two stages shown that current will increase the surface roughness. The citric acid solution does not generate current in plasma electrolytic polishing process, so it was used as main electrolyte. The control factors are DC voltage, polishing time, electrolyte concentration, and electrolyte temperature. The results shown that NO 8, the parameter combination A3 B2 C1 D3 has a surface roughness improvement 17.42%, the A factor (DC voltage) contribution rate of 68.83% is the largest, followed by the C factor (electrolytic solution concentration) 19.54%, The B factor (polishing time) is 11.47%, and the final D factor (electrolyte temperature) contributes the least. After combination of parameters optimized A3 B2 C2 D1 the surface roughness improvement rate is 23.86%, with the best group of the original orthogonal table increase of 27%.

    摘要 I
    ABSTRACT III
    謝誌 V
    目錄 VI
    表目錄 VIII
    圖目錄 IX
    第一章 緒論 1
    1.1 研究背景與動機 1
    1.2 研究目的 1
    1.3 本文架構 2
    第二章 相關理論與文獻回顧 3
    2.1 液態電漿拋光原理 3
    2.1.1 液態電漿背景介紹 3
    2.1.2 影響液態電漿拋光的關鍵參數 4
    2.1.3 電壓與電流對液態電漿拋光影響 4
    2.1.3 電解質對液態電漿拋光影響 7
    2.1.4 拋光處理時間對液態電漿拋光影響 8
    2.2 田口穩健製程設計理論 10
    2.3 表面粗糙度(線條粗糙度) 14
    2.3.1 表面粗糙度(面粗糙度) 14
    第三章 實驗設備與研究方法 16
    3.1 研究規劃及實驗流程 16
    3.1.1 液態電漿拋光之6000系列鋁合金實驗流程規劃 16
    3.2 實驗設備 18
    3.2.1 試片使用前處理 18
    3.2.2 電源供應器 19
    3.2.3低溫循環水槽冷卻系統 20
    3.2.3 表面粗糙度量測設備 21
    3.2.4 真空裝置 22
    3.3 田口穩健設計 24
    第四章 實驗結果與討論 28
    4.1 田口穩健設計之單一品質特性最佳化製程參數 28
    4.1.1表面粗糙度製程參數 28
    第五章 結論與未來展望 68
    5.1 結論 68
    5.2 未來展望 68
    參考文獻 70
    作者簡介 74

    [1]Yu huang, Chengyong wang, Feng ding, Yang yang, Tao zhang, Xiaolin he, Lijuan zheng, & Naitao li. (2021). Principle, Process, and Application of Metal Plasma Electrolytic Polishing: A Review. The International Journal of Advanced Manufacturing Technology, 114, 1893–1912.
    [2]李異,(2006),金屬表面拋光技術,化學工業出版社,北京。
    [3]Henning zeidler, Falko boettger-hiller, Jan edelmann, & Andreas schubert. (2016). Surface Finish Machining of Medical Parts Using Plasma Electrolytic Polishing. Procedia CIRP, 49, 83–87.
    [4]Duradzhi vn, Bryantsev iv, & Tokarov ak. (1979). Investigation of Erosion of the Anode under the Action of an Electrolytic Plasma on It. Elektronnaya Obrabotka Materialov, 5, 15–19.
    [5]Hans H, Eckart R Klaus R, Egbert K, Jan P (1986) Method for highly glaining power-conductive workstuffs in anodic electrolyte plasma. DD238074A1.
    [6]Stanishevsky VK, Parshuto AE, Kosobutsky AA, Semenenko LM, Tikhonovsky VN, Khlebtsevich VA, Slepnev GE (1988) Method of electrochemical machining of articles made of conducting materials, US5028304.
    [7]Kalenchukova o. v, Nagula p. k, & Tretinnikov d. l. (2015). About Changes in the Chemical Composition of the Electrolyte in the Process of Electrolytic-Plasma Treatment of Materials. Materials, Methods & Technologies, 9(1314–7269), 404–413.
    [8]Podhorský Š (2015) Utilisation of plasma discharges in electrolyte for surface finishing of stainless steels. Hochsch, Anhalt (FH).
    [9]Mihal ov, Moroz ov, Starovoytov ri, Lytovchenko sv, Mazilin ba, & Iliushyn lo. (2018). Dynamics of the Plasma Electrolytic Polishing Process of Austenitic Steel AISI 304 in a Solution of Ammonium Sulfate. Вопросы Атомной Науки и Техники, 5(1562–6016), 126–131.
    [10]Cao CB (2012) A polishing solution and polishing method for amorphous alloys, CN102453444A.
    [11]Method for Highly Glaining Power-Conductive Workstuffs in Anodic Electrolyte Plasma. (2019). PlasmaCraft. http://plasmacraft.ru/puti-snizheniya-energoemkosti.
    [12]A. yerokhin, A. pilkington, & A. matthews. (2010). Pulse Current Plasma Assisted Electrolytic Cleaning of AISI 4340 Steel. Journal of Materials Processing Technology, 210(1), 54–63.
    [13]E.v. parfenov, R.g. farrakhov, A.v. gusarov, A.v. gusarov, R.r. nevyantseva, & A. yerokhin. (2016). Electric Field Effect on Surface Layer Removal during Electrolytic Plasma Polishing. Surface and Coatings Technology, 307, 1329–1340.
    [14]Ji wang, Xue-mei zong, Jian-fei liu, & Sen feng. (2017). Influence of Voltage on Electrolysis and Plasma Polishing. Proceedings of the 2017 International Conference on Manufacturing Engineering and Intelligent Materials(2352–5401). https://doi.org/https://doi.org/10.2991/icmeim-17.2017.3.
    [15]Wang YN, Li NT, Wang Y (2016) An electrolytic plasma polishing power system and its control method. CN105827121A
    [16]Dusan vana, Stefanpodhorsky, Roland suba, & Marek hurajt. (2012). The Change of Surface Properties on Tested Smooth Stainless Steel Surfaces after Plasma Polishing. International Journal of Engineering Science Invention, 2(6), 7–11.
    [17]L n kashapov, N f kashapov, & R n kashapov. (2013). Investigation of the Influence of Plasma-Electrolytic Processing on the Surface of Austenitic Chromium-Nickel Steels. Journal of Physics: Conference Series, 479, 012003.
    [18]Ji wang, Laichun suo, Yili fu, & Lili guan. (2012). Study on Material Removal Rate of Electrolysis and Plasma Polishing. 2012 IEEE International Conference on Information and Automation, 917–922. https://doi.org/https://doi.org/10.4028/www.scientific.net/ AMR.472-475.350
    [19]Igor danilov, Matthias hackert-oschätzchen, Mike zinecker, Gunnar meichsner, Jan edelmann, & Andreas schubert. (2019). Process Understanding of Plasma Electrolytic Polishing through Multiphysics Simulation and Inline Metrology. Micromachines, 10(3), 214. https://doi.org/https://doi.org/10.3390/mi10030214
    [20]Wang, J., Suo, L. C., Guan, L. L., & Fu, Y. L. (2012). Optimization of Processing Parameters for Electrolysis and Plasma Polishing. Applied Mechanics and Materials, 217–219, 1368–1371. https://doi.org/10.4028/www.scientific.net/amm.217-219.1368
    [21]Mihal, o.v, Moroz, o.v, Starovoytov, r.i, Lytovchenko, s.v, Mazilin, b.a, & Iliushyn, l.o. (2018). Dynamics of the Plasma Electrolytic Polishing Process of Austenitic Steel AISI 304 in a Solution of Ammonium Sulfate. Вопросы Атомной Науки и Техники, 5, 126–131. http://dspace.nbuv.gov.ua/handle/123456789/147717
    [22]R i valiev, A a khafizov, Yu i shakirov, & A n sushchikova. (2014). Polishing and Deburring of Machine Parts in Plasma of Glow Discharge between Solid and Liquid Electrodes. IOP Conference Series: Materials Science and Engineering, 86, 012026. https://doi.org/https://doi.org/10.1088/1757-899X/86/1/ 012026
    [23]Rajput, A.S., Zeidler, H., & Schubert, A. (2017). Analysis of voltage and current during the Plasma electrolytic Polishing of stainless steel.
    [24]Klaus nestler, Falko böttger-hiller, Wolfgang adamitzki, Gunther glowa, Henning zeidler, & Andreas schubert. (2016). Plasma Electrolytic Polishing – An Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range. Procedia CIRP, 42(2212–8271), 503–507. https://doi.org/https://doi.org/10.1016/j.procir.2016.02.240
    [25]D A Dobrynin. (2017). Electrolytic-Plasma Polishing of Titanium Alloys VT6 and VT8M-1. Electronic Scientific Journal “Proceedings of VIAM,” 7(55), 14–23. https://doi.org/https:// doi.org/10.18577/2307-6046-2017-0-7-2-2
    [26]Podhorský, s, & Malík, a. (2010). The Possibilities of Plasma Polishing of the Steel DIN 1.0570 in Electrolyte. In Proceedings of the 19th Conference Metal, 5, 18–20.
    [27]Dusan vana, Stefanpodhorsky, Roland suba, & Marek hurajt. (2013). The Change of Surface Properties on Tested Smooth Stainless Steel Surfaces after Plasma Polishing. International Journal of Engineering Science Invention, 2(6), 7–11.
    [28]李輝煌,(2008),田口方法-品質設計的原理與實務,高立圖書有限公司。
    [29]吳文傑,方明達,鄭錫勳,劉旭唐,何宗漢,2014,「以田口方法在不同的拋光參數下取得最佳玻璃移除率研究」,工程科技與教育學刊,第11卷,第2期,第252-263頁。
    [30]Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and processes.
    [31]范光照,張郭益,2015,精密量測,修正第六版,高立圖書有限公司,台灣。
    [32]台灣基恩斯股份有限公司,取至網址:https://www.keyence.com.tw/ss/products/microscope/roughness/surface/,擷取時間:2021年8月20日。
    [33]台灣基恩斯股份有限公司,取至網址:https://www.keyence.com.tw/ss/products/microscope/roughness/surface/parameters.jsp,擷取時間:2021年8月15日。

    無法下載圖示 校外公開
    2026/08/24
    QR CODE