簡易檢索 / 詳目顯示

研究生: 陳映安
Ann Ying-An Chen
論文名稱: 探討免疫基因多型性與免疫細胞表現之相關性和利用體外免疫突觸系統篩檢有效疫苗佐劑之研究
Discovering SNPs in Immunity-Related Genes to Enhance Disease-Resistance in Pigs and Characterizing the Porcine Immunological Synapse as an In Vitro Fast Screening Platform for Potential Vaccine and Adjuvant Candidates
指導教授: 莊秀琪
Hso-Chi Chaung
學位類別: 博士
Doctor
系所名稱: 獸醫學院 - 獸醫學系所
Department of Veterinary Medicine
畢業學年度: 110
語文別: 英文
論文頁數: 108
中文關鍵詞: 基因多型性細胞表面標記免疫突觸T 細胞亞群
外文關鍵詞: single nucleotide polymorphisms, cell surface markers, immunological synapse, T cell subsets, pig
DOI URL: http://doi.org/10.6346/NPUST202200005
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 提高抗病性和對病菌之耐受性於經濟動物配種時為一個重要選拔目標。免疫系統中的抗原表現會受到基因多型性的影響,當受到病原菌感染時會因基因多型性的影響使抗原變異進而影響免疫調節與免疫優勢之抗原。單核苷酸多型性(SNP)是指多個核酸位點上會產生變異而改變基因表達,SNP的產生會影響個體的免疫調節以及對疾病的敏感度。免疫突觸 (immunological synapse, IS)是在感染性損傷或接種疫苗後於抗原呈現細胞(APC)和淋巴細胞之間形成的一種特殊結構。在細胞間進行交互作用時,細胞藉由訊息傳導路徑進行交流並觸發信號傳遞訊息,最終產生持久的免疫力。本次研究分兩部分,將調查免疫相關基因中SNP 位點的分佈及於不同的豬隻品種中 : 純種豬(台灣黑豬、杜洛克、藍瑞斯和約克夏)和雜交豬(藍瑞斯-約克夏)其體內免疫細胞表面標誌的關聯性。本研究中以豬隻IS模式將 APC 與 T 細胞亞群共培養,用以初步篩選豬繁殖與呼吸綜合徵病毒 (PRRSV) 疫苗於接種後是否為潛在之有效疫苗和佐劑。免疫相關基因有 39 個 SNP,包括細胞激素(IFN-α、IFN-γ、TNF-α)、趨化因子(GM-CSF、MCP-1) 和類鐸受體(TLR3、TLR4、TLR7、TLR8 和 TLR9),實驗中從具有CD4、CD8、CD80/86、MHCI 和 MHCII表面標記的細胞進行分析。實驗中,將十二頭藍瑞斯-約克夏混種之無特定病原 (SPF) 豬分成 3 組,對照組和接種自行開發之PRRSV-1 或 PRRSV-2 疫苗兩組。 28 天後,採自實驗豬隻之周邊血液分選成四種T 細胞亞群(Tn 細胞:CD4+CD25-、NK 細胞:CD4-CD25+、Tregs、CD4+CD25+ 和陰性對照組細胞:CD4-CD25-)各別同步與肺泡巨噬細胞共培養 12 小時。周邊血液單核球與肺泡巨噬細胞共培養的結果可分析 Toll-like receptor mRNA 之基因表現和細胞激素之分泌量。其中有 28 個 SNP 在品種之間存在顯著差異,尤其是純種豬中的藍瑞斯豬和台灣黑豬之間。例如,於SNP1中測得 IFN-α -235A/G 在台灣黑豬和藍瑞斯豬中的頻率分別為 11.11% 和 96.15%。另外也有18個SNP與細胞表面標誌的表達有顯著相關,包括CD4、CD8、CD80/86和MHCII,例如SNP33 中測出TLR-8 543C/C 中 CD4+ 的百分比為39.27% 明顯高於 A/C 之24.34 %,p<0.05。本次研究能夠觀察到免疫突觸的三個階段結合後之形態特徵。兩組接種疫苗之組別,其 Toll-like receptor (TLR) 3、4、7、8 和 9 均顯著上升。相對於對照組,接種PRRSV-2 疫苗組於共培養實驗中所產生之 IL-10分泌量較低。最後,各種T 細胞也表現出不同的 TLR 表達模式。總結本篇研究顯示,台灣黑豬具有獨特的基因型分佈,而藍瑞斯豬和約克夏豬之基因型分佈則較為相似。因此,探討不同物種間與免疫調節關聯之SNP找出其基因獨特性,並可進一步運用於豬隻之育種選拔。豬隻IS模式系統未來可應用於初步篩選開發中疫苗/佐劑或找出有效之抗原決定位。本實驗之最終目標,是使本篩選平台可能有助於在疫苗開發的初步階段時減少實驗動物的使用。

    Enhancing resistance and tolerance to pathogens remains an important selection objective in the production of livestock animals. Host-pathogen interactions underlie the selection of antigenic variants through genetic polymorphisms of immune responses; impacting immunoregulation and immunodominant antigens. Single nucleotide polymorphisms (SNPs) vary gene expression on the transcriptional level, influencing an individual’s immune regulation and susceptibility to diseases. The immunological synapse (IS) is specialized cell to cell junction that forms between lymphocytes and antigen presenting cells (APC) following an infectious insult or vaccination. Upon interaction, these cells communicate and trigger signal transduction pathways which ultimately establishes long-lasting immunity. This study consisted of two parts, we investigated the distribution of SNP sites in immune-related genes and their correlations to cell surface markers of immune cells within, purebred (Taiwan black, Duroc, Landrace and Yorkshire) and crossbred (Landrace-Yorkshire) pigs. For the first time, we characterized the porcine immunological synapse by co-culturing APC with T cell subsets to screen for potential effective vaccine and adjuvant candidates following vaccination against Porcine Reproductive and Respiratory Syndrome virus (PRRSV).Thirty nine SNPs of immune-related genes, including cytokines, chemokines and toll-like receptors (IFN-α, IFN-γ, TNF-α, GM-CSF, MCP-1, TLR3, TLR4, TLR7, TLR8, and TLR9) were selected and the percentages of positive cells with cell surface markers of CD4, CD8, CD80/86, MHCI, and MHCII were analyzed. Here, twelve Landrace-Yorkshire specific pathogen-free (SPF) pigs were separated into 3 groups, control and two groups vaccinated with either PRRSV-1 or PRRSV-2. After 28 days, four purified T cell subsets from peripheral blood (Tn cells; CD4+CD25-, NK cells; CD4-CD25+, Tregs; CD4+CD25+, and Mixed cells; CD4-CD25-) were co-cultured for 12 hours with pulmonary alveolar macrophages. Toll-like receptor mRNA expression patterns and cytokine levels were analyzed. There were 28 SNPs that were significantly different among breeds, particularly between Landrace and Taiwan black. For instance, the frequency of SNP1 IFN-α -235A/G in Taiwan black and Landrace were 11.11% and 96.15%, respectively. In addition, 18 SNPs significantly correlated with the expressions of cell surface markers, including CD4, CD8, CD80/86, and MHCII. The percentage CD4+ (39.27%) in SNP33 TLR-8 543C/C was significantly higher than those in A/C (24.34%), at p<0.05. Also, three stages of the IS were characterised by morphological features following conjugation. Results showed a significant upregulated in Toll-like receptors (TLR) 3,4,7,8 and 9 in both vaccinated groups. Further, a significantly lower level of IL-10 was produced in co-cultures with PRRSV-2 compared to controls. Finally, T cells also exerted different TLR expression patterns. Together, our findings showed that Taiwan black pigs had a unique genotype distribution, whereas Landrace and Yorkshire had a more similar genotype distribution. Thus, an understanding of the genetic uniqueness of each breed could help identify functionally important SNPs in immunoregulation. These findings demonstrate that the porcine immunological synapse can be characterized in vitro to screen for microenvironment factors, with future applications in vaccine/adjuvant candidate or effective antigen epitopes. Ultimately, this method could potentially aid in reducing the use of experimental animals during the preliminary stages of vaccine development.

    摘要 I
    Abstract III
    Acknowledgement VI
    List of Tables and Figures X
    Chapter 1 Introduction 1
    Section I 1
    Section II 3
    Chapter 2 Paper Review 5
    2.1. Importance of pigs in Biomedical Research 5
    2.2. Porcine Immune System 5
    2.2.1. Innate and adaptive immune response to viral invasion 5
    2.2.2. Immunological Synapse 6
    2.2.2.1. Stages of the immunological synapse 7
    2.2.3. Pattern recognition receptors and Pathogen-associated molecular pattern 8
    2.2.3.1 Toll like Receptors 8
    2.2.3.1.1 Toll-like receptors 3,7,8 and 9 8
    2.2.3.1.2 Toll-like receptor 4 9
    2.2.4. Roles of T-cells and antigen presenting cells within the immune system 9
    2.2.5. Cytokines and chemokines 10
    2.3. Single nucleotide polymorphism 11
    2.3.1. SNP association with diseases 11
    2.3.2. Breeding for robustness 12
    2.4. Vaccine importance and validation 12
    2.5. Types of vaccines 13
    2.5.1. Modified live vaccines 13
    2.5.2. Inactivated vaccines 13
    2.5.3. Subunit vaccines 14
    2.6. Importance of using PBMCs and PAMs in immunological research 14
    2.6.1. Naïve T cells 15
    2.6.2. Natural Killer (NK) cells 15
    2.6.3. Regulatory T cells (Tregs) 16
    Chapter 3 Materials & Methods 17
    3.1. Section I: Correlations between the genotypes and the immunophenotypes 17
    3.1.1. Animal and sample collection 17
    3.1.2. Bioinformatics and primer design 17
    3.1.3. Genomic DNA isolation 27
    3.1.4. ARMS-PCR and RE digestion 27
    3.1.5. Isolation of PBMCs and Immunofluorescent staining 29
    3.1.6. Isolation of PBMCs and Immunofluorescent staining 31
    3.2. Section II: Characterization of the porcine immune synapse 31
    3.2.1. Experimental Design and Sample collection 31
    3.2.2. Isolation of Pulmonary Alveolar Macrophage 32
    3.2.3. Isolation of PBMC and Immunofluorescent staining 32
    3.2.4. Antibodies 33
    3.2.5. Sorting of T-cell subsets 33
    3.2.6. Characterization of the Immune Synapse 35
    3.2.7. Evaluation of the In Vitro Immune Synapse system 35
    3.2.8. Toll-like receptor mRNA expression 36
    3.2.8.1. RNA preparation 36
    3.2.8.2. Reverse transcription PCR 36
    3.2.8.3. Quantitative Real-time PCR (qPCR) 37
    3.2.9. Enzyme-linked immunosorbent assay 40
    3.3. Statistical analysis 40
    Chapter 4 Results 42
    4.1. Section I: Correlations between SNPs of immune-related genes and their immunophenotypes 42
    4.1.1. Genotype distribution of Single nucleotide polymorphisms in cytokine genes in association with different pig breeds and correlation with their immunophenotypes 42
    4.1.2. Genotype distribution of Single nucleotide polymorphisms in chemokines genes in association with different pig breed and correlation with their immunophenotypes 50
    4.1.3. Genotype distribution of Single nucleotide polymorphisms in toll-like receptor genes in association with different pig breed and correlation with immunophenotypes 54
    4.2. Section II: Characterizing and Evaluating an In vitro Immune Synapse System 60
    4.2.1. Characterization of the Immunological Synapse 60
    4.2.2. Evaluation of the Immunological Synapse system 64
    4.2.2.1. Effects on toll-like receptors mRNA expression 64
    4.2.2.2. Evaluation of the effects of the Immunological synapse formation on different T cell subsets 69
    4.2.2.3. The evaluation of the immunological synapse by an antigen protein in vitro 72
    4.2.2.4. The evaluation of the immunological synapse by immunostimulant in vitro 75
    Chapter 5 Discussion 78
    5.1. Section I: SNPs in immune-related genes and their Correlations between the immunophenotypes 78
    5.2. Section II: Characterizing and Evaluating an In vitro Immune Synapse System 82
    Conclusion 86
    References 87
    Biography 108



    Abinaya, R.V., and Viswanathan, P. (2021). "Chapter 2 - Biotechnology-based therapeutics," in Translational Biotechnology, ed. Y. Hasija. Academic Press), 27-52.
    Acosta, A., Norazmi, M.N., Hernandez-Pando, R., Alvarez, N., Borrero, R., Infante, J.F., and Sarmiento, M.E. (2011). The importance of animal models in tuberculosis vaccine development. The Malaysian journal of medical sciences : MJMS 18, 5-12.
    Ashkar, S., Weber, G.F., Panoutsakopoulou, V., Sanchirico, M.E., Jansson, M., Zawaideh, S., Rittling, S.R., Denhardt, D.T., Glimcher, M.J., and Cantor, H. (2000). Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287, 860-864.
    Autissier, P., Soulas, C., Burdo, T.H., and Williams, K.C. (2010). Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytometry A 77, 410-419.
    Ballester, M., Ramayo-Caldas, Y., González-Rodríguez, O., Pascual, M., Reixach, J., Díaz, M., Blanc, F., López-Serrano, S., Tibau, J., and Quintanilla, R. (2020). Genetic parameters and associated genomic regions for global immunocompetence and other health-related traits in pigs. Scientific Reports 10, 18462.
    Bellone, G., Astarita, P., Artusio, E., Silvestri, S., Mareschi, K., Turletti, A., Buttiglieri, S., Emanuelli, G., and Matera, L. (1997). Bone marrow stroma-derived prolactin is involved in basal and platelet-activating factor-stimulated in vitro erythropoiesis. Blood 90, 21-27.
    Bergman, I.M., Rosengren, J.K., Edman, K., and Edfors, I. (2010). European wild boars and domestic pigs display different polymorphic patterns in the Toll-like receptor (TLR) 1, TLR2, and TLR6 genes. Immunogenetics 62, 49-58.
    Bidwell, J., Keen, L., Gallagher, G., Kimberly, R., Huizinga, T., Mcdermott, M.F., Oksenberg, J., Mcnicholl, J., Pociot, F., Hardt, C., and D'alfonso, S. (1999a). Cytokine gene polymorphism in human disease: on-line databases. Genes Immun 1, 3-19.
    Bidwell, J., Keen, L., Gallagher, G., Kimberly, R., Huizinga, T., Mcdermott, M.F., Oksenberg, J., Mcnicholl, J., Pociot, F., Hardt, C., and D'alfonso, S. (2001). Cytokine gene polymorphism in human disease: on-line databases, supplement 1. Genes Immun 2, 61-70.
    Bidwell, J., Keen, L., Gallagher, G., Kimberly, R., Huizinga, T., Mcdermott, M.F., Oksenberg, J., Mcnicholl, J., Pociot, F., Hardt, C., and D’alfonso, S. (1999b). Cytokine gene polymorphism in human disease: on-line databases. Genes & Immunity 1, 3-19.
    Biggs, M.J.P., Milone, M.C., Santos, L.C., Gondarenko, A., and Wind, S.J. (2011). High-resolution imaging of the immunological synapse and T-cell receptor microclustering through microfabricated substrates. Journal of the Royal Society, Interface 8, 1462-1471.
    Boluyt, M.O., Cirrincione, G.M., Loyd, A.M., Korzick, D.H., Parker, J.L., and Laughlin, M.H. (2007). Effects of gradual coronary artery occlusion and exercise training on gene expression in swine heart. Molecular and cellular biochemistry 294, 87-96.
    Botos, I., and Davies, D.R. (2010). "Chapter 21 - Toll-Like Receptors–Structureand Signaling," in Handbook of Cell Signaling (Second Edition), eds. R.A. Bradshaw & E.A. Dennis. (San Diego: Academic Press), 139-143.
    Brambilla, G., and Cantafora, A. (2004). Metabolic and cardiovascular disorders in highly inbred lines for intensive pig farming: how animal welfare evaluation could improve the basic knowledge of human obesity. Ann Ist Super Sanita 40, 241-244.
    Burgara-Estrella, A., Díaz, I., Rodríguez-Gómez, I.M., Essler, S.E., Hernández, J., and Mateu, E. (2013). Predicted peptides from non-structural proteins of porcine reproductive and respiratory syndrome virus are able to induce IFN-γ and IL-10. Viruses 5, 663-677.
    Burrell, C.J., Howard, C.R., and Murphy, F.A. (2017). "Chapter 5 - Innate Immunity," in Fenner and White's Medical Virology (Fifth Edition), eds. C.J. Burrell, C.R. Howard & F.A. Murphy. (London: Academic Press), 57-64.
    Cao, S., Zhou, D.C., Oh, C., Jayasinghe, R.G., Zhao, Y., Yoon, C.J., Wyczalkowski, M.A., Bailey, M.H., Tsou, T., Gao, Q., Malone, A., Reynolds, S., Shmulevich, I., Wendl, M.C., Chen, F., and Ding, L. (2020). Discovery of driver non-coding splice-site-creating mutations in cancer. Nature Communications 11, 5573.
    Cargill, E.J., and Womack, J.E. (2007). Detection of polymorphisms in bovine toll-like receptors 3, 7, 8, and 9. Genomics 89, 745-755.
    Carmel, L., and Chorev, M. (2012). The Function of Introns. Frontiers in Genetics 3.
    Chen, C., Li, J., Bi, Y., Yang, L., Meng, S., Zhou, Y., Jia, X., Meng, S., Sun, L., and Liu, W. (2013a). Synthetic B- and T-cell epitope peptides of porcine reproductive and respiratory syndrome virus with Gp96 as adjuvant induced humoral and cell-mediated immunity. Vaccine 31, 1838-1847.
    Chen, S., Gomes, R., Costa, V., Santos, P., Charneca, R., Zhang, Y.P., Liu, X.H., Wang, S.Q., Bento, P., Nunes, J.L., Buzgo, J., Varga, G., Anton, I., Zsolnai, A., and Beja-Pereira, A. (2013b). How immunogenetically different are domestic pigs from wild boars: a perspective from single-nucleotide polymorphisms of 19 immunity-related candidate genes. Immunogenetics 65, 737-748.
    Chen, Y.C., Hsu, J.T., Chien, C.C., Leu, Y.C., Chyr, C.Y., Lin, D.Y., Lin, E.C., Chen, C.H., and Wang, P.H. (2012). Investigation of genetic relationships among Taiwan black pigs and other pig breeds in Taiwan based on microsatellite markers. Anim Biotechnol 23, 278-290.
    Chirkova, T., Ha, B., Rimawi, B.H., Oomens, A.G.P., Hartert, T.V., and Anderson, L.J. (2020). In vitro model for the assessment of human immune responses to subunit RSV vaccines. PLOS ONE 15, e0229660.
    Chomarat, P., Dantin, C., Bennett, L., Banchereau, J., and Palucka, A.K. (2003). TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol 171, 2262-2269.
    Clay, H., Volkman, H.E., and Ramakrishnan, L. (2008). Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29, 283-294.
    Clop, A., Huisman, A., Van As, P., Sharaf, A., Derdak, S., and Sanchez, A. (2016). Identification of genetic variation in the swine toll-like receptors and development of a porcine TLR genotyping array. Genetics, selection, evolution : GSE 48, 28-28.
    Curtsinger, J.M., Valenzuela, J.O., Agarwal, P., Lins, D., and Mescher, M.F. (2005). Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174, 4465-4469.
    Davenport, A.J., Cross, R.S., Watson, K.A., Liao, Y., Shi, W., Prince, H.M., Beavis, P.A., Trapani, J.A., Kershaw, M.H., Ritchie, D.S., Darcy, P.K., Neeson, P.J., and Jenkins, M.R. (2018). Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proceedings of the National Academy of Sciences 115, E2068-E2076.
    Dawson, H. (2011). "A Comparative Assessment of the Pig, Mouse and Human Genomes."), 323-342.
    Dawson, H.D., Loveland, J.E., Pascal, G., Gilbert, J.G.R., Uenishi, H., Mann, K.M., Sang, Y., Zhang, J., Carvalho-Silva, D., Hunt, T., Hardy, M., Hu, Z., Zhao, S.-H., Anselmo, A., Shinkai, H., Chen, C., Badaoui, B., Berman, D., Amid, C., Kay, M., Lloyd, D., Snow, C., Morozumi, T., Cheng, R.P.-Y., Bystrom, M., Kapetanovic, R., Schwartz, J.C., Kataria, R., Astley, M., Fritz, E., Steward, C., Thomas, M., Wilming, L., Toki, D., Archibald, A.L., Bed’hom, B., Beraldi, D., Huang, T.-H., Ait-Ali, T., Blecha, F., Botti, S., Freeman, T.C., Giuffra, E., Hume, D.A., Lunney, J.K., Murtaugh, M.P., Reecy, J.M., Harrow, J.L., Rogel-Gaillard, C., and Tuggle, C.K. (2013). Structural and functional annotation of the porcine immunome. BMC Genomics 14, 332.
    Delves, P.J., Martin, S.J., Burton, D.R., and Roitt, I.M. (2017). Roitt's essential immunology.
    Duan, X., Nauwynck, H.J., and Pensaert, M.B. (1997). Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch Virol 142, 2483-2497.
    Dustin, M.L. (2002). The immunological synapse. Arthritis research 4 Suppl 3, S119-S125.
    Eckmann, L. (2006). "CHAPTER 42 - Innate Immunity," in Physiology of the Gastrointestinal Tract (Fourth Edition), ed. L.R. Johnson. (Burlington: Academic Press), 1033-1066.
    El-Zayat, S.R., Sibaii, H., and Mannaa, F.A. (2019). Toll-like receptors activation, signaling, and targeting: an overview. Bulletin of the National Research Centre 43, 187.
    Ennaji, Y., Khataby, K., and Ennaji, M.M. (2020). "Chapter 3 - Infectious Bronchitis Virus in Poultry: Molecular Epidemiology and Factors Leading to the Emergence and Reemergence of Novel Strains of Infectious Bronchitis Virus," in Emerging and Reemerging Viral Pathogens, ed. M.M. Ennaji. Academic Press), 31-44.
    Faroudi, M., Utzny, C., Salio, M., Cerundolo, V., Guiraud, M., Müller, S., and Valitutti, S. (2003). Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc Natl Acad Sci U S A 100, 14145-14150.
    Flori, L., Gao, Y., Laloë, D., Lemonnier, G., Leplat, J.-J., Teillaud, A., Cossalter, A.-M., Laffitte, J., Pinton, P., De Vaureix, C., Bouffaud, M., Mercat, M.-J., Lefèvre, F., Oswald, I.P., Bidanel, J.-P., and Rogel-Gaillard, C. (2011a). Immunity traits in pigs: substantial genetic variation and limited covariation. PloS one 6, e22717-e22717.
    Flori, L., Gao, Y., Laloe, D., Lemonnier, G., Leplat, J.J., Teillaud, A., Cossalter, A.M., Laffitte, J., Pinton, P., De Vaureix, C., Bouffaud, M., Mercat, M.J., Lefevre, F., Oswald, I.P., Bidanel, J.P., and Rogel-Gaillard, C. (2011b). Immunity traits in pigs: substantial genetic variation and limited covariation. PLoS One 6, e22717.
    Galina-Pantoja, L., Siggens, K., Van Schriek, M.G.M., and Heuven, H.C.M. (2009). Mapping markers linked to porcine salmonellosis susceptibility. Animal Genetics 40, 795-803.
    García-Sastre, A., and Biron, C.A. (2006). Type 1 Interferons and the Virus-Host Relationship: A Lesson in Détente. Science 312, 879.
    Ghosh, T.K., Mickelson, D.J., Fink, J., Solberg, J.C., Inglefield, J.R., Hook, D., Gupta, S.K., Gibson, S., and Alkan, S.S. (2006). Toll-like receptor (TLR) 2-9 agonists-induced cytokines and chemokines: I. Comparison with T cell receptor-induced responses. Cell Immunol 243, 48-57.
    Grakoui, A., Bromley, S.K., Sumen, C., Davis, M.M., Shaw, A.S., Allen, P.M., and Dustin, M.L. (1999). The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221-227.
    Griffin, J.F. (2002). A strategic approach to vaccine development: animal models, monitoring vaccine efficacy, formulation and delivery. Adv Drug Deliv Rev 54, 851-861.
    Groenen, M.a.M., Archibald, A.L., Uenishi, H., Tuggle, C.K., Takeuchi, Y., Rothschild, M.F., Rogel-Gaillard, C., Park, C., Milan, D., Megens, H.-J., Li, S., Larkin, D.M., Kim, H., Frantz, L.a.F., Caccamo, M., Ahn, H., Aken, B.L., Anselmo, A., Anthon, C., Auvil, L., Badaoui, B., Beattie, C.W., Bendixen, C., Berman, D., Blecha, F., Blomberg, J., Bolund, L., Bosse, M., Botti, S., Bujie, Z., Bystrom, M., Capitanu, B., Carvalho-Silva, D., Chardon, P., Chen, C., Cheng, R., Choi, S.-H., Chow, W., Clark, R.C., Clee, C., Crooijmans, R.P.M.A., Dawson, H.D., Dehais, P., De Sapio, F., Dibbits, B., Drou, N., Du, Z.-Q., Eversole, K., Fadista, J., Fairley, S., Faraut, T., Faulkner, G.J., Fowler, K.E., Fredholm, M., Fritz, E., Gilbert, J.G.R., Giuffra, E., Gorodkin, J., Griffin, D.K., Harrow, J.L., Hayward, A., Howe, K., Hu, Z.-L., Humphray, S.J., Hunt, T., Hornshøj, H., Jeon, J.-T., Jern, P., Jones, M., Jurka, J., Kanamori, H., Kapetanovic, R., Kim, J., Kim, J.-H., Kim, K.-W., Kim, T.-H., Larson, G., Lee, K., Lee, K.-T., Leggett, R., Lewin, H.A., Li, Y., Liu, W., Loveland, J.E., Lu, Y., Lunney, J.K., Ma, J., Madsen, O., Mann, K., Matthews, L., Mclaren, S., Morozumi, T., Murtaugh, M.P., Narayan, J., Truong Nguyen, D., Ni, P., Oh, S.-J., Onteru, S., Panitz, F., Park, E.-W., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393-398.
    Gu, L., Okada, Y., Clinton, S.K., Gerard, C., Sukhova, G.K., Libby, P., and Rollins, B.J. (1998). Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2, 275-281.
    Haukim, N., Bidwell, J.L., Smith, A.J., Keen, L.J., Gallagher, G., Kimberly, R., Huizinga, T., Mcdermott, M.F., Oksenberg, J., Mcnicholl, J., Pociot, F., Hardt, C., and D'alfonso, S. (2002). Cytokine gene polymorphism in human disease: on-line databases, supplement 2. Genes Immun 3, 313-330.
    Hennessy, E.J., Parker, A.E., and O'neill, L.A. (2010). Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 9, 293-307.
    Henry, J., Miller, M.M., and Pontarotti, P. (1999). Structure and evolution of the extended B7 family. Immunology Today 20, 285-288.
    Hornell, T.M., Beresford, G.W., Bushey, A., Boss, J.M., and Mellins, E.D. (2003). Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor. J Immunol 171, 2374-2383.
    Huang, Y., Yang, H., Borg, B.B., Su, X., Rhodes, S.L., Yang, K., Tong, X., Tang, G., Howell, C.D., Rosen, H.R., Thio, C.L., Thomas, D.L., Alter, H.J., Sapp, R.K., and Liang, T.J. (2007). A functional SNP of interferon-gamma gene is important for interferon-alpha-induced and spontaneous recovery from hepatitis C virus infection. Proceedings of the National Academy of Sciences of the United States of America 104, 985-990.
    Huse, M., Klein, L.O., Girvin, A.T., Faraj, J.M., Li, Q.J., Kuhns, M.S., and Davis, M.M. (2007). Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27, 76-88.
    Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M. (1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. Journal of Experimental Medicine 176, 1693-1702.
    Ito, H., and Seishima, M. (2010). Regulation of the induction and function of cytotoxic T lymphocytes by natural killer T cell. Journal of biomedicine & biotechnology 2010, 641757-641757.
    Janeway, C.A., and Bottomly, K. (1994). Signals and signs for lymphocyte responses. Cell 76, 275-285.
    Janeway Jr, C.A. (1992). The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annual review of immunology 10, 645-674.
    June, C.H., Ledbetter, J.A., Linsley, P.S., and Thompson, C.B. (1990). Role of the CD28 receptor in T-cell activation. Immunology today 11, 211-216.
    Kaiko, G.E., Horvat, J.C., Beagley, K.W., and Hansbro, P.M. (2008). Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 123, 326-338.
    Kawai, T., and Akira, S. (2007). TLR signaling. Semin Immunol 19, 24-32.
    Kawasaki, T., and Kawai, T. (2014). Toll-Like Receptor Signaling Pathways. Frontiers in Immunology 5.
    Keel, B.N., Nonneman, D.J., Lindholm-Perry, A.K., Oliver, W.T., and Rohrer, G.A. (2018). Porcine single nucleotide polymorphisms and their functional effect: an update. BMC Res Notes 11, 860.
    Kim, Y.B. (1975). Developmental immunity in the piglet. Birth Defects Orig Artic Ser 11, 549-557.
    Knap, P.W., and Bishop, S.C. (2000). Relationships between genetic change and infectious disease in domestic livestock. BSAP Occasional Publication 27, 65-80.
    Kollaritsch, H., and Rendi-Wagner, P. (2013). "9 - Principles of Immunization," in Travel Medicine (Third Edition), eds. J.S. Keystone, D.O. Freedman, P.E. Kozarsky, B.A. Connor & H.D. Nothdurft. (London: Elsevier), 67-76.
    Kondĕlková, K., Vokurková, D., Krejsek, J., Borská, L., Fiala, Z., and Ctirad, A. (2010). Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove) 53, 73-77.
    Koyama, S., Ishii, K.J., Coban, C., and Akira, S. (2008). Innate immune response to viral infection. Cytokine 43, 336-341.
    Kumar, H., Kawai, T., and Akira, S. (2011). Pathogen recognition by the innate immune system. Int Rev Immunol 30, 16-34.
    Kumar, S., Banks, T.W., and Cloutier, S. (2012). SNP Discovery through Next-Generation Sequencing and Its Applications. International Journal of Plant Genomics 2012, 831460.
    Lindahl, P., Gresser, I., Leary, P., and Tovey, M. (1976). Interferon Treatment of Mice: Enhanced Expression of Histocompatibility Antigens on Lymphoid Cells. Proceedings of the National Academy of Sciences of the United States of America 73, 1284-1287.
    Liu, G., and Zhao, Y. (2007). Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Immunology 122, 149-156.
    Lombard, M., Pastoret, P.P., and Moulin, A.M. (2007). A brief history of vaccines and vaccination. Rev Sci Tech 26, 29-48.
    Lonergan, S.M., Huff-Lonergan, E., Rowe, L.J., Kuhlers, D.L., and Jungst, S.B. (2001). Selection for lean growth efficiency in Duroc pigs influences pork quality1. Journal of Animal Science 79, 2075-2085.
    Luetkemeier, E.S., Malhi, R.S., Beever, J.E., and Schook, L.B. (2009). Diversification of porcine MHC class II genes: evidence for selective advantage. Immunogenetics 61, 119-129.
    Lynn, D.J., Benson, S.C., Lynn, M.A., and Pulendran, B. (2021). Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nature Reviews Immunology.
    Malaspina, A., Rinaldo, C.R., Sekaly, R.P., Flores, J., and D'souza, P.M. (2011). "In vitro systems to characterize the immune response to HIV-1 and HIV-1 vaccine candidates", NIAID Workshop Report, Bethesda, August 4, 2010. Vaccine 29, 4647-4653.
    Maldonado, R.A., Irvine, D.J., Schreiber, R., and Glimcher, L.H. (2004). A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527-532.
    Meissner, J.M., Sikorski, A.F., Nawara, T., Grzesiak, J., Marycz, K., Bogusławska, D.M., Michalczyk, I., Lecomte, M.-C., and Machnicka, B. (2017). αII-spectrin in T cells is involved in the regulation of cell-cell contact leading to immunological synapse formation? PLOS ONE 12, e0189545.
    Miceli, M.C., and Parnes, J.R. (1993). Role of CD4 and CD8 in T cell activation and differentiation. Advances in immunology 53, 59-122.
    Michallet, M.-C., Rota, G., Maslowski, K., and Guarda, G. (2013). Innate receptors for adaptive immunity. Current opinion in microbiology 16.
    Ming, M., Bernardo, L., Williams, K., Kolattukudy, P., Kapoor, N., Chan, L.G., Pagnon, A., Piras, F., Su, J., Gajewska, B., Salha, D., and Gisonni-Lex, L. (2019). An in vitro functional assay to measure the biological activity of TB vaccine candidate H4-IC31. Vaccine 37, 2960-2966.
    Mitchison, T., and Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature 312, 237-242.
    Mogensen, T.H., and Paludan, S.R. (2001). Molecular pathways in virus-induced cytokine production. Microbiology and molecular biology reviews : MMBR 65, 131-150.
    Mogensen, T.H., and Paludan, S.R. (2005). Reading the viral signature by Toll-like receptors and other pattern recognition receptors. J Mol Med (Berl) 83, 180-192.
    Morozumi, T., and Uenishi, H. (2009a). Polymorphism distribution and structural conservation in RNA-sensing Toll-like receptors 3, 7, and 8 in pigs. Biochimica et biophysica acta 1790, 267-274.
    Morozumi, T., and Uenishi, H. (2009b). Polymorphism distribution and structural conservation in RNA-sensing Toll-like receptors 3, 7, and 8 in pigs. Biochim Biophys Acta 1790, 267-274.
    Mukherjee, S., Huda, S., and Sinha Babu, S.P. (2019). Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scandinavian Journal of Immunology 90, e12771.
    Murtaugh, M.P., and Genzow, M. (2011). Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 29, 8192-8204.
    Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F., and Lanzavecchia, A. (2005). Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6, 769-776.
    Ostrowski, M., Galeota, J.A., Jar, A.M., Platt, K.B., Osorio, F.A., and Lopez, O.J. (2002). Identification of Neutralizing and Nonneutralizing Epitopes in the Porcine Reproductive and Respiratory Syndrome Virus GP5 Ectodomain. Journal of Virology 76, 6863-6863.
    Pabbaraju, K., Gill, K., Wong, A.A., Tipples, G.A., Hiebert, J., Severini, A., Fonseca, K., Tellier, R., and Loeffelholz, M.J. (2019). Simultaneous Detection and Differentiation between Wild-Type and Vaccine Measles Viruses by a Multiplex Real-Time Reverse Transcription-PCR Assay. Journal of Clinical Microbiology 57, e01828-01818.
    Paul, W.E., and Seder, R.A. (1994). Lymphocyte responses and cytokines. Cell 76, 241-251.
    Pauly, T., Elbers, K., König, M., Lengsfeld, T., Saalmüller, A., and Thiel, H.-J. (1995). Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. Journal of General Virology 76, 3039-3049.
    Pena I Subirà, R.N., Chung, C.J., Cha, S.-H., Grimm, A.L., Ajithdoss, D., Rzepka, J., Chung, G., Yu, J., Davis, W.C., and Ho, C.-S. (2018). Pigs that recover from porcine reproduction and respiratory syndrome virus infection develop cytotoxic CD4+CD8+ and CD4+CD8- T-cells that kill virus infected cells. Plos One 13.
    Petrie, H.T., and Kincade, P.W. (2005). Many roads, one destination for T cell progenitors. Journal of Experimental Medicine 202, 11-13.
    Plotkin, S.A. (2020). Updates on immunologic correlates of vaccine-induced protection. Vaccine 38, 2250-2257.
    Pollard, A.J., and Bijker, E.M. (2021). A guide to vaccinology: from basic principles to new developments. Nature Reviews Immunology 21, 83-100.
    Puiman, P., and Stoll, B. (2008). Animal models to study neonatal nutrition in humans. Curr Opin Clin Nutr Metab Care 11, 601-606.
    Quattrocchi, V., Langellotti, C., Pappalardo, J.S., Olivera, V., Di Giacomo, S., Van Rooijen, N., Mongini, C., Waldner, C., and Zamorano, P.I. (2011). Role of macrophages in early protective immune responses induced by two vaccines against foot and mouth disease. Antiviral Research 92, 262-270.
    Reiner, G., Fischer, R., Hepp, S., Berge, T., Köhler, F., and Willems, H. (2008). Quantitative trait loci for white blood cell numbers in swine. Anim Genet 39, 163-168.
    Reitan, L.J., and Secombes, C.J. (1997). In vitro methods for vaccine evaluation. Dev Biol Stand 90, 293-301.
    Richards, A.L., Sheldon, K., Wu, X., Gruber, D.R., and Hudson, K.E. (2018). The Role of the Immunological Synapse in Differential Effects of APC Subsets in Alloimmunization to Fresh, Non-stored RBCs. Frontiers in Immunology 9.
    Riedhammer, C., Halbritter, D., and Weissert, R. (2016). Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Methods Mol Biol 1304, 53-61.
    Rittersma, S.Z.H., Kremer Hovinga, J.A., Koch, K.T., Boekholdt, S.M., Van Aken, B.E., Scheepmaker, A., Bax, M., Schotborgh, C.E., Piek, J.J., Tijssen, J.G.P., Reitsma, P.H., and De Winter, R.J. (2005). Relationship between In Vitro Lipopolysaccharide-Induced Cytokine Response in Whole Blood, Angiographic In-Stent Restenosis, and Toll-Like Receptor 4 Gene Polymorphisms. Clinical Chemistry 51, 516-521.
    Robert, F., and Pelletier, J. (2018). Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Frontiers in Genetics 9.
    Rodewald, H.-R. (1995). Pathways from hematopoietic stem cells to thymocytes. Current opinion in immunology 7, 176-187.
    Roques, E., Girard, A., St-Louis, M.-C., Massie, B., Gagnon, C.A., Lessard, M., and Archambault, D. (2013). Immunogenic and protective properties of GP5 and M structural proteins of porcine reproductive and respiratory syndrome virus expressed from replicating but nondisseminating adenovectors. Veterinary Research 44, 17.
    Rothschild, M.F. (1996). Genetics and reproduction in the pig. Animal Reproduction Science 42, 143-151.
    Saalmüller, A., Pauly, T., Höhlich, B.J., and Pfaff, E. (1999). Characterization of porcine T lymphocytes and their immune response against viral antigens. J Biotechnol 73, 223-233.
    Samuel, C.E. (2001). Antiviral Actions of Interferons. Clinical Microbiology Reviews 14, 778-809.
    Sanderson, C.J., and Glauert, A.M. (1979). The mechanism of T-cell mediated cytotoxicity. VI. T-cell projections and their role in target cell killing. Immunology 36, 119-129.
    Sang, Y., Ross, C.R., Rowland, R.R., and Blecha, F. (2008a). Toll-like receptor 3 activation decreases porcine arterivirus infection. Viral Immunol 21, 303-313.
    Sang, Y., Yang, J., Ross, C.R., Rowland, R.R., and Blecha, F. (2008b). Molecular identification and functional expression of porcine Toll-like receptor (TLR) 3 and TLR7. Vet Immunol Immunopathol 125, 162-167.
    Schmitt, E., Hoehn, P., Huels, C., Goedert, S., Palm, N., Rüde, E., and Germann, T. (1994). T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-γ and is inhibited by transforming growth factor-β. European Journal of Immunology 24, 793-798.
    Schwarz, B.A., and Bhandoola, A. (2006). Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunological reviews 209, 47-57.
    Shaul, O. (2017). How introns enhance gene expression. Int J Biochem Cell Biol 91, 145-155.
    Shinkai, H., Muneta, Y., Suzuki, K., Eguchi-Ogawa, T., Awata, T., and Uenishi, H. (2006a). Porcine Toll-like receptor 1, 6, and 10 genes: complete sequencing of genomic region and expression analysis. Mol Immunol 43, 1474-1480.
    Shinkai, H., Tanaka, M., Morozumi, T., Eguchi-Ogawa, T., Okumura, N., Muneta, Y., Awata, T., and Uenishi, H. (2006b). Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics 58, 324-330.
    Sipos, W., Duvigneau, C.J., Hartl, R.T., and Schwendenwein, I. (2011). Exploratory reference intervals on hematology and cellular immune system of multiparous Large White sows. Veterinary Immunology and Immunopathology 141, 307-311.
    Smith, A.J., and Humphries, S.E. (2009a). Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev 20, 43-59.
    Smith, A.J.P., and Humphries, S.E. (2009b). Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine & Growth Factor Reviews 20, 43-59.
    Stinchcombe, J.C., Majorovits, E., Bossi, G., Fuller, S., and Griffiths, G.M. (2006). Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462-465.
    Thye, T., Nejentsev, S., Intemann, C.D., Browne, E.N., Chinbuah, M.A., Gyapong, J., Osei, I., Owusu-Dabo, E., Zeitels, L.R., Herb, F., Horstmann, R.D., and Meyer, C.G. (2009). MCP-1 promoter variant -362C associated with protection from pulmonary tuberculosis in Ghana, West Africa. Hum Mol Genet 18, 381-388.
    Ticha, O., Klemm, D., Moos, L., and Bekeredjian-Ding, I. (2021). A cell-based in vitro assay for testing of immunological integrity of Tetanus toxoid vaccine antigen. npj Vaccines 6, 88.
    Tizard, I.R. (2021). Adverse consequences of vaccination. Vaccines for Veterinarians, 115-130.e111.
    Tsai Gs, L.C., Lee Ms, Et Al. (2003). Investigation on the reproductive and growth perfor- mance of TLRI Black Pigs. Journal Taiwan Livestock 36:317–325.
    Tybulewicz, V.L.J. (2002). Chemokines and the immunological synapse. Immunology 106, 287-288.
    Ueda, H., Morphew, M.K., Mcintosh, J.R., and Davis, M.M. (2011). CD4+ T-cell synapses involve multiple distinct stages. Proc Natl Acad Sci U S A 108, 17099-17104.
    Uenishi, H., and Shinkai, H. (2009). Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev Comp Immunol 33, 353-361.
    Vandebriel, R., and Hoefnagel, M.M.N. (2012). Dendritic cell-based in vitro assays for vaccine immunogenicity. Human vaccines & immunotherapeutics 8, 1323-1325.
    Vashisht, K., Goldberg, T.L., Husmann, R.J., Schnitzlein, W., and Zuckermann, F.A. (2008). Identification of immunodominant T-cell epitopes present in glycoprotein 5 of the North American genotype of porcine reproductive and respiratory syndrome virus. Vaccine 26, 4747-4753.
    Vivier, E., Tomasello, E., Baratin, M., Walzer, T., and Ugolini, S. (2008). Functions of natural killer cells. Nature Immunology 9, 503-510.
    Walsh, D., Mccarthy, J., O'driscoll, C., and Melgar, S. (2013). Pattern recognition receptors--molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine Growth Factor Rev 24, 91-104.
    Wang, T., Dai, H., Wan, N., Moore, Y., and Dai, Z. (2008a). The role for monocyte chemoattractant protein-1 in the generation and function of memory CD8+ T cells. J Immunol 180, 2886-2893.
    Wang, T., Dai, H., Wan, N., Moore, Y., and Dai, Z. (2008b). The Role for Monocyte Chemoattractant Protein-1 in the Generation and Function of Memory CD8<sup>+</sup> T Cells. The Journal of Immunology 180, 2886-2893.
    Weiss, A., and Littman, D.R. (1994). Signal transduction by lymphocyte antigen receptors. Cell 76, 263-274.
    Wilkie, B., and Mallard, B. (1999a). Selection for high immune response: an alternative approach to animal health maintenance? Veterinary Immunology and Immunopathology 72, 231-235.
    Wilkie, B., and Mallard, B. (1999b). Selection for high immune response: an alternative approach to animal health maintenance? Vet Immunol Immunopathol 72, 231-235.
    Xie, J., Tato, C.M., and Davis, M.M. (2013). How the immune system talks to itself: the varied role of synapses. Immunol Rev 251, 65-79.
    Yang, W.C., Schultz, R.D., and Spano, J.S. (1987). Isolation and characterization of porcine natural killer (NK) cells. Veterinary Immunology and Immunopathology 14, 345-356.
    Zhang, C., and Plastow, G. (2011). Genomic Diversity in Pig (Sus scrofa) and its Comparison with Human and other Livestock. Current genomics 12, 138-146.

    無法下載圖示 校外公開
    2026/12/28
    QR CODE