簡易檢索 / 詳目顯示

研究生: 張宸瑋
Chang, Chen-wei
論文名稱: 雨刷流場數值分析與優化
Numerical Analysis and Optimization of Wiper Flow Field
指導教授: 蔡建雄
Tsai, Chien-Hsiung
曾全佑
Tseng, Chyuan-Yow
學位類別: 碩士
Master
系所名稱: 工學院 - 車輛工程系所
Department of Vehicle Engineering
畢業學年度: 109
語文別: 中文
論文頁數: 64
中文關鍵詞: 雨刷空氣動力升力阻力優化
外文關鍵詞: Wiper, aerodynamic, lift force, drag force, optimization
DOI URL: http://doi.org/10.6346/NPUST202100453
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 車輛高速行駛時,因空氣動力影響,氣流沿著引擎蓋吹向擋風玻璃跟雨刷,並對雨刷造成升力和阻力,可能導致雨刷在高速時行駛時,會有漏刮的現象。本研究使用ANSYS FLUENT軟體,對雨刷進行CFD模擬,分析結果發現擺放角度30度和80度時,平面和雨刷放置車上擋風玻璃時趨勢相近,未來在模擬時可簡化為平面流場預測各部件升阻力。利用Adjoint Solver優化模組對雨刷與雨刷臂進行優化,並以降低升力為優化目標,模擬結果顯示: 改變雨刷臂之迎風面角度,讓雨刷臂有更多向下壓的力,能有效降低升力;最後將優化的雨刷與雨刷臂組件放在車上玻璃作CFD分析,結果顯示較原始設計的雨刷組件,雨刷刮片上升力減少了69%,阻力增加17%,雨刷臂和原模型升力減少41%,阻力增加5%。雖然升力都能有效降低,但阻力變大,因此在設計時須考量雨刷馬達效能是否能克服阻力。

    When the vehicle is running at high speed, the air flows along the engine hood to the windshield and the wiper, and induce lift force and drag force of the wiper, which may result in the wiper to lift off the windshield and destroy the wiping performance. This study uses ANSYS FLUENT software to perform CFD simulation on the wiper. The analysis results show that when the windshield of the car is placed on the windshield of the plane and the wiper when placed at an angle of 30 degrees and 80 degrees, the trend is similar. In the future, the simulation can be simplified to a plane flow field prediction. Besides, this study uses the Adjoint Solver optimization module to optimize the shape of the wiper and wiper arm, and reduce the lift as the optimization goal. The simulation results show that changing the angle of the windward side of the wiper arm allows the wiper arm to have more downward pressure, which can effectively reduce the lift. Finally, the optimized wiper and wiper arm assembly is placed on the windshield of the car for CFD analysis. The results show that comparing with the original design of the wiper assembly, the lift force of the wiper blade is reduced by 69%, the drag force is increased by 17%, the lift force of the wiper arm is reduced by 41%, and t the drag force is increased by 5%. Although the lift can be effectively reduced, the resistance becomes larger, so it is necessary to consider whether the efficiency of the wiper motor can overcome the resistance in the design stage.

    摘要 I
    Abtract II
    謝誌 IV
    目錄 V
    表目錄 VII
    圖目錄 VIII
    第1章 緒論 1
    1.1前言 1
    1.2文獻回顧 1
    第2章 研究方法 11
    2.1基本假設 12
    2.2統御方程式 12
    2.3 Standard k-ε紊流模型 12
    2.4幾何模型與邊界條件 13
    2.4.1三維模型與邊界條件 14
    2.4.2二維模型與邊界條件 15
    2.5 雨刷升阻力方向 16
    第3章 結果與討論 19
    3.1 車上完整雨刷流場 19
    3.1.1 擺放角度比較 19
    3.1.2 主副雨刷關係 24
    3.2 車上主雨刷流場 25
    3.2.1 車上主雨刷流場擺放角度比較 25
    3.2.2 各部件升阻力之貢獻 27
    3.3 平面主雨刷流場 29
    3.3.1 平面主雨刷流場擺放角度比較 29
    3.3.2 各部件升阻力之貢獻 32
    3.4 車上與平面雨刷流場之關係 34
    3.4.1 完整主雨刷比較 34
    3.4.2 單獨雨刷刮片比較 38
    3.4.3 單獨雨刷臂比較 39
    3.5 雨刷各部件優化 40
    3.5.1 三維雨刷臂杆優化 40
    3.5.2二維雨刷臂杆升力優化 44
    3.5.3二維雨刷刮杆優化 48
    3.5.4 二維雨刷導流板優化 54
    3.5.5 優化改良後雨刷 57
    第4章 結論 60
    第5章 未來展望 61
    參考文獻 62

    1. 林秋豐,洪敏發,曾全佑,蔡建雄,戴昌賢,藍浚嘉,2005,「雨刷系統流場的數值分析與研究」,技術學刊 第二十卷 第四期。
    2. Seung Ho Lee, Sung Won Lee, Nahmkeon Hur , Woo-Nyoung Choi and Jin Hwan Sul, 2011, “Numerical Study on Aerodynamic Lift on Windshield Wiper of High-Speed Passenger Vehicles”. Proceedings of the Korean Society of Mechanical Engineers, Vol. B, Vol. 35, No. 4, pp. 345-352.
    3. Sebastien Jallet, Sylvain Devos, Daniel Maubray, Jean-Luc Sortais,Frédéric Marmonier and Thomas Dreher., 2001, “Numerical Simulation of Wiper System Aerodynamic Behavior”. SAE TECHNICAL PAPER SERIES 2001-01-0036.
    4. Sertaç Çadirci, Süleyman Emre Ak, Buğra Selenbas and Hasan Güneş, 2017, “Improving Aerodynamic Performance for a Reliable Wiper System”. International Journal of Automotive Engineering and Technologies, Vol. 6, Issue 1, pp. 30-40.
    5. Zhen Chen, Zhenqqi Gu, Tao Jiang, 2019, “Research on transient aerodynamic characteristics of windshield wipers of vehicles”. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 29, No. 8, pp. 2870-2884.
    6. Daniel Demel, M. Sc, Peter Kostorz, M. Eng, Thomas Schütz and Sven Grundmann, 2020, ATZ worldwide volume, pp. 54–59
    7. G. Zhengqi1, C. Zhen1 and T. Peng, “Research on the Aerodynamic Lift of Vehicle Windshield Wiper”. Journal of Applied Fluid Mechanics, Vol. 9, No. 5, pp. 2133-2140.
    8. Hunjae Kim, 2019, “A Development of the Prediction and Optimization Tool for Wiper High Speed Performance”. SAE Technical Paper 2019-01-1417.
    9. Jilesen, J., Gaylard, A., and Linden, T., 2019, “Numerical Investigation of Wiper Drawback,” SAE Technical Paper 2019-01-0640.
    10. Senthooran, S., Mutnuri, L., Amodeo, J., Powell, R. et al., 2013, “A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process”. SAE Int. J. Passeng. Cars - Mech. Syst. 6(2).
    11. Philippe Billot, Sébastien Jallet and Frédéric Marmonier, 2001, “Simulation of Aerodynamic Uplift Consequences on Pressure Repartition – Application on an Innovative Wiper Blade Design”. SAE TECHNICAL PAPER SERIES 2001-01-1043.
    12. Neuhierl, B., Schroeck, D., Senthooran, S. and Moron, P., 2014, “A Computational Aeroacoustic Study of Windshield Wiper Influence on Passenger Vehicle Greenhouse Windnoise”. SAE Technical Paper 2014-01-2051.
    13. Giovanni Lombardi, Antonio Ercoli, Marco Maganzi and Giacomo de Angeli, 2019, “COMPARISON OF TWO MULTIPHASE PROCEDURES ON A COMMERCIAL VEHICLE IN RAIN CONDITIONS”. International Journal of Automotive Technology, Vol. 20, No. 6, pp. 1123-1129.

    無法下載圖示 校外公開
    2026/08/25
    QR CODE