簡易檢索 / 詳目顯示

研究生: 黃俊卿
Huang Chun-Ching
論文名稱: 不同稻殼生物炭及有機質肥料用量對土壤性質及青江白菜與福山萵苣生育及產量之影響
Effects of Different Rice Husk Biochar and Organic Fertilizer Rates on Soil Properties, Growth and Yield of Qingjiang Cabbage and Fushan Lettuce
指導教授: 王鐘和
Wang, Chong-Ho
學位類別: 碩士
Master
系所名稱: 農學院 - 農園生產系所
Department of Plant Industry
畢業學年度: 109
語文別: 中文
論文頁數: 143
中文關鍵詞: 土壤肥力有機質肥料稻殼生物炭葉菜
外文關鍵詞: soil fertility, organic fertilizer, rice husk biochar, leafy vegetables
DOI URL: http://doi.org/10.6346/NPUST202100429
相關次數: 點閱:79下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 農業有機廢棄物通過缺氧或低氧條件下進行熱裂分解所產生之物質,稱為「生物炭」,生物炭本身具多孔隙之構造,增加土壤保水與保肥能力,並可改善土壤結構、質地、孔隙度、粒徑分布及降低土壤總體密度,增加土壤通氣性並改善土壤環境。施用有機質肥料可增加土壤之有機質含量,有機質之功效不僅可改善土壤之理化特性及團粒構造,有利於土壤之通氣與排水,還能增加土壤之保水與保肥能力,以及吸附交換植物所需之營養元素,且提高肥料之利用效率。本研究利用盆栽種植青江白菜與福山萵苣,探討不同稻殼生物炭及有機質肥料用量對其生長性狀及植體養分吸收的影響。試驗處理為施用不同量稻殼生物炭 (0 % 、2 % 與4% (w/w)) 與不同量有機質肥料( 7.5 g pot-1、15 g pot-1、22.5 g pot-1與30 g pot-1)。兩種蔬菜作物均在具有商品價值時採收,分析植體之元素濃度與吸收量,可溶性固形物以及硝酸態氮與維他命 C含量,並分析土壤之 pH、 EC、 有機質含量、 無機態氮、 bray -1 磷、交換性鉀、鈣及鎂等含量。青江白菜作結果顯示,稻殼生物炭用量0 %與2 %兩處理添加有機質肥料30 g pot-1 時有較高鮮重及乾重,且株高、株寬、葉片數、葉長和葉寬等生長性狀亦均較大或較多。然而,在稻殼生物炭用量4%添加有機質肥料為7.5 g pot-1 處理則乾重最高,其生長性狀也是最佳的。福山萵苣作結果顯示,稻殼生物炭用量0 %與2 %之兩處理,均隨著有機質肥料增加而鮮重及乾重均增加,生長性狀如葉片數、株高、株徑、葉寬和葉厚也增加,但在稻殼生物炭用量4 %添加有機質肥料15 g pot-1 處理則有最高鮮重及乾重,生長性狀如葉片數、株高、株徑、葉寬和葉厚亦均最佳的。兩種蔬菜檢測可溶性固形物與維他命C含量於各處理間均不顯著。收穫期EC值對青江白菜產量、植體總氮濃度對青江白菜產量、植體總磷濃度對青江白菜產量、植體總鉀濃度對青江白菜產量、植體總鈣濃度對青江白菜產量、植體總鎂濃度對青江白菜產量、植體氮吸收量對青江白菜產量、植體硝酸態氮濃度對青江白菜產量、植體總氮濃度對青江白菜硝酸態氮濃度、總可溶性固形物對青江白菜維他命 C濃度,均有顯著正相關性,而植體總氮濃度對青江白菜維他命 C濃度、植體總氮濃度對青江白菜總可溶性固形物,都有顯著負相關性。種植後15天EC
    值對福山萵苣產量、收穫期土壤無機態氮對福山萵苣產量、植體總氮濃度對福山萵苣產量、植體總磷濃度對福山萵苣產量、植體總鉀濃度對福山萵苣產量、植體氮吸收量對福山萵苣產量、植體總氮濃度對福山萵苣硝酸態氮濃度,均有顯著正相關性,而收穫期土壤無機態氮對福山萵苣產量、植體總鈣濃度對福山萵苣產產量,都有顯著負相關性。綜合上述,添加稻殼生物炭配合有機質肥料用量之應用的確能改善土壤理化性質,並以4 % 之稻殼生物炭用量搭配有機質肥料用量最少之7.5 g pot-1為青江白菜最佳處理。福山萵苣產量與生長性狀結果亦顯示4 % 稻殼生物炭處理顯著高於對照,鮮重產量提高60%,且配合添加有機質肥料用量15 g pot-1為最佳處理。

    The substance produced by thermal cracking of agricultural organic waste under hypoxic or hypoxic conditions is called "biochar". Biochar itself has a porous structure, which increases soil water and fertility retention capacity, and improves soil structure. , Texture, porosity, particle size distribution and reduce the overall density of the soil, increase soil aeration and improve the soil environment. The application of organic fertilizer can increase the content of organic matter in the soil. The effect of organic matter can not only improve the physical and chemical properties of the soil and the structure of the aggregates, it is conducive to the aeration and drainage of the soil, but it can also increase the water and fertilizer retention capacity of the soil, as well as the adsorption and exchange of plants. Nutrient elements, and improve the efficiency of fertilizer utilization. In this study, potted cultivation of Qingjiang cabbage and Fushan lettuce were used to explore the effects of different rice husk biochar and organic fertilizer rates on their growth characteristics and plant nutrient absorption. The experimental treatments consisted of applying different amounts of rice husk biochar (0%, 2% and 4% (w/w)) and different amounts of organic fertilizers (7.5 g pot-1, 15 g pot-1, 22.5 g pot-1 and 30 g pot-1). Two kinds of vegetable crops are harvested when they have commercial value. The plant element concentration and absorption, soluble solids, nitrate nitrogen and vitamin C content are analyzed, and soil pH, EC, organic matter content, inorganic nitrogen, bray-1 Phosphorus, exchangeable potassium, calcium and magnesium content. The results of Qingjiang cabbage showed that the two treatments with the dosage of 0% and 2% of rice husk biochar when adding organic fertilizer 30 g pot-1 had higher fresh weight and dry weight, and plant height, plant width, number of leaves, leaf length and leaf Growth traits such as broad are also larger or more. However, when the rice husk biochar dosage is 4% and organic fertilizer is added for 7.5 g pot-1, the dry weight is the highest, and its growth characteristics are also the best. The results of lettuce planting in Fushan showed that the two treatments with the amount of 0% and 2% of rice husk biochar increased with the increase of organic fertilizer, and both the fresh weight and dry weight increased. The growth characteristics such as leaf number, plant height, plant diameter, leaf width and The leaf thickness also increased, but when the rice husk biochar dosage was 4% and 15 g pot-1 was added organic fertilizer, the highest fresh weight and dry weight were obtained. The growth characteristics such as leaf number, plant height, plant diameter, leaf width and leaf thickness also increased. Both are the best. The soluble solids and vitamin C content of the two kinds of vegetables were not significant among the treatments. The EC value during the harvest period affects the yield of Qingjiang cabbage, the total nitrogen concentration of the plant has the effect on the yield of Qingjiang cabbage, the total phosphorus concentration of the plant has the effect on the yield of Qingjiang cabbage, the total potassium concentration of the plant has the effect on the yield of Qingjiang cabbage, and the total calcium concentration of the plant has an effect on the yield and plant of Qingjiang cabbage. Body total magnesium concentration to Qingjiang cabbage yield, plant nitrogen uptake to Qingjiang cabbage yield, plant nitrate nitrogen concentration to Qingjiang cabbage yield, plant total nitrogen concentration to Qingjiang cabbage nitrate nitrogen concentration, total soluble solids to Qingjiang cabbage The concentration of vitamin C has a significant positive correlation, while the total nitrogen concentration of the plant has a significant negative correlation with the vitamin C concentration of Qingjiang cabbage and the total nitrogen concentration of the plant has a significant negative correlation with the total soluble solids of Qingjiang cabbage. 15 days after planting EC value to Fushan lettuce yield, soil inorganic nitrogen at harvest period to Fushan lettuce yield, plant total nitrogen concentration to Fushan lettuce yield, plant total phosphorus concentration to Fushan lettuce yield, plant total potassium concentration to Fushan lettuce Yield and plant nitrogen uptake have a significant positive correlation with Fushan lettuce yield and plant total nitrogen concentration on Fushan lettuce nitrate nitrogen concentration, while soil inorganic nitrogen at harvest has a positive effect on Fushan lettuce yield and plant total calcium concentration. There is a significant negative correlation between the production and yield of Fushan lettuce. Based on the above, the application of rice husk biochar combined with the amount of organic fertilizer can indeed improve the physical and chemical properties of the soil, and the 4% rice husk biochar with the minimum amount of organic fertilizer 7.5 g pot-1 is the best treatment for Qingjiang cabbage. The results of the yield and growth characteristics of Fushan lettuce also showed that the 4% rice husk biochar treatment was significantly higher than the control, and the fresh weight yield was increased by 60%. The best treatment was combined with the addition of 15 g pot-1 of organic fertilizer.

    摘要 II
    Abstract IV
    謝誌 VII
    目錄 VIII
    圖目錄 X
    表目錄 XII
    壹、 前言 1
    貳、 文獻回顧 3
    一、 青江白菜與福山萵苣簡介 3
    二、 有機栽培的起源與介紹 5
    三、 生物炭簡介 7
    四、 有機質肥料簡介 11
    五、 營養元素對作物生長之影響 14
    參、 材料與方法 18
    一、 供試土壤採集 18
    二、 稻殼生物炭購置 18
    三、 試驗設計 18
    四、 樣本分析項目及方法 24
    (一) 土壤分析 24
    (二) 植體分析 26
    (三) 有機質肥料分析 28
    五、 統計分析 29
    肆、 結果與討論 30
    一、 施用不同比例稻殼生物炭及搭配不同用量有機質肥料對葉菜生育中期土壤理化性質之影響 30
    (一) 生育中期(種植後15天)土壤性質 30
    (二) 生育中期(種植後15天)植株生育性狀 35
    二、 施用不同比例稻殼生物炭及搭配不同用量有機質肥料對收穫期土壤理化性質、植株生育性狀、產量、與植株營養元素之影響 46
    (一) 收穫期土壤性質 46
    (二) 收穫期植株生育性狀 67
    三、 土壤pH值、EC值、無機態氮與植株產量之相關性比較 104
    四、 植株營養元素與植株產量、無機態氮、總可溶性固形物與維他命C之相關性比較 113
    伍、結論 128
    陸、參考文獻 129

    王銀波。1998。長期施用禽畜堆肥之影響。第一屆畜牧廢棄資源再生利用堆廣研究成果研討會論文集。第144-151頁。
    王鐘和、陳滄海、陳文華、張萃瑛。2013。苦瓜及小胡瓜有機栽培綜合管理。國立屏東科技大學農業推管委員會印行。農業推廣手冊;48。
    王鐘和。2000。堆肥施用策略。堆肥製造技術:農業試驗所特刊88: 191-209。
    王鐘和。2008。有機農田土壤肥力即時偵測技術研發與應用。有機作物栽培技術研討會專刊:農業試驗所特刊136: 39-46。
    王鐘和。2017。各類作物有機栽培土壤肥培管理技術。國立屏東科技大學農業推管委員會印行。農業推廣手冊;51。
    王鐘和。2018。有機農業的內涵與生產技術。臺中區農業改良場特刊 135: 107-123.
    台灣農業統計年報。2020。行政院農業委員會。
    行政院農業委員會。2020。肥料種類品目及規格。
    吳正宗、王銀波。1995。一些影響小白菜硝酸態氮含量的環境因子。中國農業化學會誌 33: 125-133。
    吳正宗。1989。夏季小白菜水耕液配方及管理技術之研擬。國立中興學土壤學研究所碩士論文,台中,台灣。
    李蘭帝。1996。大量植物樣本氮磷鉀之迅速測定法。農業研究152:1-5。
    林俊義。1999。台灣永續農業發展概況。永續農業作物合理化施肥技術專集。中華永續農業協會編印。第1-36頁。
    林家棻。1966。怎樣採集土壤樣本。台灣省農業試驗所編印。
    林傳琦。2002。我國有機農業之發展策略。作物有機栽培:農業試驗所特刊102: 7-15。
    林毓雯、王鐘和。2002。不同有機資材之分解與氮素礦化。行政院農業委員會農業試驗所-作物有機栽培102: 105-115。
    倪禮豐、鍾仁賜。2003。有機物對青梗白菜生長及其硝酸態氮濃度的影響。花蓮區農業改良場研究彙報 21: 57-65。
    徐卉明。2002。有機質肥料不同施用量對溫室蔬菜生長與養分吸收的影響。國立台灣大學農業化學研究所碩士論文,台北,台灣。
    張庚鵬、李艷琪。2003。植物營養生理障礙診斷鑑定。植物重要防疫檢疫病害診斷鑑定技術研習會專刊2: 1-9。
    張明輝、簡宣裕、劉禎祺。2005。有機質肥料介紹。合理化施肥專刊:農業試驗所特刊121: 255-266。

    張淑賢。2000。本省現行植物測定方法。作物需肥診斷技術。行政院農業委員會農業試驗所。第53-54頁。
    張愛華。2000。本省現行土壤測定方法。作物需肥診斷技術。行政院農業委員會農業試驗所。第9-26頁。
    張繼中、廖勁穎和黃文益。2016。施用添加土壤有益微生物之液肥對葉萵苣生育之影響研究。臺東區農業改良場研究彙報, 91-10。
    莊作權、李英明、陳鴻基。1998。不同有機質材在不同土壤水分與溫度條件下之碳與氮之礦化作用。土壤與環境12: 135-152。
    陳仁炫。2017。化學、有機質、微生物肥料,怎麼選?-摸透肥料的個性,對症下料。豐年雜誌 67(11): 36-40。
    陳仁炫、鍾仁賜、黃裕銘、鄒裕民、陳鴻基、吳正宗。2008。土壤與肥料分析手冊 一 土壤化學性質分析。中華土壤肥料學會。
    陳仁炫。2005。有機質肥料品質及施肥技術。臺南區農業改良場技術專刊 132: 75-93。
    陳甘澍、沈再發。1995。園藝作物(蔬菜),農作篇(二)。84年版,第317-322 頁。台灣農家要覽。豐年社,台北。
    黃裕銘。2002。有機農業之養分管理。作物有機栽培農民訓練-進階講習班,第55-73頁。
    楊秋忠。2010。土壤與肥料。農業世界叢書。台中,台灣。
    鍾仁賜、王俊文、王鐘和、王銀波。2014。施肥對不同生長期玉米生長與植物體中氮組成之影響。中華土壤肥料學會土壤與環境13: 209-226。
    鍾仁賜。2008。臺灣有機農業二十年—研究與實驗。土壤與環境11: 1-11。
    羅秋雄。2005。作物施肥手冊。行政院農業委員會農糧署。
    Agegnehu, G., A.K. Srivastava, and M.I. Bird. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl. Soil Ecol. 119: 156-170.
    Al-Kaisi, M.M., X. Yin, and M.A. Licht. 2005. Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric. Ecosyst. Environ. 105 4: 635-647.
    Awad, Y.M., S.S. Lee, K.-H. Kim, Y.S. Ok, and Y. Kuzyakov. 2018. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: effects of biochar, oyster shells, and polymers. Chemosphere, 198: 40-48.
    Baishya, K. 2015. Impact of agricultural chemicals application on soil quality degradation a review. Int. J. Sci. Technol. Manage. 4 1: 220-228.
    Bandyopadhyay, K.K., A.K. Misra, P.K. Ghosh, and K.M. Hati.2010. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil and Tillage Research 110: 115-125.
    Bolan, N., A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M.B. Kirkham, and K. Scheckel. 2014. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? J. Hazard. Mater. 266: 141-166.
    Boussadia, O., K. Steppe, H. Zgallai, E.H.S. Ben, M. Braham, R. Lemeur, and L.M. Van. 2010. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci. Hortic. 123: 336-342.
    Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soil. Soil Sci. 59: 39-45.
    Cakmak, I., and A.M. Yazici. 2010. Magnesium: a forgotten element in crop production. Better Crops 94: 23-25.
    Carafoli, E., and M. Crompton. 1978. The regulation of intracellular calcium. Curr. Top. Membr. Transp. 10: 151-216.
    Carlson, A., and E. Jaenicke. 2016. Changes in retail organic price premiums from 2004 to 2010. United States Department of Agriculture, Economic Research Report Number 209.
    Chaudhary, M.I., J.J. Adu-Gyamfi, H. Saneoka, N.T. Nguyen, R. Suwa, S. Kanai, H.A. El-Shemy, D.A. Lightfoot, and K. Fujita. 2008. The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiol. Plant 30: 537-544.
    Chen, X., D. Zeng, Y. Xu, and X. Fan. 2018. Perceptions, risk attitude and organic fertilizer investment: evidence from rice and banana farmers in Guangxi, China. Sustainability 10: 3715.
    Choudhary, M., S.C. Panday, V.S. Meena, S. Singh, R.P. Yadav, D. Mahanta, et al. 2018. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agr. Ecosyst. Enviro. 257: 38-46.
    Cowan, J.A. 2002. Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals, 15: 225-235.
    Cramer, G.R., A. Lauchli, and V.S. Polito. 1985. Displacement of Ca2+ by Na+ from plasmalemma of root cells. Plant Physiol. 79 : 207-211.
    Diana, U., A.P. Tomczak, Z. Farrah, S. Walter, and L.A. Pardo. 2014. Potassium channels in cell cycle and cell proliferation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 1638: 20130094.
    FAOSTAT. 2015. http://faostat3.fao.org/compare/Eaccessed 7.24.15.
    Farina, M.P. and W.P. Channon. 1988. Acid-subsoil amelioration. I. A comparison of several mechanical procedures. Soil Sci. Soc. Am. J. 52: 169-175 .
    Feng, Y., Y. Xu, Y. Yu, Z. Xie, and X. Lin. 2012. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol. Biochem. 46:80-88.
    Fierer, N., and R.B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA, 103 : 626-631.
    Gavili, E., A.A. Moosavi, and A.A.K. Haghighi. 2019. Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Ind. Crops Prod. 128: 445-454.
    Ghazali, M.F., K. Wikantika , A.B. Harto, and A. Kondoh. 2019. Generating soil salinity, soil moisture, soil pH fromsatellite imagery and its analysis. Information Processing in Agriculture 22: 2214-3173.
    Gomiero, T. 2018. Food quality assessment in organic vs. conventional agricultural produce:Findings and issues. Appl. Soil Ecol. 123: 714-728.
    Gomiero, T., D. Pimentel, and M.G. Paoletti. 2011a. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30: 95-124.
    Gomiero, T., D. Pimentel, and M.G. Paoletti. 2011b. Is there a need for a more sustainable agriculture? Crit. Rev. Plant Sci. 30: 6-23.
    Gomiero, T., M.G. Paoletti, and D. Pimentel. 2008. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 27: 239-254.
    Good, A.G., A.K. Shrawat, and D.G. Muench. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?Trends Plant Sci. 9: 597-605.
    Gout, E., F. Rebeille, R. Douce, and R. Bligny. 2014. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. U. S. A. 111: 4560-4567.
    Hati, K.M., K.G. Mandal, A.K. Misra, P.K. Ghosh, and K.K. Bandyopadhyay. 2006. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresour Technol 97: 2182-2188.
    He, L., X. Lu, J. Tian, Y. Yang, B. Li, J. Li, and S. Guo. 2012. Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Sci. 10: 42.
    He, L., C. Li, and R. Liu. 2017. Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones. Mycorrhiza 27: 525-535.
    He, X.H., C. Critchley, and C. Bledsoe. 2003. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 22: 531-567.
    He, L., X. Lu, J. Tian, Y. Yang, B. Li, J. Li, and S. Guo. 2012. Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Sci. 10: 42.
    Hinsinger, P., C. Plassard, C. Tang, and B. Jaillard. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints-a review. Plant Soil 248:43-59.
    Hu, H., and Y. Yang. 2015. Research on farmers' chemical fertilizers use based on resources substitution. J. Agro Tech. Econ. 3: 84-91.
    Huang, M., L. Fan, L.G. Jiang, S.Y. Yang, Y.B. Zou, and N. Uphoff. 2019. Continuous applications of biochar to rice: Effects on grain yield and yield attributes. J. Integr. Agr. 18:563-570.
    Hussain, R.M. 2017. The Effect of phosphorus in nitrogen fixation in legumes. Agric. Res. Technol. Open Access J. 5 1: 12-14.
    IFOAM International Foundation for Organic Agriculture, 2016. The World of OrganicAgriculture 2016. Research Institute of Organic Agriculture FiBL and IFOAM−Organics International Available online:.
    IFOAM International Movement of Organic Agriculture Movements. 2017. Principles of Organic Agriculture. Available online:.
    Jia, H., H. Ren, M. Gu, J. Zhao, S. Sun, X. Zhang, J. Chen, P. Wu, and G. Xu. 2011. The phosphate transporter gene OsPht1 is involved in phosphate homeostasis in rice. Plant Physiol. 156: 1164-1175.
    Jiang, Y., and B. Huang. 2001. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool‐season grasses. J. Exp. Bot. 52: 341-349.
    Jien, S.H., W.C. Chen, Y.S. Ok, Y.M. Awad, and C.S. Liao. 2018. Short- term biochar application induced variations in C and N mineralization in a compost-amended tropical soil. Environ. Sci. Pollut. Res. 25: 25715-25725.
    Karley, A.J., P.J. White. 2009. Moving cationic minerals to edible tissues: potassium magnesium, calcium. Curr. Opin. Plant Biol. 12: 291-298.
    Khadem, A., and F. Raiesi. 2019. Response of soil alkaline phosphatase to biochar amendments: Changes in kinetic and thermodynamic characteristics. Geoderma 337: 44-54.
    Khan, S.A., R.L. Mulvaney, and T.R. Ellsworth. 2014. The potassium paradox: implications for soil fertility, crop production and human health. Renew. Agric. Food Syst. 29: 3-27.
    Knudsen, O., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. In A. L. Page et al. ed. Method of soil analysis. Part II, 2nd edition. Agronomy. P.225-246.
    Kong, A. Y., Y. J. Six, D. C. Bryant, R. F. Denison, and C. van Kessel 2005 The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J.53 : 1086-1091.
    Lambers, H., M.W. Shane, M.D. Cramer, S.J. Pearse, and E.J. Veneklaas. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 98: 693-713.
    Langmeier, M., E. Frossard, M. Kreuzer, P. Mäder, D. Dubois, and A. Oberson. 2002. Nitrogen fertilizer value of cattle manure applied on soils originating from organic and conventional farming systems. Agronomie 22: 789-800.
    Lehmann, J. 2007. Bio-energy in the black. Front. Ecol. Environ. 5 7: 381-387.
    Lehmann, J. and M. Rondon. 2006. Bio-char soil management on highly weathered soils in the humid tropics. Biological Approaches to Sustainable Soil Systems, CRC Press. 517-529.
    Lehmann, J. and S. Joseph. 2015. Biochar for Environmental Management: Science, Technology and Implementation. Routledge.
    Lehmann, J., Y. Kuzyakov, G. Pan, and S.O. Yong. 2015. Biochars and the plant-soil interface. Plant Soil. 359: 1-5.
    Li, B., Y. Wang, Z. Zhang, B. Wang, A.E. Eneji, L. Duan, Z. Li, and X. Tian. 2012. Cotton shoot plays a major role in mediating senescence induced by potassium deficiency. J. Plant Physiol. 169: 327-335.
    Li, L., S. Cheng, H. Fang, G. Yu, M. Xu, Y. Wang, X. Dang, and Y. Li. 2015. Effects of nitrogen environment on transfer and accumulation of soil organic carbon in alpine meadows on Qing-Tibetan Plateau. Acta Pedol. Sin. 52: 183-193.
    Li, S., Y. Duan, T. Guo, P. Zhang, P. He, A. Johnston, and A. Shcherbakov. 2015. Potassium management in potato production in Northwest region of China. Field Crop. Res. 174: 48-54.
    Li, Y., S. Hu, J. Chen, K. Muller, Y. Li, W. Fu, Z. Lin, and H. Wang. 2018. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J. Soils Sediments. 18 2: 546-563.
    Liang, C. and B. Zhang. 2018. Effect of exogenous calcium on growth, nutrients uptake and plasmamembrane H+-ATPase and Ca2+-ATPase activities in soybean Glycine max seedlings under simulated acid rain stress. Ecotox. Environ. Saf. 165: 261-269.
    Liu, Li., Y. Wang, X. Yan, J. Li, N. Jiao, and S. Hu. 2017. Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture. Agr. Ecosystems and Environ. 237: 16-23.
    Liu, Y.X., H.H. Lyu, Y. Shi, Y.F. Wang, Z.K. Zhong, and S.M. Yang. 2015. Effects of biochar on soil nutrients leaching and potential mechanisms: A review. J. Appl. Ecol. 1: 304-310.
    Lu, C., X. Zhang, X. Chen, Y. Shi, J. Ma, M. Zhao, G. Chi, and B. Huang. 2010. Fixation of labeled (15NH4)2SO4 and its subsequent release in black soil of Northeast China over consecutive crop cultivation. Soil Tillage Res. 106 2: 329-334.
    Lu, M., X. Zhou, Y. Luo, Y. Yang, C. Fang, J. Chen, and B. Li. 2011. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric. Ecosyst. Environ. 140 1–2: 234-244.
    Lynch, D.H., R. Macrae, and R.C. Martin. 2011. The carbon and global warming potential impacts of organic farming: does it have a significant role in an energy constrained world? Sustainability 3: 322-362.
    Mader, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296: 1694-1697.
    Mandal, K.G., K.M. Hati, and A.K. Misra. 2009. Biomass yield and energy analysis of soybean production in relation to fertilizer-NPK and organic manure. Biomass. Bioenerg. 33: 1670-1679.
    Mao, J., K. Zhang, and B. Chen. 2019. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Enviro. Pollut. 253: 779-789.
    Marks, E.A.N., S. Mattana, J.M. Alcañiz, E. Pérez-Herrero, and X. Domene. 2015. Gasifier biochar effects on nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year Mediterranean trial. Agric. Ecosyst. Environ. 215: 30-39.
    Marschner, B., and A. D. Nobel. 2000. Chemical and biological processes leading to the neutralisation of acidity in soil incubated with litter materials. Soil Biol. Biochem. 32: 805-813.
    Marschner, H. 2012. Marschner’s Mineral Nutrition of Higher Plants. Academic Press, New York.
    Marynard, D.N., A.V. Barker, D.L. Minotti, and N.H. Peck. 1976. Nitrate accumulation in vegetables. Adv. Agron. 28: 71-118.
    Masulili, A., W.H. Utomo, and M. Syechfani. 2010. Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J. Agr. Sci. 2 1: 39.
    Meriño-Gergichevich, C., M. Alberdi, A.G. Ivanov, and M. Reyes-Díaz. 2010. Al3+–Ca2+ interaction in plants growing in acid soils: Al-phytotoxicity response to calcareous amendments. J. Soil. Sci. Plant Nutr. 10: 217-243.
    Mia, S., J.W. van Groenigen, T.F.J. van de Voorde, N.J. Oram, T.M. Bezemer, L. Mommer, and S. Jeffery. 2014. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agr. Ecosyst. Environ. 191: 83-91.
    Mie, A., E. Kesse-Guyot, J. Kahl, E. Rembiałkowska, H. Raun Andersen, P. Grandjean, and S. Gunnarsson. 2016. Brussels. Human Health Implications of Organic Food and Organic Agriculture. European Parliament Research Service EPRS, Belgium.
    Munda, S., D. Bhaduri, S. Mohanty, D. Chatterjee, R. Tripathi, M. Shahid, U. Kumar, P. Bhattacharyya, A. Kumar, T. Adak, H.K. Jangde, and A.K. Nayak. 2018. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar. Biomass Bioenergy 115:1-9.
    Nayyar, H., T. Bainsb, and S. Kumara. 2005. Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ. Exp. Bot. 53: 39-47.
    Nian, H., S.J. Ahn, Z.M. Yang, and H. Matsumoto. 2003. Effect of phosphorus deficiency on aluminium-induced citrate exudation in soybean Glycine max. Physiol. Plant 117: 229-236.
    Niu, Y.F.,R.S. Chai, G.L. Jin, H. Wang,C.X. Tang, and Y.S. Zhang. 2013. Responses of root architecture development to low phosphorus availability: a review. Ann. Bot.112: 391-408.
    Oladele, S.O., A.J. Adeyemo, and M.A. Awodun. 2019a. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 336:1-11.
    Oladele, S., A. Adeyemo, M. Awodun, A. Ajayi, and A. Fasina. 2019b. Efects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efciency and upland rice Oryza sativa yield grown on an Alfsol in Southwestern Nigeria. Intl. J. Recycl. Org. Waste Agr. 8:295–308.
    Oosterhuis, D., D. Loka, E. Kawakami, and W. Pettigrew. 2014. The physiology of potassium in crop production. Adv. Agron. 126: 203-234.
    Oram,N.J., T.F. Voorde, G.J. Ouwehand, T.M. Bezemer, L. Mommer, Jeffery, and G.W.V. Groenigen. 2014. Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agric. Ecosyst. Environ. 191: 92-98.
    Paillet, Y., N. Cassagne, and J.J. Brun. 2010. Monitoring forest soil properties with electrical resistivity. Biol. Fertil. Soils 46: 451-460.
    Pandit, N.R., J. Mulder, S.E. Hale, A.R. Zimmerman, B.H. Pandit, and G. Cornelissen. 2018. Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis. Sci. Total Environ. 637:1333-1341.
    Pang, J., J. Yang, H. Lambers, M. Tibbett, K.H. Siddique, and M.H. Ryan. 2015. Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiol. Plant. 154: 511-525.
    Peng, M., C. Hannam, H. Gu, Y. M. Bi, and S.J. Rothstein. 2007. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J. 50: 320-337.
    Pettigrew, W. 2003. Relationships between insufficient potassium and crop maturity in cotton. Agron. J. 95: 1323-1329.
    Pettigrew, W., and W. Meredith. 2008. Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J. Plant Nutr. 20: 531-548.
    Pettigrew, W.T. 1999. Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. Agron. J. 91: 962-968.
    Pettigrew, W.T. 2008. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133: 670-681.
    Pranagal, J., P. Oleszczuk, D.T. Krojanska, P. Kraska, and K. Rozylo. 2017. Effect of biochar application on the physical properties of Haplic Podzol. Soil Tillage Res. 174: 92-103.
    Pulgar, G., G. Villora, J. Her-nandez, N. Castilla, and L.Romero. 2000. Temperaturein relation to phosphorus utrition in Chinese cabbage. Journal of Plant Nutrition 23:719-730.
    Purakayastha, T.J., T. Bera, D. Bhaduri, B. Sarkar, S. Mandal, P. Wade, S. Kumari, S. Biswas, M. Menon, H. Pathak, and D.C.W. Tsang. 2019. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 227:345-365./
    Qiu,H.G.,H. Luan, J. Li, and Y.J. Wang. 2014. The influence of risk aversion on farmers' excessive application of fertilizer. Chinese. Rural. Econ.3: 85-96.
    Reddy, K.R., H.F. Hodges, and J.J. Varco. 2000. Potassium Nutrition of Cotton. Agricultural and Forestry Experiment Station AFES 1094: 1-10.
    Remans,T.,P. Nacry, M. Pervent, T. Girin, P. Tillard, M. Lepetit,andA. Gojon. 2006. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol. 140:909-921.
    Rigby, D., and D. Caceres. 2001. Organic farming and the sustainability of agricultural systems. Agric. Syst. 68 1: 21-40.
    Romheld, V., and E.A. Kirkby. 2010. Research on potassium in agriculture: needs and prospects. Plant Soil 335: 155-180.
    Schulz, H., and B. Glaser. 2012. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 175 3: 410-422.
    Schulze, J., G. Temple, S.J. Temple, H. Beschow, and C.P. Vance. 2006. Nitrogen fixation by white lupin under phosphorus deficiency. Ann. Bot. 98: 731-740.
    Shanshan,W., and G. Zhang. 2013. The impact of off-farm employment on the agricultural carbon emission behavior of farmers. Resour. Sci. 9: 1855-1862.
    Shaul, O. 2002. Magnesium transport and function in plants: the tip of the iceberg. Biometals 15: 309-323.
    Simon, E. 1987. Heavy metals in soils, vegetation development and heavy metal tolerance in plant populations from metalliferous areas. New Phytologist 81 1: 175-188.
    Sims, J. R. and V. A. Haby. 1971. Simplified Colorimetric Determination of Soil Organic Matter. Soil Sci. 112 2: 137-141.
    Sperrazza, J.M., and L.L. Spremulli. 1983. Quantitation of cation binding to wheat germ ribosomes: influences on subunit association equilibria and ribosome activity. Nucleic Acids Res. 11: 2665-2679.
    Steiner, C., B. Glaser, W.G. Teixeira, J. Lehmann, W.E.H. Blum, and W. Zech. 2008. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Plant Nutr. Fert. Sci. 171: 893-899.
    Stevenson, F. J. 1982. Organic forms of soil nitrogen. In: F. j. Stevenson ed. nitrogen in Agricultural soil. America Society of Agronomy-Soil Science Society of America, Madision, Wisconson, USA, p. 67-122.
    Stolz, M., M. Stolze, U. Hamm, M. Janssen, and M. Ruto. 2011. Consumer attitudes towards organic versus conventional food with specific quality attributes. NJAS – WAGEN J. LIFT SC. 58: 67-72.
    Storkey, J., S. Meyer, K.S. Still, and C. Leuschner. 2012.The impact of agricultural intensification and land-use change on the European arable flora. Proc. Royal Soc. B 279: 1421-1429.
    Stougaard, J. 2000. Regulators and regulation of legume root nodule development. Plant Physiol.124: 531-540.
    Sulieman, S., C. Van Ha, J. Schulze, and L.S.P. Tran. 2013. Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J. Exp. Bot. 64: 2701-2712.
    Taiz, L., E. Zeiger, I.M. Mooler, and A. Murphy. 2014. Plant Physiology and Development 6th.ed. Oxford University Press. 761.
    Tana, Z., C.S.K. Lin, X. Ji, and T. J. Rainey. 2017. Returning biochar to fields: a review. Appl. Soil Ecol. 116 : 1-11.
    Tilman, D. 1999. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc. Natl. Acad. Sci. 9611: 5995-6000.
    Turner, B.L., H. Lambers, L.M. Condron, M.D. Cramer, J.R. Leake, A.E. Richardson, and S.E. Smith. 2013. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil 367: 225-234.
    Vance, C.P. 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127: 390-397.
    Vance, C.P., and T.J. Chiou. 2011. Phosphorus focus editorial. Plant Physiol. 156: 987-988.
    Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157: 423-447.
    Veneklaas, E.J., H. Lambers, J. Bragg, P.M. Finnegan, C.E. Lovelock, W.C. Plaxton, C.A. Price, W.-R. Scheible, M.W. Shane, P.J. White, and J.A. Raven. 2012. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195: 306-320.
    Verbruggen, N., and C. Hermans. 2013. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368: 87-99.
    Vitousek, P.M., and R.W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87-115.
    Vitousek, P.M., S. Porder, B.Z. Houlton, and O.A. Chadwick. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20: 5-15.
    Wang, C.Q. 2010. Exogenous calcium alters activities of antioxidant enzymes in Trifolium repens L. leaves under PEG-induced water deficit. J. Plant Nutr. 33: 1874-1885.
    Wang, D., C. Li, S.J. Parikh, and K.M. Scow. 2019. Impact of biochar on water retention of two agricultural soils–A multi-scaleanalysis. Geoderma 340:185-191.
    Wang, N., H. Hua, A. Egrinya Eneji, Z. Li, L. Duan, and X. Tian. 2012. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton Gossypium hirsutum. J. Photochem. Photobiol. B 110: 1-8.
    Wang, Y., B. Li, M. Du, A.E. Eneji, B. Wang, L. Duan, Z. Li, and X. Tian. 2012. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J. Exp. Bot. 63: 5887-5901.
    Wezel, A., M. Casagrande, F. Celette, J. F. Vian, A. Ferrer, and J. Peigne. 2014. Agroecological practices for sustainable agriculture: a review. Agron. Sustainable Dev. 34: 1-20.
    White, P. 2003. Calcium in plants. Ann. Bot. 92 4: 487-511.
    White, P.J. 2001. The Pathways of Calcium Movement to the Xylem. J. Exp. Bot. 52 358: 891-899.
    Widowati, W., and A. Asnah. 2014. Biochar can enhance potassium fertilization efficiency and economic feasibility of maize cultivation. J. Agric. Sci. 2: 1916-9752.
    Willer, H. and J. Lernoud. 2016. The World of Organic Agriculture. Statistics and Emerging Trends 2016. FiBL-IFOAM Report, FiBL, Frick, and IFOAM, Bonn.
    Xin, X., J. Zhang, A. Zhu, and C. Zhang . 2016. Effects of long-term 23 years mineral fertilizer and compost fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Tillage Res. 156: 166-172.
    Xiu, Li., W. Zhang, Y. Sun, D. Wu, J. Meng, and W. Chen. 2019. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years. Catena 173:481-793.
    Yinghua, D., 2016. Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems. Sci. Rep. 6: 33611.
    Yoshizawa, S., Tanaka, and M. Othata. 2007. Proliferation effect of aerobic microorganisms during composting of rice bran by addition of biomass charcoal, in Proceedings of the International Agrichar Conference, Terrigal NSW, Australia, May 2007, p.26.
    Yu, B., H. Gong, Y. Liu. 1998. Effects of calcium on lipid composition and function of plasma membrane and tonoplast vesicles isolated from roots of barley seedlings under salt stress. J. Plant Nutr. 21: 1589-1600.
    Zhao, D., D. Oosterhuis, and C. Bednarz. 2001. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39: 103-109.
    Zhao, D., K. Raja Reddy, V.G. Kakani, J.J. Read, and G.A. Carter. 2003. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil 257: 205-218.
    Zhao, J., F. Zhao, G. Jian, Y. Ye, W. Zhang, J. Li, and F. Qi. 2013. Intensified Alternaria spot disease under potassium deficiency conditions results in acceleration of cotton (Gossypium hirsutumL.) leaf senescence. Aust. J. Crop Sci. 7: 241.
    Zhu, D., X. Kong, and J.P. Gu. 2014. Irrational equilibrium of farmers' excessive pesticide application: evidence from farmers in southern Jiangsu province. Chin. Rural. Econ. 8: 17-29.
    Zörb, C., M. Senbayram, and E. Peiter. 2014. Potassium in agriculture–status and perspectives. J. Plant Physiol. 9: 656-669.
    Zuo, Y. and F. Zhang. 2009. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agronomy. 1:63-71.

    下載圖示
    QR CODE