簡易檢索 / 詳目顯示

研究生: 許家瑋
Hsu, Chia-Wei
論文名稱: 以TiO2和Fe/TiO2覆膜光纖處理人工底泥中環丙沙星之研究
The Treatment of Ciprofloxacin in Artificial Sediment with TiO2 and Fe/TiO2 Coated Optical Fibers
指導教授: 陳冠中
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 109
語文別: 中文
論文頁數: 88
中文關鍵詞: 光催化環丙沙星人工底泥LED
外文關鍵詞: Photocatalytic, Ciprofloxacin, Artificial Sediment, LED
DOI URL: http://doi.org/10.6346/NPUST202100465
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究以光纖光催化系統處理人工合成底泥中環丙沙星,並探討在不同實驗條件下對於環丙沙星去除效率之影響。本研究選用發光二極體(Light-emitting diode, LED)作為光催化之光源,製備之鐵改質二氧化鈦(Fe/TiO2)及商業化Degussa TiO2光觸媒以SEM/EDS觀察表面特性,結果顯示Ti、O、Fe元素出現在Fe/TiO2光觸媒中並呈現均勻分佈。反射率分析儀分析其能隙變化發現,TiO2經Fe改質後明顯將波長延伸至可見光波段下,能隙由3.0 eV降低至2.6 eV。
    本研究光催化實驗採用之不同條件包括:光觸媒劑量、初始濃度、波長之光源、觸媒種類等,評估不同條件下光催化去除環丙沙星之影響。由實驗結果發現,在不同光觸媒劑量覆鍍光纖光催化時,以Fe/TiO2觸媒、劑量5 mg覆鍍為最佳條件,其底泥中環丙沙星去除率為37.4 %相較於未摻雜TiO2底泥去除率只有28.8%,提升了8.6%。在不同初始濃度條件下,以環丙沙星初始濃度1 mg/L降低至0.5 mg/L時,Fe/TiO2底泥去除率由32.5提升至37.4%,未摻雜TiO2去除率由25.8%提升28.8%,污染物初始濃度越低時,去除率則提高。在不同波長光源條件下,光催化去除底泥中環丙沙星仍以Fe/TiO2觸媒於紫外光去除效果最佳,但在可見光光源條件下,Fe/TiO2(35.5%)去除效果也比TiO2 (22.1%)提升13.4%。當以不同觸媒種類進行光催化時,不論在何種初始濃度、光源種類、觸媒劑量下,皆以Fe/TiO2觸媒有最好的去除效果。本實驗反應動力學主要以擬一階為主,在紫外光下k值為7.6×10-3 min-1,可見光下k值為6.9×10-3 min-1。
    本研究同時探討了環丙沙星在人工合成底泥的分佈情形,但Kd計算因水相濃度低於偵測極限,因此推測本研究Kd值非常大,由此結果可得知,CIP在人工合成底泥中非常容易吸附在底泥中。

    In this study, a fiber-optic photocatalytic system was used to treat ciprofloxacin in artificial sediments. The effects on the removal efficiency of ciprofloxacin under different experimental conditions were discussed. The system uses the light-emitting diode (LED) as the light source. The SEM and EDS were used to observe the surface characteristics of the prepared iron-modified titanium dioxide (Fe/TiO2) and commercial Degussa TiO2 (TiO2). It can be seen that Ti, O, and Fe are present in Fe/TiO2, and these three elements are evenly distributed in the catalyst. It proves that Fe is successfully doped in TiO2. The analysis of the energy gap shows that the modified Fe/TiO2 is easier to be excited in the visible light band than TiO2, and its energy gap decreases from 3.0 eV to 2.6 eV.
    The system varied photocatalyst dose, initial concentration, the wavelength of the light source, and catalyst type to evaluate the effect of photocatalysis on the removal of ciprofloxacin. From the experimental results, it was found that using Fe/TiO2 catalyst with 5 mg coated on optical fiber achieved the optimal removal rate of 37.4% of ciprofloxacin in the sediment. When the initial concentration of ciprofloxacin was reduced from 1 to 0.5 mg/L, the removal rate by Fe/TiO2 increased from 32.5 to 37.4%, compared to the removal rate of undoped TiO2 only increased from 25.8 to 28.8%. The lower the initial concentration of ciprofloxacin, the higher the removal rate. Using ultraviolet light as the light source obtained a better removal rate of ciprofloxacin in sediments than using visible light. However, the Fe/TiO2 (35.5%) still got better removal efficiency than TiO2 (22.1%). When performing photocatalysis with different photocatalysts, regardless of the initial concentration, type of light source, and catalyst dosage, Fe/TiO2 photocatalyst shows the best removal effect. The reaction kinetics of the photocatalytic system is mainly based on the pseudo-first-order. The k value under ultraviolet light and visible light are 7.6×10-3 min-1 and 6.9×10-3 min-1, respectively.
    This study also discussed the distribution of ciprofloxacin in artificially synthesized sediments. However, the ciprofloxacin level in the water phase is below the detection limit. It infers that the Kd value is very large and the ciprofloxacin is easy to adsorb in the sediments.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    表目錄 IX
    圖目錄 X
    第一章 前言 1
    1.1 研究緣起 1
    1.2 研究目的 3
    第二章 文獻回顧 4
    2.1 環丙沙星 4
    2.1.1 特性與應用 4
    2.1.2 使用情形 6
    2.1.3 污染情形 8
    2.2 處理技術 12
    2.2.1 吸附法 12
    2.2.2 生物法 13
    2.2.3 臭氧化法 13
    2.2.4 芬頓法(Fenton) 14
    2.2.5 光催化處理 16
    2.3 光催化技術 16
    2.3.1 光纖 19
    2.4 觸媒種類 19
    2.4.1 二氧化鈦 20
    2.4.2 金屬摻雜二氧化鈦 21
    2.5 能隙 22
    2.6 光源 23
    第三章 材料與方法 24
    3.1 實驗規劃 24
    3.2 材料與儀器 25
    3.2.1 藥品 25
    3.2.2 儀器 26
    3.3 實驗流程規劃 27
    3.4 Fe/TiO2 觸媒製備 29
    3.5 觸媒特性分析 30
    3.5.1 掃描電子顯微鏡(Scanning Electron Microscope, SEM) 30
    3.5.2 X-光繞射儀(X-ray diffraction, XRD) 30
    3.5.3 積分球式紫外光可見光分光光度計(UV-Vis Diffuse Reflectance Spectroscopy, DRS) 30
    3.5.4 能隙 30
    3.6 光催化反應動力學 31
    3.7 批次實驗 31
    3.8 光纖光催化實驗 33
    3.8.1 底泥配製 33
    3.8.2 受污染之底泥配製 33
    3.8.3 人工合成底泥中CIP的光催化降解 34
    3.9 CIP分析方法 37
    3.10 數據之品保品管(QA/QC) 39
    3.10.1方法偵測極限 39
    3.11分配係數 40
    3.12 統計分析 40
    第四章 結果與討論 41
    4.1 觸媒特性分析 41
    4.1.1 SEM 41
    4.1.2 EDS 43
    4.1.3 XRD 45
    4.1.4 DRS 46
    4.2 批次實驗 48
    4.2.1 光解作用 48
    4.2.2 不同波長光源對於環丙沙星濃度去除之影響 50
    4.2.3 觸媒添加劑量對環丙沙星濃度去除之影響 52
    4.2.4 不同觸媒對於環丙沙星濃度去除之影響 55
    4.3 反應動力學 57
    4.4 光纖光催化系統實驗 58
    4.4.1 光解作用 59
    4.4.2 光源種類對於光催化環丙沙星之影響 61
    4.4.3 不同觸媒劑量對環丙沙星降解影響 62
    4.4.4 初始濃度對環丙沙星去除效率探討 64
    4.4.5 不同觸媒對環丙沙星濃度變化影響 65
    4.5 分佈係數 67
    第五章 結論與建議 68
    5.1 結論 68
    5.2 建議 69
    參考文獻 70
    附錄 84

    王智龍,2014,典寶溪底泥中鄰苯二甲酸酯類及藥物類流布調查及新穎整治技術開發,碩士論文,國立中山大學,環境工程研究所,高雄。
    李柏翰,2018,紫外光/可見光催化含鐵二氧化鈦降解乙醯胺酚之研究,國立屏東科技大學,環境工程與科學系,屏東。
    何昆圃,2018,環丙沙星抗生素於高嶺土懸浮水體中之光降解機制,碩士論文,台灣大學,環境工程學研究所,台北。
    孫嘉鴻,2014,「半導體與發光原理」,科學研習,53-5。
    CDC,2017,106年特約醫療院所申報藥品數量統計,衛福部食藥署。
    Adriaenssens, N., Coenen, S., Versporten, A., Muller, A., Minalu, G., Faes, C., Vankerckhoven, V., Aerts, M., Hens, N., Molenberghs, G., Goossens, H., & Group, E. P. (2011). European Surveillance of Antimicrobial Consumption (ESAC): outpatient quinolone use in Europe (1997-2009). J Antimicrob Chemother, 66 Suppl 6, vi47-56.
    Afzal, M. Z., Yue, R., Sun, X.-F., Song, C., & Wang, S.-G. (2019). Enhanced removal of ciprofloxacin using humic acid modified hydrogel beads. Journal of Colloid and Interface Science, 543, 76-83.
    Agunbiade, F. O., & Moodley, B. (2016). Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa Environmental Toxicology and Chemistry, 35(1), 36-46.
    Agunbiade, F. O., & Moodley, B. (2016). Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ Toxicol Chem, 35(1), 36-46.
    Ahmadzadeh, S., Asadipour, A., Pournamdari, M., Behnam, B., Rahimi, H. R., & Dolatabadi, M. (2017). Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process Safety and Environmental Protection, 109, 538-547.
    Al-Riyami, I. M., Ahmed, M., Al-Busaidi, A., & Choudri, B. S. (2018). Antibiotics in wastewaters: a review with focus on Oman. Applied Water Science, 8(7).
    Alsager, O. A., Alnajrani, M. N., Abuelizz, H. A., & Aldaghmani, I. A. (2018). Removal of antibiotics from water and waste milk by ozonation: kinetics, byproducts, and antimicrobial activity. Ecotoxicol Environ Saf, 158, 114-122.
    AMR,(2018). AMR Industry Alliance Antibiotic Discharge Targets List of Predicted No-Effect Concentrations (PNECs).
    Andreozzi, R., Marotta, R., & Paxéus, N. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment [Article]. Chemosphere, 50(10), 1319-1330.
    Asgari, E., Sheikhmohammadi, A., Nourmoradi, H., Nazari, S., & Aghanaghad, M. (2021). Degradation of ciprofloxacin by photocatalytic ozonation process under irradiation with UVA: Comparative study, performance and mechanism. Process Safety and Environmental Protection, 147, 356-366.
    Asiltürk, M., Sayılkan, F., & Arpaç, E. (2009). Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 203(1), 64-71.
    Azanu, D., Styrishave, B., Darko, G., Weisser, J. J., & Abaidoo, R. C. (2018). Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Science of The Total Environment, 622-623, 293-305.
    Azanu, D., Styrishave, B., Darko, G., Weisser, J. J., & Abaidoo, R. C. (2018). Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci Total Environ, 622-623, 293-305.
    Basturk, I., Varank, G., Murat-Hocaoglu, S., Yazici-Guvenc, S., Can-Güven, E., Oktem-Olgun, E. E., & Canli, O. (2021). Simultaneous degradation of cephalexin, ciprofloxacin, and clarithromycin from medical laboratory wastewater by electro-Fenton process. Journal of Environmental Chemical Engineering, 9(1).
    Bengtsson-Palme, J., & Larsson, D. G. (2016). Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int, 86, 140-149.
    Boruah, P. K., Sharma, B., Karbhal, I., Shelke, M. V., & Das, M. R. (2017). Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. Journal of Hazardous Materials, 325, 90-100.
    Burda, C., Lou, Y., Chen, X., Samia, A. C. S., Stout, J., & Gole, J. L. (2003). Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Letters, 3(8), 1049-1051.
    Castiglioni, S., Pomati, F., Miller, K., Burns, B. P., Zuccato, E., Calamari, D., & Neilan, B. A. (2008). Novel homologs of the multiple resistance regulator marA in antibiotic-contaminated environments. Water Res, 42(16), 4271-4280.
    Chen, J., Shen, S., Guo, P., Wang, M., Wu, P., Wang, X., & Guo, L. (2014). In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 152-153, 335-341.
    Chen, M., Dai, Y., Guo, J., Yang, H., Liu, D., & Zhai, Y. (2019). Solvothermal synthesis of biochar@ZnFe2O4/BiOBr Z-scheme heterojunction for efficient photocatalytic ciprofloxacin degradation under visible light. Applied Surface Science, 493, 1361-1367.
    Chen, S. L., Wang, A. J., Dai, C., Benziger, J. B., & Liu, X. C. (2014). The effect of photonic band gap on the photo-catalytic activity of nc-TiO2/SnO2 photonic crystal composite membranes. Chemical Engineering Journal, 249, 48-53.
    Choi, W., Termin, A., & Hoffmann, M. R. (1994). The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry, 98(51), 13669-13679.
    Costanzo, S. D., Murby, J., & Bates, J. (2005). Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull, 51(1-4), 218-223.
    Danner, M.-C., Robertson, A., Behrends, V., & Reiss, J. (2019). Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of The Total Environment, 664, 793-804.
    De Witte, B., Dewulf, J., Demeestere, K., & Van Langenhove, H. (2009). Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water. J Hazard Mater, 161(2-3), 701-708.
    Dogan, A., Płotka-Wasylka, J., Kempińska-Kupczyk, D., Namieśnik, J., & Kot-Wasik, A. (2020). Detection, identification and determination of chiral pharmaceutical residues in wastewater: Problems and challenges. TrAC Trends in Analytical Chemistry, 122.
    El-Kemary, M., El-Shamy, H., & El-Mehasseb, I. (2010). Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. Journal of Luminescence, 130(12), 2327-2331.
    Feitosa-Felizzola, J., & Chiron, S. (2009). Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France). Journal of Hydrology, 364(1-2), 50-57.
    Gad-Allah, T. A., Ali, M. E., & Badawy, M. I. (2011). Photocatalytic oxidation of ciprofloxacin under simulated sunlight. J Hazard Mater, 186(1), 751-755.
    Girardi, C., Greve, J., Lamshoft, M., Fetzer, I., Miltner, A., Schaffer, A., & Kastner, M. (2011). Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J Hazard Mater, 198, 22-30.
    Githinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the Fate of Ciprofloxacin and Amoxicillin in Domestic Wastewater. Water, Air, & Soil Pollution, 219(1), 191-201.
    Golet, E. M., Alder, A. C., & Giger, W. (2002). Environmental Exposure and Risk Assessment of Fluoroquinolone Antibacterial Agents in Wastewater and River Water of the Glatt Valley Watershed, Switzerland. Environmental Science & Technology, 36(17), 3645-3651.
    Golet, E. M., Xifra, I., Siegrist, H., Alder, A. C., & Giger, W. (2003). Environmental Exposure Assessment of Fluoroquinolone Antibacterial Agents from Sewage to Soil. Environmental Science & Technology, 37(15), 3243-3249.
    Gothwal, R., & Shashidhar, T. (2015). Antibiotic Pollution in the Environment: A Review. CLEAN – Soil, Air, Water, 43(4), 479-489.
    Govindaraj, T., Mahendran, C., Manikandan, V. S., Archana, J., Shkir, M., & Chandrasekaran, J. (2021). Fabrication of WO3 nanorods/RGO hybrid nanostructures for enhanced visible-light-driven photocatalytic degradation of Ciprofloxacin and Rhodamine B in an ecosystem. Journal of Alloys and Compounds, 868.
    Gracia-Lor, E., Sancho, J. V., & Hernandez, F. (2011). Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A, 1218(16), 2264-2275.
    Gupta, A., & Garg, A. (2018). Degradation of ciprofloxacin using Fenton's oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment. Chemosphere, 193, 1181-1188.
    Guzel Kaya, G., Aznar, E., Deveci, H., & Martínez-Máñez, R. (2021). Low-cost silica xerogels as potential adsorbents for ciprofloxacin removal. Sustainable Chemistry and Pharmacy, 22.
    Habibi-Yangjeh, A., Asadzadeh-Khaneghah, S., Feizpoor, S., & Rouhi, A. (2020). Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses? J Colloid Interface Sci, 580, 503-514.
    Halling-Sørensen, B., Lützhøft, H. C. H., Andersen, H. R., & Ingerslev, F. (2000). Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. Journal of Antimicrobial Chemotherapy, 46(suppl_1), 53-58.
    Han, J., Liu, Y., Singhal, N., Wang, L., & Gao, W. (2012). Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chemical Engineering Journal, 213, 150-162.
    Hosny, N. M. (2011). Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron, 30(3), 470-476.
    Hu, Y., Tsai, H. L., & Huang, C. L. (2003). Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. Journal of the European Ceramic Society, 23(5), 691-696.
    Jia, Y., Khanal, S. K., Shu, H., Zhang, H., Chen, G. H., & Lu, H. (2018). Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways. Water Res, 136, 64-74.
    Jimenez-Salcedo, M., Monge, M., & Tena, M. T. (2020). Study of intermediate by-products and mechanism of the photocatalytic degradation of ciprofloxacin in water using graphitized carbon nitride nanosheets. In Chemosphere (2020/02/20 ed., Vol. 247, pp. 125910).
    Kalhori, E. M., Al-Musawi, T. J., Ghahramani, E., Kazemian, H., & Zarrabi, M. (2017). Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles: Studies on the kinetic, isotherm, and effects of environmental parameters. Chemosphere, 175, 8-20.
    Karthikeyan, K. G., & Meyer, M. T. (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ, 361(1-3), 196-207.
    Koelsch, M., Cassaignon, S., Guillemoles, J. F., & Jolivet, J. P. (2002). Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method. Thin Solid Films, 403-404, 312-319.
    Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000:  A National Reconnaissance. Environmental Science & Technology, 36(6), 1202-1211.
    Kong, Y., Wang, L., Ge, Y., Su, H., & Li, Z. (2019). Lignin xanthate resin-bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. J Hazard Mater, 368, 33-41.
    Larsson, D. G., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater, 148(3), 751-755.
    Li, B., Zhang, Z., Ma, Y., Li, Y., Zhu, C., & Li, H. (2019). Electrokinetic remediation of antibiotic-polluted soil with different concentrations of tetracyclines. Environ Sci Pollut Res Int, 26(8), 8212-8225.
    Li, S., Shi, W., Liu, W., Li, H., Zhang, W., Hu, J., Ke, Y., Sun, W., & Ni, J. (2018). A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016). Sci Total Environ, 615, 906-917.
    Li, Y., Chen, L., Tian, X., Lin, L., Ding, R., Yan, W., & Zhao, F. (2021). Functional role of mixed-culture microbe in photocatalysis coupled with biodegradation: Total organic carbon removal of ciprofloxacin. Sci Total Environ, 784, 147049.
    Li, Z., Chen, M., Zhang, Q., & Tao, D. (2020). Mechanochemical synthesis of a Z-scheme Bi2WO6/CuBi2O4 heterojunction and its visible-light photocatalytic degradation of ciprofloxacin. Journal of Alloys and Compounds, 845.
    Liao, X., Li, B., Zou, R., Dai, Y., Xie, S., & Yuan, B. (2016). Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure. Environ Sci Pollut Res Int, 23(8), 7911-7918.
    Lin, C.-C., & Wu, M.-S. (2014). Degradation of ciprofloxacin by UV/S2O82− process in a large photoreactor. Journal of Photochemistry and Photobiology A: Chemistry, 285, 1-6.
    Lin, L., Wang, H., Jiang, W., Mkaouar, A. R., & Xu, P. (2017). Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. Journal of Hazardous Materials, 333, 162-168.
    Lin, L., Wang, H., Luo, H., & Xu, P. (2015). Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. Journal of Photochemistry and Photobiology A: Chemistry, 307-308, 88-98.
    Lin, L., Wang, H., & Xu, P. (2017). Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals. Chemical Engineering Journal, 310, 389-398.
    Lin, L., Yuan, S., Chen, J., Wang, L., Wan, J., & Lu, X. (2010). Treatment of chloramphenicol-contaminated soil by microwave radiation. Chemosphere, 78(1), 66-71.
    Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758.
    Liu, Q., Shen, J., Yang, X., Zhang, T., & Tang, H. (2018). 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Applied Catalysis B: Environmental, 232, 562-573.
    Liu, X., Xie, L., Liu, Y., Zhao, P., Han, Y., Cheng, S., Bai, X., & Li, Y. (2020). Rapid preparation of highly stable ZnO-CeO2/CF cathode by one-step electro-deposition for efficient degradation of ciprofloxacin in electro-Fenton system. Catalysis Today, 355, 458-465.
    Liu, X., Zhang, G., Liu, Y., Lu, S., Qin, P., Guo, X., Bi, B., Wang, L., Xi, B., Wu, F., Wang, W., & Zhang, T. (2019). Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ Pollut, 246, 163-173.
    Locatelli, M. A., Sodre, F. F., & Jardim, W. F. (2011). Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry. Arch Environ Contam Toxicol, 60(3), 385-393.
    Lu, J., Sun, J., Chen, X., Tian, S., Chen, D., He, C., & Xiong, Y. (2019). Efficient mineralization of aqueous antibiotics by simultaneous catalytic ozonation and photocatalysis using MgMnO3 as a bifunctional catalyst. Chemical Engineering Journal, 358, 48-57.
    Madikizela, L. M., Tavengwa, N. T., & Chimuka, L. (2017). Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. J Environ Manage, 193, 211-220.
    Mahmood, A. R., Al-Haideri, H. H., & Hassan, F. M. (2019). Detection of Antibiotics in Drinking Water Treatment Plants in Baghdad City, Iraq. Advances in Public Health, 2019, 1-10.
    Majumder, A., Gupta, B., & Gupta, A. K. (2019). Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. Environ Res, 176, 108542.
    Majumder, S., Chatterjee, S., Basnet, P., & Mukherjee, J. (2020). ZnO based nanomaterials for photocatalytic degradation of aqueous pharmaceutical waste solutions – A contemporary review. Environmental Nanotechnology, Monitoring & Management, 14, 100386.
    Malakootian, M., Gharaghani, M. A., Dehdarirad, A., Khatami, M., Ahmadian, M., Heidari, M. R., & Mahdizadeh, H. (2019). ZnO nanoparticles immobilized on the surface of stones to study the removal efficiency of 4-nitroaniline by the hybrid advanced oxidation process (UV/ZnO/O3). Journal of Molecular Structure, 1176, 766-776.
    Manasa, M., Chandewar, P. R., & Mahalingam, H. (2021). Photocatalytic degradation of ciprofloxacin & norfloxacin and disinfection studies under solar light using boron & cerium doped TiO2 catalysts synthesized by green EDTA-citrate method. Catalysis Today, 375, 522-536.
    Manchala, S., Gandamalla, A., Vempuluru, N. R., Muthukonda Venkatakrishnan, S., & Shanker, V. (2021). High potential and robust ternary LaFeO3/CdS/carbon quantum dots nanocomposite for photocatalytic H2 evolution under sunlight illumination. J Colloid Interface Sci, 583, 255-266.
    Manea, Y. K., Khan, A. M. T., Qashqoosh, M. T. A., Wani, A. A., & Shahadat, M. (2019). Ciprofloxacin-supported chitosan/polyphosphate nanocomposite to bind bovine serum albumin: Its application in drug delivery. Journal of Molecular Liquids, 292.
    Marti, E., Huerta, B., Rodriguez-Mozaz, S., Barcelo, D., Jofre, J., & Balcazar, J. L. (2014). Characterization of ciprofloxacin-resistant isolates from a wastewater treatment plant and its receiving river. Water Res, 61, 67-76.
    Martinez-Carballo, E., Gonzalez-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut, 148(2), 570-579.
    Martins, A. F., Vasconcelos, T. G., Henriques, D. M., Frank, C. d. S., König, A., & Kümmerer, K. (2008). Concentration of Ciprofloxacin in Brazilian Hospital Effluent and Preliminary Risk Assessment: A Case Study CLEAN – Soil, Air, Water, 36(3), 264-269.
    Miao, X.-S., Bishay, F., Chen, M., & Metcalfe, C. D. (2004). Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada. Environmental Science & Technology, 38(13), 3533-3541.
    Mirzaei, R., Yunesian, M., Nasseri, S., Gholami, M., Jalilzadeh, E., Shoeibi, S., & Mesdaghinia, A. (2018). Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci Total Environ, 619-620, 446-459.
    Ngumba, E., Gachanja, A., & Tuhkanen, T. (2016). Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Sci Total Environ, 539, 206-213.
    Moradi, Halimeh, Akbar Eshaghi, Seyed Rahman Hosseini, and Kamal Ghani. 2016. 'Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation', Ultrasonics Sonochemistry, 32: 314-19.
    Nguyen, T.-V., & Wu, J. C. S. (2008). Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier. Applied Catalysis A: General, 335(1), 112-120.
    Nguyen, T.-V., Wu, J. C. S., & Chiou, C.-H. (2008). Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catalysis Communications, 9(10), 2073-2076.
    O'Neal Tugaoen, H., Garcia-Segura, S., Hristovski, K., & Westerhoff, P. (2018). Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Sci Total Environ, 613-614, 1331-1338.
    OECD.2006. Sediment-water Lumbriculus Toxicity Test Using Spiked Sediment.
    Ostman, M., Lindberg, R. H., Fick, J., Bjorn, E., & Tysklind, M. (2017). Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res, 115, 318-328.
    Palacio, D. A., Rivas, B. L., & Urbano, B. F. (2018). Ultrafiltration membranes with three water-soluble polyelectrolyte copolymers to remove ciprofloxacin from aqueous systems. Chemical Engineering Journal, 351, 85-93.
    Pan, L. J., Li, J., Li, C. X., Tang, X. D., Yu, G. W., & Wang, Y. (2018). Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. J Hazard Mater, 343, 59-67.
    Perini, J. A. L., Tonetti, A. L., Vidal, C., Montagner, C. C., & Nogueira, R. F. P. (2018). Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation. Applied Catalysis B: Environmental, 224, 761-771.
    Pozan, G. S., & Kambur, A. (2014). Significant enhancement of photocatalytic activity over bifunctional ZnO–TiO2 catalysts for 4-chlorophenol degradation. Chemosphere, 105, 152-159.
    Praveen, C. S., Timon, V., & Valant, M. (2012). Electronic band gaps of ternary corundum solid solutions from Fe2O3–Cr2O3–Al2O3 system for photocatalytic applications: A theoretical study. Computational Materials Science, 55, 192-198.
    Rabhi, S., Belkacemi, H., Bououdina, M., Kerrami, A., Ait Brahem, L., & Sakher, E. (2019). Effect of Ag doping of TiO2 nanoparticles on anatase-rutile phase transformation and excellent photodegradation of amlodipine besylate. Materials Letters, 236, 640-643.
    Rahmani, A. R., Nematollahi, D., Samarghandi, M. R., Samadi, M. T., & Azarian, G. (2018). A combined advanced oxidation process: Electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution. Journal of Electroanalytical Chemistry, 808, 82-89.
    Rathore, N., Shukla, R. K., Dubey, K. C., & Kulshreshtha, A. (2020). Synthesis of undoped and Fe doped nanoparticles of TiO2 via co-precipitation technique and their characterizations. Materials Today: Proceedings, 29, 861-865.
    Renew, J. E., & Huang, C. H. (2004). Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry. J Chromatogr A, 1042(1-2), 113-121.
    Richardson, S. D., & Kimura, S. Y. (2017). Emerging environmental contaminants: Challenges facing our next generation and potential engineering solutions. Environmental Technology & Innovation, 8, 40-56.
    Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sanchez-Melsio, A., Borrego, C. M., Barcelo, D., & Balcazar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res, 69, 234-242.
    Rosendahl, I., Siemens, J., Kindler, R., Groeneweg, J., Zimmermann, J., Czerwinski, S., Lamshöft, M., Laabs, V., Wilke, B.-M., Vereecken, H., & Amelung, W. (2012). Persistence of the Fluoroquinolone Antibiotic Difloxacin in Soil and Lacking Effects on Nitrogen Turnover Journal of Environmental Quality, 41(4), 1275-1283.
    Saadati, F., Keramati, N., & Ghazi, M. M. (2016). Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review. Critical Reviews in Environmental Science and Technology, 46(8), 757-782.
    Safari, M., Nikazar, M., & Dadvar, M. (2013). Photocatalytic degradation of methyl tert-butyl ether (MTBE) by Fe-TiO2 nanoparticles. Journal of Industrial and Engineering Chemistry, 19(5), 1697-1702.
    Seifrtova, M., Pena, A., Lino, C. M., & Solich, P. (2008). Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection. Anal Bioanal Chem, 391(3), 799-805.
    Shayegan, Z., Haghighat, F., & Lee, C.-S. (2021). Anatase/brookite biphasic surface fluorinated Fe–TiO2 photocatalysts to enhance photocatalytic removal of VOCs under visible and UV light. Journal of Cleaner Production, 287.
    Shokoohi, R., Almasi, H., Sedighi, M., Daraee, Z., & Akbari, S. (2017). Application of a Moving Bed Biofilm Reactor in Removal of Ciprofloxacin From Real Hospital Effluent: Effect of Operational Conditions. Avicenna J Environ Health Eng, 4(2), 19-23.
    Szekeres, E., Chiriac, C. M., Baricz, A., Szoke-Nagy, T., Lung, I., Soran, M. L., Rudi, K., Dragos, N., & Coman, C. (2018). Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environ Pollut, 236, 734-744.
    Tekin, D., Birhan, D., & Kiziltas, H. (2020). Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Materials Chemistry and Physics, 251.
    Van Doorslaer, X., Dewulf, J., Van Langenhove, H., & Demeestere, K. (2014). Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ, 500-501, 250-269.
    Vasudevan, D., Bruland, G. L., Torrance, B. S., Upchurch, V. G., & MacKay, A. A. (2009). pH-dependent ciprofloxacin sorption to soils: Interaction mechanisms and soil factors influencing sorption. Geoderma, 151(3-4), 68-76.
    Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review. Sci Total Environ, 429, 123-155.
    Wang, H., Li, J., Huo, P., Yan, Y., & Guan, Q. (2016). Preparation of Ag2O/Ag2CO3/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation. Applied Surface Science, 366, 1-8.
    Wang, J., & Bai, Z. (2017). Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chemical Engineering Journal, 312, 79-98.
    Wang, J., & Zhuan, R. (2020). Degradation of antibiotics by advanced oxidation processes: An overview. Sci Total Environ, 701, 135023.
    Wang, J. A., Limas-Ballesteros, R., López, T., Moreno, A., Gómez, R., Novaro, O., & Bokhimi, X. (2001). Quantitative Determination of Titanium Lattice Defects and Solid-State Reaction Mechanism in Iron-Doped TiO2 Photocatalysts. The Journal of Physical Chemistry B, 105(40), 9692-9698.
    Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ, 407(8), 2711-2723.
    Xiao, G., Huang, X., Liao, X., & Shi, B. (2013). One-Pot Facile Synthesis of Cerium-Doped TiO2 Mesoporous Nanofibers Using Collagen Fiber As the Biotemplate and Its Application in Visible Light Photocatalysis. The Journal of Physical Chemistry C, 117(19), 9739-9746.
    Yalçın, Y., Kılıç, M., & Çınar, Z. (2010). Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Applied Catalysis B: Environmental, 99(3-4), 469-477.
    Yang, W., Zhou, M., Oturan, N., Li, Y., & Oturan, M. A. (2019). Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode. Electrochimica Acta, 305, 285-294.
    Yargeau, V., & Leclair, C. (2008). Impact of Operating Conditions on Decomposition of Antibiotics During Ozonation: A Review. Ozone: Science & Engineering, 30(3), 175-188.
    Zhanel, G. G., Fontaine, S., Adam, H., Schurek, K., Mayer, M., Noreddin, A. M., Gin, A. S., Rubinstein, E., & Hoban, D. J. (2006). A Review of New Fluoroquinolones. Treatments in Respiratory Medicine, 5(6), 437-465.
    Zhang, C.-L., Guo, X.-L., Li, B.-Y., & Wang, Y. (2012). Biodegradation of ciprofloxacin in soil. Journal of Molecular Liquids, 173, 184-186.
    Zhang, Q.-Q., Ying, G.-G., Pan, C.-G., Liu, Y.-S., & Zhao, J.-L. (2015). Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environmental Science & Technology, 49(11), 6772-6782.
    Zhang, Q., Chen, P., Tan, C., Chen, T., Zhuo, M., Xie, Z., Wang, F., Liu, H., Cai, Z., Liu, G., & Lv, W. (2018). A photocatalytic degradation strategy of PPCPs by a heptazine-based CN organic polymer (OCN) under visible light [10.1039/C8EN00608C]. Environmental Science: Nano, 5(10), 2325-2336.
    Zhang, S., Chen, L., Liu, H., Guo, W., Yang, Y., Guo, Y., & Huo, M. (2012). Design of H3PW12O40/TiO2 and Ag/H3PW12O40/TiO2 film-coated optical fiber photoreactor for the degradation of aqueous rhodamine B and 4-nitrophenol under simulated sunlight irradiation. Chemical Engineering Journal, 200-202, 300-309.

    無法下載圖示 校外公開
    2026/08/29
    QR CODE