簡易檢索 / 詳目顯示

研究生: 鄭子端
Zu-Duan Cheng
論文名稱: 瘤胃真菌纖維素水解酶C15於酵母菌的異源表現及其重組蛋白之特性分析
Heterologous expression and biochemical characterization of rumen fungus cellulase C15
指導教授: 鄭雪玲
Hsueh-Ling Cheng
學位類別: 碩士
Master
系所名稱: 農學院 - 生物科技系
Department of Biological Science and Technology
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: 台灣黃牛瘤胃真菌內切型纖維素水解酶畢赤酵母菌濾紙分解
外文關鍵詞: Orpinomyces sp, endo-glucanose, cellulose-based wastes
DOI URL: http://doi.org/10.6346/NPUST202100486
相關次數: 點閱:40下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 由瘤胃微生物基因體中所選殖而來的纖維素水解酶經常具有高活性。團隊於前期研究中,由台灣黃牛的瘤胃真菌(Orpinomyces sp)中選殖出一個基因,經由序列比對及預測,推測可能是一個內切型纖維素水解酶(endoglucanase),稱之為c15。本研究的目的是分析C15是否為一個內切型纖維素水解酶,並研究其催化活性及生化特性,以評估其應用於降解纖維素的潛力。方法是將c15表現於畢赤酵母(Pichia pastoris) SMD1168H,結果發現C15能成功大量表現於SMD1168H的胞外且純度大於85%。經過Ni-NTA 親和管柱純化後,分析其活性,發現可水解barley β-glucan達比活性(specific activity) 4762.05 units/mg。以薄層層析(TLC)分析其水解產物,發現可產生多種聚合度的寡糖(oligosaccharides),證明C15為內切型纖維素水解酶,但其最小的基值(substrate)是纖維三糖。分析C15之反應條件,發現最佳反應溫度及pH值分別是50℃及pH 5.5 (citrate buffer)。分析C15的耐酸鹼性及耐熱性,發現C15可耐受pH 2.0 ~ pH 12.0,但55℃處理十分鐘以上即失去活性,所以C15有高酸鹼耐受性,但不是一株耐熱的酵素。C15於2%甲醇或乙醇存在下,可維持80%以上的活性;至甲醇或乙醇增加至7%,則活性降至50%以下。C15於0.5%SDS存在下活性為15.4 ± 2.1%;於1%或更高濃度之SDS中則完全失去活性。基質專一性分析顯示C15只催化glucose β-1-4鍵結的水解,對glucose β-1-3鍵結或α-1-4鍵結均無活性。對xylan也無活性。由酵素動力學的分析得知,C15的Vmax為0.88 ± 0.05 mM/min (相當於6603.64 ± 375.9 units/mg),KM值為7.88 ± 0.75 mg/mL,kcat為6152.30 ± 343.00 s-1。以濾紙水解評估C15分解纖維素的能力,證實C15能明顯降解濾紙。綜合而言,C15是一株高活性的內切型纖維素水解酶,具有降解纖維素及寡糖的能力,可應用於纖維素分解的相關產業。

    Cellulases cloned from rumen microorganisms were often demonstrated to possess high activities. Previously, a gene designated c15 was cloned from a bovine rumen fungus (Orpinomyces sp). Based on sequence analysis, it was speculated to be an endocellulase. Therefore, the purpose of this study is to characterize the biochemical properties of C15 and to evaluate its potential in degrading cellulose for industrial purposes. The open reading frame of c15 was transformed into Pichia pastoris SMD1168H. Consequently, C15 was successfully over-expressed by SMD1168H extracellularly. After purification with Ni-NTA affinity chromatography, the purified C15 was found to have a specific activity of 4762.05 units/mg using barley β-glucan as a substrate. The hydrolytic products of C15 were found to be oligosaccharides of different molecular weights when analyzed used thin-layer chromatography, suggesting that C15 is an endo-cellulase. The smallest substrate that can be digested by C15 cellotriose. Furthermore, the optimal reaction pH and temperature for C15 pH 5.5 (citrate buffer) and 50℃, respectively. C15 can tolerate pH 2.0 ~ pH 12.0, but lost activity at 55℃ or higher temperature for 10 min. Thus, C15 is not a thermophilic enzyme. C15 maintained over 80% activity in 2% methanol or ethanol, whereas in 7% methanol or ethanol, C15 maintained less than 50% activity. In 0.5% SDS, C15 remained 15.4 ± 2.1% activity, and completely lost its activity in 1% or higher concentrations of SDS. For substrate specificity, C15 could only catalyze the hydrolysis of glucose β-1-4 linkage, not glucose β-1-3 or α-1-4 linkage, and not xylan. Kinetic analysis revealed that the Vmax of C15 is 0.88 ± 0.05 mM/min ( 6603.64 ± 375.9 units/mg), KM is 7.88 ± 0.75 mg/mL, kcat is 6152.30 ± 343.00 s-1. Moreover, filter paper analysis demonstrated that C15 could hydrolyze filter paper, suggesting that it can hydrolysis cellulose. In summary, C15 is a highly active endo-cellulase that can hydrolysis cellulose and oligosaccharides. C15 may be applied in industries associated with cellulose degradation.

    中文摘要 I
    Abstract II
    誌謝 IV
    目錄 V
    圖表目錄 VIII
    1.1 研究背景 1
    1.2 研究目的與架構 2
    1.3 研究成果的重要性與可能應用 3
    第二章 文獻回顧 4
    2.1纖維素 4
    2.2纖維素水解酶 6
    2.2.1 內切型纖維素水解酶(endo-β-1,4-ᴅ-glucanase;E.C 3.2.1.4) 6
    2.2.2 外切型纖維素水解酶(exo-β-1,4-ᴅ-glucanase;E.C 3.2.1.91 or 21) 6
    2.2.3 β-葡萄糖苷酶(β-1,4-ᴅ-glucosidase;E.C 3.2.1.21) 7
    2.3 纖維素水解酶分類及構造 9
    2.3.1 醣類水解酶家族 9
    2.3.2醣類結合模組(Carbohydrate binding module, CBM)分類 9
    2.4 Pichia pastoris 胞外表達系統 11
    2.4.1 Pichia pastoris表達載體 12
    2.4.2 Pichia pastoris品系 12
    2.5 纖維素水解酶之運用 14
    2.5.1 畜牧之運用 14
    2.5.2 農業之運用 14
    2.5.3纖維寡糖的生產 15
    2.5.4生質酒精的生產 15
    第三章 材料與方法 17
    3.1 實驗材料 17
    3.1.1 蛋白質合成 17
    3.1.2 酵母菌菌株 17
    3.1.3 培養用試劑 17
    3.1.4 蛋白質分析用試劑 19
    3.1.5 蛋白質電泳分析之膠體 20
    3.1.6 蛋白質分子量標記 21
    3.1.7 抗體 (antibody) 21
    3.1.8 Ni-NTA純化用試劑 21
    3.1.9 Ni-NTA管柱再生用試劑 (管柱體積30 mL) 22
    3.1.10 薄層層析呈色液 23
    3.1.11 酵素反應之受質 23
    3.1.12 主要儀器及設備 23
    3.2 實驗方法 25
    3.2.1 C15酵母菌表現株之篩選 25
    3.2.2 酵母菌培養 25
    3.2.3 C15的純化 25
    3.2.4純化後C15之透析 26
    3.2.5 C15活性分析(DNS法) 26
    3.2.6 C15最佳反應溫度分析 27
    3.2.7 C15最佳反應pH值分析 27
    3.2.8 C15熱穩定性分析 27
    3.2.9 C15 pH穩定性分析 27
    3.2.10 有機溶劑耐受性分析 27
    3.2.11 介面活性劑耐受性分析 28
    3.2.12 TLC產物分析 28
    3.2.13 C15酵素動力學 29
    3.2.14 濾紙分解試驗 29
    3.2.15 受質特異性分析 29
    3.2.16 統計分析 29
    第四章 結果 30
    4.1 c15序列分析 30
    4.2分析 c15/SMD1168H之適當誘導時間 30
    4.3 C15的大量表達及純化 30
    4.4 C15最佳反應條件分析 31
    4.5 C15的穩定性分析 31
    4.6 分析C15是否為內切型纖維素水解酶 32
    4.7 酵素動力學 32
    4.8 濾紙試驗 32
    4.9 受質特異性 33
    第五章 討論 50
    第六章 結論 56
    參考文獻 57
    附錄1:pPICZα A,B,C載體圖譜 (Thermo Fisher Scientific) 68

    Ahmad, M., Hirz, M., Pichler, H., & Schwab, H. (2014). Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied microbiology and biotechnology, 98(12), 5301-5317.

    Ávila, P. F., Silva, M. F., Martins, M., & Goldbeck, R. (2021). Cello-oligosaccharides production from lignocellulosic biomass and their emerging prebiotic applications. World Journal of Microbiology and Biotechnology, 37(5), 1-11.

    Bhat, M., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology advances, 15(3-4), 583-620.

    Blake, A. W., McCartney, L., Flint, J. E., Bolam, D. N., Boraston, A. B., Gilbert, H. J., & Knox, J. P. (2006). Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. Journal of Biological Chemistry, 281(39), 29321-29329.

    Buchholz, K., Kasche, V., & Bornscheuer, U. T. (2012). Biocatalysts and enzyme technology: John Wiley & Sons.

    Cereghino, J. L., & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS microbiology reviews, 24(1), 45-66.

    Chen, X., Li, W., Ji, P., Zhao, Y., Hua, C., & Han, C. (2018). Engineering the conserved and noncatalytic residues of a thermostable β-1, 4-endoglucanase to improve specific activity and thermostability. Scientific reports, 8(1), 1-10.

    Chen, Y.-C., Chen, W.-T., Liu, J.-C., Tsai, L.-C., & Cheng, H.-L. (2014). A highly active beta-glucanase from a new strain of rumen fungus Orpinomyces sp. Y102 exhibits cellobiohydrolase and cellotriohydrolase activities. Bioresource technology, 170, 513-521.

    Chen, Y.-C., Chiang, Y.-C., Hsu, F.-Y., Tsai, L.-C., & Cheng, H.-L. (2012). Structural modeling and further improvement in pH stability and activity of a highly-active xylanase from an uncultured rumen fungus. Bioresource technology, 123, 125-134.

    Cregg, J. M. (2007). Introduction: distinctions between Pichia pastoris and other expression systems. Methods in molecular biology (Clifton, NJ), 389, 1-10.

    Cregg, J. M., Barringer, K., Hessler, A., & Madden, K. (1985). Pichia pastoris as a host system for transformations. Molecular and cellular biology, 5(12), 3376-3385.

    Cregg, J. M., Cereghino, J. L., Shi, J., & Higgins, D. R. (2000). Recombinant protein expression in Pichia pastoris. Molecular biotechnology, 16(1), 23-52.

    Dhiman, T., Zaman, M., Gimenez, R., Walters, J., & Treacher, R. (2002). Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Animal Feed Science and Technology, 101(1-4), 115-125.

    Duan, C.-J., Huang, M.-Y., Pang, H., Zhao, J., Wu, C.-X., & Feng, J.-X. (2017). Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes. Applied microbiology and biotechnology, 101(14), 5723-5737.

    Fu, X., Liu, P., Lin, L., Hong, Y., Huang, X., Meng, X., & Liu, Z. (2010). A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME-14. Applied biochemistry and biotechnology, 160(6), 1627-1636.

    Gao, Z., Ruan, L., Chen, X., Zhang, Y., & Xu, X. (2010). A novel salt-tolerant endo-β-1, 4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Applied microbiology and biotechnology, 87(4), 1373-1382.

    García-Ortega, X., Cámara, E., Ferrer, P., Albiol, J., Montesinos-Seguí, J. L., & Valero, F. (2019). Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffii) using the methanol-free GAP promoter. Where do we stand? New biotechnology, 53, 24-34.

    Garrigós-Martínez, J., Vuoristo, K., Nieto-Taype, M. A., Tähtiharju, J., Uusitalo, J., Tukiainen, P., . . . Penttilä, M. (2021). Bioprocess performance analysis of novel methanol-independent promoters for recombinant protein production with Pichia pastoris. Microbial cell factories, 20(1), 1-12.

    González, M., Brito, N., Hernández‐Bolaños, E., & González, C. (2019). New tools for high‐throughput expression of fungal secretory proteins in Saccharomyces cerevisiae and Pichia pastoris. Microbial biotechnology, 12(6), 1139-1153.

    Gu, B., & Xia, L. (2013). High expression of a neutral endo-β-glucanase gene from Humicola insolens in Trichoderma reesei. Journal of industrial microbiology and biotechnology, 40(7), 773-779.

    Guillén, D., Sánchez, S., & Rodríguez-Sanoja, R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Applied microbiology and biotechnology, 85(5), 1241-1249.

    Han, W., & He, M. (2010). The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresource technology, 101(10), 3724-3731.

    Holland, C., Ryden, P., Edwards, C. H., & Grundy, M. M.-L. (2020). Plant cell walls: Impact on nutrient bioaccessibility and digestibility. Foods, 9(2), 201.

    Jin, X., Meng, N., & Xia, L.-m. (2011). Expression of an endo-β-1, 4-glucanase gene from Orpinomyces PC-2 in Pichia pastoris. International journal of molecular sciences, 12(5), 3366-3380.

    Kim, D. Y., Lee, M. J., Cho, H.-Y., Lee, J. S., Lee, M.-H., Chung, C. W., . . . Park, H.-Y. (2016). Genetic and functional characterization of an extracellular modular GH6 endo-β-1, 4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13. Antonie Van Leeuwenhoek, 109(1), 1-12.

    Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme research, 2011.

    Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of industrial microbiology and biotechnology, 35(5), 377-391.

    Le Costaouëc, T., Pakarinen, A., Várnai, A., Puranen, T., & Viikari, L. (2013). The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresource technology, 143, 196-203.

    Lewis, G., Sanchez, W., Hunt, C., Guy, M., Pritchard, G., Swanson, B., & Treacher, R. (1999). Effect of direct-fed fibrolytic enzymes on the lactational performance of dairy cows. Journal of Dairy Science, 82(3), 611-617.

    Li, H., Hu, Q., Hong, X., Jiang, Z., Ni, H., Li, Q., & Zhu, Y. (2021). Molecular cloning and characterization of a thermostable and halotolerant endo-β-1, 4-glucanase from Microbulbifer sp. ALW1. 3 Biotech, 11(5), 1-11.

    Li, P., Anumanthan, A., Gao, X.-G., Ilangovan, K., Suzara, V. V., Düzgüneş, N., & Renugopalakrishnan, V. (2007). Expression of recombinant proteins in Pichia pastoris. Applied biochemistry and biotechnology, 142(2), 105-124.

    Liu, Y., Dun, B., Shi, P., Ma, R., Luo, H., Bai, Y., . . . Yao, B. (2015). A novel GH7 Endo-β-1, 4-glucanase from Neosartorya fischeri P1 with good thermostability, broad substrate specificity and potential application in the brewing industry. PloS one, 10(9), e0137485.

    Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews, 66(3), 506-577.

    Macauley‐Patrick, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22(4), 249-270.

    Mai, C., Kües, U., & Militz, H. (2004). Biotechnology in the wood industry. Applied microbiology and biotechnology, 63(5), 477-494.

    Nevalainen, K. H., Te'o, V. S., & Bergquist, P. L. (2005). Heterologous protein expression in filamentous fungi. Trends in biotechnology, 23(9), 468-474.

    Niyonzima, F. N. (2021). Detergent-compatible fungal cellulases. Folia microbiologica, 66(1), 25-40.

    Ohta, T., Horie, H., Matsu-Ura, A., & Kawai, F. (2019). Cloning, expression, and characterization of novel GH5 endoglucanases from Thermobifida alba AHK119. Journal of bioscience and bioengineering, 127(5), 554-562.

    Özçelik, A. T., Yılmaz, S., & Inan, M. (2019). Pichia pastoris promoters. Recombinant Protein Production in Yeast, 97-112.

    Pan, R., Hu, Y., Long, L., Wang, J., & Ding, S. (2016). Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22. Enzyme and Microbial Technology, 91, 42-51.

    Pang, B., Zhou, L., Cui, W., Liu, Z., & Zhou, Z. (2020). Improvement of the Thermostability and Activity of Pullulanase from Anoxybacillus sp. WB42. Applied biochemistry and biotechnology, 1-13.

    Patel, A. K., Singhania, R. R., Sim, S. J., & Pandey, A. (2019). Thermostable cellulases: current status and perspectives. Bioresource technology, 279, 385-392.

    Phitsuwan, P., Laohakunjit, N., Kerdchoechuen, O., Kyu, K. L., & Ratanakhanokchai, K. (2013). Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia microbiologica, 58(2), 163-176.

    Rahikainen, J. L., Evans, J. D., Mikander, S., Kalliola, A., Puranen, T., Tamminen, T., . . . Kruus, K. (2013). Cellulase–lignin interactions—the role of carbohydrate-binding module and pH in non-productive binding. Enzyme and Microbial Technology, 53(5), 315-321.

    Rashamuse, K., Visser, D. F., Hennessy, F., Kemp, J., Roux-Van Der Merwe, M., Badenhorst, J., . . . Brady, D. (2013). Characterisation of two bifunctional cellulase–xylanase enzymes isolated from a bovine rumen metagenome library. Current microbiology, 66(2), 145-151.

    Reyes-Ortiz, V., Heins, R. A., Cheng, G., Kim, E. Y., Vernon, B. C., Elandt, R. B., . . . Simmons, B. A. (2013). Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnology for biofuels, 6(1), 1-13.

    Sanchez, O. J., & Cardona, C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource technology, 99(13), 5270-5295.

    Schülein, M. (2000). Protein engineering of cellulases. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1543(2), 239-252.

    Shrivastava, B., Thakur, S., Khasa, Y. P., Gupte, A., Puniya, A. K., & Kuhad, R. C. (2011). White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation, 22(4), 823-831.

    Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource technology, 101(6), 1570-1580.

    Sugimura, M., Watanabe, H., Lo, N., & Saito, H. (2003). Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow‐spotted longicorn beetle, Psacothea hilaris. European Journal of Biochemistry, 270(16), 3455-3460.

    Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 83(1), 1-11.

    Tanaka, T., Yamada, R., Ogino, C., & Kondo, A. (2012). Recent developments in yeast cell surface display toward extended applications in biotechnology. Applied microbiology and biotechnology, 95(3), 577-591.

    Várnai, A., Siika-Aho, M., & Viikari, L. (2013). Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnology for biofuels, 6(1), 1-12.

    Vassileva, A., Chugh, D. A., Swaminathan, S., & Khanna, N. (2001). Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter. Journal of biotechnology, 88(1), 21-35.

    Vianna Bernardi, A., Kimie Yonamine, D., Akira Uyemura, S., & Magnani Dinamarco, T. (2019). A thermostable Aspergillus fumigatus GH7 endoglucanase over-expressed in Pichia pastoris stimulates lignocellulosic biomass hydrolysis. International journal of molecular sciences, 20(9), 2261.

    Vogl, T., & Glieder, A. (2013). Regulation of Pichia pastoris promoters and its consequences for protein production. New biotechnology, 30(4), 385-404.

    Wang, K., Luo, H., Bai, Y., Shi, P., Huang, H., Xue, X., & Yao, B. (2014). A thermophilic endo-1, 4-β-glucanase from Talaromyces emersonii CBS394. 64 with broad substrate specificity and great application potentials. Applied microbiology and biotechnology, 98(16), 7051-7060.

    Wang, W., Archbold, T., Lam, J. S., Kimber, M. S., & Fan, M. Z. (2019). A processive endoglucanase with multi-substrate specificity is characterized from porcine gut microbiota. Scientific reports, 9(1), 1-13.

    Wang, X., Wu, Y., & Zhou, Y. (2017). Transglycosylation, a new role for multifunctional cellulase in overcoming product inhibition during the cellulose hydrolysis. Bioengineered, 8(2), 129-132.

    Weidner, M., Taupp, M., & Hallam, S. J. (2010). Expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. JoVE (Journal of Visualized Experiments)(36), e1862.

    Wierzbicka-Woś, A., Henneberger, R., Batista-García, R. A., Martínez-Ávila, L., Jackson, S. A., Kennedy, J., & Dobson, A. D. (2019). Biochemical characterization of a novel monospecific endo-β-1, 4-glucanase belonging to GH family 5 from a rhizosphere metagenomic library. Frontiers in microbiology, 10, 1342.

    Xue, X., Wu, Y., Qin, X., Ma, R., Luo, H., Su, X., & Yao, B. (2016). Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities. Microbial cell factories, 15(1), 1-13.

    Zhou, H.-Y., Zhou, J.-B., Yi, X.-N., Wang, Y.-M., Xue, Y.-P., Chen, D.-S., . . . Chen, K.-Q. (2021). Heterologous expression and biochemical characterization of a thermostable endo-β-1, 4-glucanase from Colletotrichum orchidophilum. Bioprocess and Biosystems Engineering, 44(1), 67-79.

    Zi-Zhong, T., Zhen-Fang, W., Hui, C., Xin, L., Xue-yi, H., & Qi, W. (2013). Characterization of novel EGs reconstructed from Bacillus subtilis endoglucanase. Applied biochemistry and biotechnology, 169(6), 1764-1773.

    下載圖示
    QR CODE