簡易檢索 / 詳目顯示

研究生: 劉宜旻
Liu, Yi-Min
論文名稱: 應用酵素輔助超臨界流體技術萃取可可果莢生物活性成分
Application of enzyme-assisted supercritical fluid technology on extraction of bioactive components from cocoa pod husks
指導教授: 許祥純
Sheu, Shyang-Chwen
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 110
語文別: 中文
論文頁數: 117
中文關鍵詞: 超臨界二氧化碳萃取酵素輔助萃取反應曲面法可可果莢
外文關鍵詞: supercritical CO2 extraction, enzyme-assisted extraction, reaction surface method, cocoa pod husk
DOI URL: http://doi.org/10.6346/NPUST202200006
相關次數: 點閱:45下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 加工後剩餘的可可果莢(CPH)約佔果實重量的74%,研究指出CPH中含有豐富的酚類化合物,是具有抗氧化活性之重要成分。超臨界CO2萃取技術具有低操作溫度、高擴散能力、無污染等多項優點,為萃取高價值天然產物的首選之一。酚類化合物多以酯鍵鍵結於植物細胞壁上,為提高植物細胞中酚類化合物的釋放,本研究以酵素作用輔助超臨界CO2萃取,建立CPH酚類化合物萃取方法。實驗分成兩階段進行,第一階段將CPH以熱風乾燥並磨粉過篩,使用四因子三階層之Box-Behnken反應曲面法,進行超臨界CO2萃取條件最適化,根據實驗數據建立二次多項方程式,以61℃、4735 psi及共溶劑比例17.4%萃取118分鐘為最佳萃取條件。第二階段將新鮮CPH泥分別以RAPIDASE®FIBER (R-F)、RAPIDASE®TF、BREWERS COMPASSTM和VALIDASE®TRL四種酵素,於不同酵素濃度(0.5-3.0%)和反應時間(0-6 hr)在50℃、pH 5.5進行水解,探討其還原醣及總酚含量的變化,選出最適酵素水解條件;最後將二階段合併,CPH經酵素水解後乾燥,以最適化條件之超臨界CO2萃取,透過分析立體結構、成分以及抗氧化活性,比較酵素輔助超臨界CO2萃取對CPH及其萃取物之影響。結果顯示,以R-F輔助超臨界CO2萃取CPH獲得最高總類黃酮為27.53±1.17 mg/g,其DPPH及ABTS自由基清除能力之IC50分別為53.28±0.03 μg/mL和38.63±0.16 μg/mL,均顯著低於其他處理,且可提高總兒茶素含量,其中EGC含量增加幅度最大,是單獨使用超臨界CO2萃取含量的2.7倍。

    After cocoa processing, the remaining cocoa pod husks (CPH) account for about 74% of the total weight. Studies have shown that CPH is rich in phenolic compounds, which are considered the as primary components with antioxidant activity. Supercritical carbon dioxide (SC-CO2) extraction includes many advantages such as low operating temperature, high diffusion capacity, non-polluting, etc. It has become one of the primary choices for extraction of high-value natural products. Phenolic compounds are mostly ester-bound to plant cell walls. To increase the release of phenolic compounds from plant cells, the objective of this study was to establish an enzyme-assisted SC-CO2 extraction technology for CPH. The experiment was divided into two stages. First, CHP was dried with hot air and ground into powder. A four-factor, three-level Box-Behnken reaction surface method was applied to optimize the extraction conditions of CPH powder by SC-CO2. A second-degree polynomial equation was established. The optimal extraction conditions were 61℃, 4735 psi, 17.4% co-solvent ratio extract for 118 minutes. Second, fresh CPH puree was treated with four enzymes individually, including RAPIDASE® FIBER (R-F), RAPIDASE® TF, BREWERS COMPASSTM and VALIDASE® TRL. Different enzyme concentrations (0.5-3.0%) and reaction time (0-6 hr) were used for hydrolysis at 50℃, pH 5.5. The changes of reducing sugars and total phenolic content were determined. Finally, CHP was hydrolyzed by enzymes, and followed by SC-CO2 extraction under optimal conditions. Effects of enzyme-assisted SC-CO2 extraction on CHP were evaluated by the structure, composition and antioxidant activity. The results showed that the highest total flavonoids content obtained by R-F-assisted SC-CO2 extraction of CPH were 27.53±1.17 mg/g. The IC50 of DPPH and ABTS free radical scavenging capabilities were 53.28±0.03 μg/mL and 38.63±0.16 μg/mL, respectively, which were significantly lower than other treatments. That total catechin content also increased. EGC content was 2.7 times higher than using supercritical CO2 extraction alone.

    中文摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VIII
    表目錄 X
    第一章 前言 1
    第二章 文獻回顧 3
    2.1 可可 3
    2.1.1可可之產地及種類 3
    2.1.2 可可之商業價值 6
    2.1.3 可可產業副產物及其應用 8
    2.1.4 可可果莢之基本成分 8
    2.1.5 可可果莢之抗氧化物質 12
    2.2 酵素輔助超臨界二氧化碳萃取 13
    2.2.1 超臨界流體簡介 13
    2.2.2 超臨界二氧化碳 14
    2.2.3 酵素輔助萃取 14
    2.2.4 果膠及果膠酵素 15
    2.2.5 半纖維素與半纖維素酶 20
    2.2.6 木質素與木質素酶 20
    2.3 反應曲面法 23
    2.3.1 反應曲面法之實驗設計 24
    2.3.2 二階模型之擬合 28
    2.3.3 模型適切性之統計驗證 28
    第三章 材料與方法 30
    3.1 實驗設計 30
    3.2 實驗儀器設備 30
    3.3 藥品試劑 32
    3.4 樣品來源 32
    3.5 超臨界CO2萃取 32
    3.5.1 樣品前處理 32
    3.5.2 超臨界CO2萃取設備操作 33
    3.5.3 樣品萃取 35
    3.6 超臨界CO2萃取條件探討 35
    3.6.1 單因子分析 35
    3.6.2 以反應曲面法進行萃取最適化 36
    3.7 常規萃取 36
    3.8 酵素輔助萃取 39
    3.8.1 樣品酵素水解條件 39
    3.8.2 酵素輔助超臨界CO2萃取 39
    3.9 萃取物化學性質分析 40
    3.9.1抗氧化成分 40
    3.9.2 還原醣含量測定 40
    3.9.3 總酚含量測定 40
    3.9.4 總類黃酮含量測定 42
    3.9.5 DPPH自由基清除能力測定 42
    3.9.6 ABTS自由基清除能力測定 42
    3.10 掃描式電子顯微鏡之結構觀察 43
    3.11 統計分析 43
    第四章 結果與討論 44
    4.1 超臨界CO2萃取條件探討 44
    4.1.1 單因子分析 44
    4.1.2 反應曲面法探討超臨界二氧化碳萃取條件 47
    4.1.3 總酚含量之模型擬合及變異數分析 50
    4.1.4 總類黃酮含量之模型擬合及變異數分析 53
    4.1.5 DPPH自由基清除力之模型擬合及變異數分析 63
    4.1.6 ABTS自由基清除力之模型擬合及變異數分析 70
    4.1.7 最適化萃取條件與模型再現性驗證 76
    4.2 酵素作用條件最適化 79
    4.3 酵素輔助結合超臨界CO2萃取 84
    4.4 掃描式電子顯微鏡分析 87
    4.5 以高效能液相層析儀分析兒茶素含量 89
    第五章 結論 91
    第六章 參考文獻 92
    附錄 108
    作者介紹 117

    行政院農業委員會農糧署。2020。縣市作物查詢。檢自:http://agr.afa.gov.tw/afa/afa_frame.jsp (Sept. 15, 2021)

    呂泓達。2018。利用超臨界二氧化碳萃取芝麻油並以數學模型模擬研究。國立中興大學化學工程學系碩士學位論文。

    邱展臺、劉芳怡、蔡雅琴。2016。淺談國內可可產業。種苗科技專訓。94: 19-22。

    張聖顯、陳怡蓉。2013。金絲桃屬植物抗氧化能力分析。花蓮區農業改良場彙報。31: 21-32。

    郭哲昆、魏勝德、黃振全。2017。推動屏東可可產業跨域發展。農政與農情。302期。檢自:https://www.coa.gov.tw/ws.php?id=2506656 (May 6, 2021)

    陳永龍、陳載永、吳志鴻。2010。淺談真菌降解木材機制與環境友善型木材防腐劑。中華林學季刊。43(1): 181-189。

    陳宗強。2016。以反應曲面法探討台灣藜種子最佳化萃取條件及固液萃取的動力模式分析。國立台北科技大學化學工程與生物科技化學工程碩士學位論文。

    陳清泉。1993。最適化實驗設計在食品工業產品開發上的應用。食品工業。25(2): 50-62。

    黃宇如。2018。以反應曲面法優化臺灣藜之萃取並與藜麥比較其組成分及機能特性之差異。國立嘉義大學食品科學系研究所碩士論文。

    黃欣培。2020。全球巧克力品牌巨頭成功搶灘台灣市場,國民品牌「77乳加」不甘示弱搏上位!取自: https://www.foodnext.net/issue/paper/5111422113 (July 20, 2021)

    葉佳威。2020。台灣可可─台灣可可巧克力產業經濟發展之分析。國立中興大學農業經濟及行銷碩士學位論文。

    蔣安國、蔣安仁、丁敬哲、鐘健平。2005。以模擬技術和統計方法建構專案排程之可靠度。第一屆管理與決策2005年學術研討會特刊。119-130。

    談駿嵩。2002。超臨界流體的應用。科學發展。359: 12-17。

    Acebo-Guerrero, Y., A. Hernández-Rodríguez, M. Heydrich-Pérez, M. E. Jaziri, A. N. Hernández-Lauzardo. 2011. Management of black pod rot in cacao (Theobroma cacao L.): a review. Fruits, 67(1): 41-48.

    Alén, R. 2000. Structure and chemical composition of wood. For. Prod. J., 3: 11-57.

    Almeida, M. M. B., P. H. M. de Sousa, Â. M. C. Arriaga, G. M. do Prado, C. E. de Carvalho Magalhães, G. A. Maia, T. L. G. de Lemos. 2011. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res Int. 44(7): 2155-2159.

    Annunziata, G., A. Sureda, I. E. Orhan, M. Battino, A. Arnone, M. Jimenez-Garcia, X. Capo´, J. Cabot, N. Sanadgol, F. Giampieri, G. C. Tenore, H. R. K. Kashani, A. S. Silva, S. Habtemariam, S. F. Nabavi, S. M. Nabavi. 2021. The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci Biobehav Rev, 128: 437-453.

    Arnous, A., A. S. Meyer. 2010. Discriminated release of phenolic substances from red wine grape skins (Vitis vinifera L.) by multicomponent enzymes treatment. Eng J, 49(1): 68-77.

    Arora, D. S., M. Chander, K. G. Paramjit. 2002. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int biodeterior biodegrad, 50(2): 115-120.

    Ascrizzi, R., G. Flamini, C. Tessieri, L. Pistelli. 2017. From the raw seed to chocolate: Volatile profile of Blanco de Criollo in different phases of the processing chain. Microchem J, 133: 474-479.

    Ateş, F., S. Şahin, Z. İlbay, Ş. İ. Kırbaşlar. 2019. A green valorisation approach using microwaves and supercritical CO2 for high-added value ingredients from Mandarin (Citrus deliciosa Tenore) leaf waste. Waste Biomass Valorization, 10(3): 533-546.

    Averill, B., P. Eldredge. 2011. General chemistry: principles, patterns, and applications. San Francisco, CA, US, Benjamin Cummings. p: 1042-1046.

    Aydar, A. Y. 2018. Utilization of response surface methodology in optimization of extraction of plant materials. Statistical approaches with emphasis on design of experiments applied to chemical processes. Norderstedt, Germany, BoD–Books on Demand. p: 157-169.

    Bagger-Jørgensen, R., A. M. Meyer. 2004. Effects of different enzymatic pre-press maceration treatments on the release of phenols into blackcurrant juice. Eur. Food Res. Technol., 219(6): 620-629.

    Baş, D., I. H. Boyacı. 2007. Modeling and optimization I: Usability of response surface methodology. J Food Eng, 78(3): 836-845.

    Basegmez, H. I. O., D. Povilaitis, V. Kitrytė, V. Kraujalienė, V. Šulniūtė, C. Alasalvar, P. R. Venskutonis. 2017. Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions. J Supercrit Fluids, 124: 10-19.

    Beg, M. S., S. Ahmad, K. Jan, K. Bashir. 2017. Status, supply chain and processing of cocoa - A review. Trends Food Sci Technol, 66: 108-116.

    Bisaria, V. S., T. K. Ghose. 1981. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme Microb Technol, 3(2): 90-104.

    Boligon, A. A., M. M. Machado, M. L. Athayde. 2014. Technical evaluation of antioxidant activity. Med chem, 4(7): 517-522.

    Braga, M. E., P. F. Leal, J. E. Carvalho, M. A. A. Meireles. 2003. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J. Agric. Food Chem, 51(22): 6604-6611.

    Breig, S. J. M., K. J. K. Luti. 2021. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater Today, 42: 2277-2284.

    Brglez Mojzer, E., M. Knez Hrnčič, M. Škerget, Z. Knez, U. Bren. 2016. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7) 901: 1-38.

    Campos-Vega, R., K. H. Nieto-Figueroa, B. D. Oomah. 2018. Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends Food Sci Technol, 81: 172-184.

    Campos-Vega, R., K. Vázquez-Sánchez, D. López-Barrera, G. Loarca-Piña, S. Mendoza-Díaz, B. D. Oomah. 2015. Simulated gastrointestinal digestion and in vitro colonic fermentation of spent coffee (Coffea arabica L.): Bioaccessibility and intestinal permeability. Food Res Int, 77: 156-161.

    Casas, M. P., H. D. González. 2017. Enzyme-assisted aqueous extraction processes. In Water Extraction of Bioactive Compounds. Amsterdam, Netherlands, Elsevier. p: 333-368.

    Chang, C. C., M. H. Yang, H. M. Wen, J. C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal, 10(3): 178-182.

    Chouaibi, M., K. Rigane, G. Ferrari. 2020. Extraction of Citrullus colocynthis L. seed oil by supercritical carbon dioxide process using response surface methodology (RSM) and artificial neural network (ANN) approaches. Ind Crops Prod, 158: 113002.

    Das, S., S. S. Nadar, V. K. Rathod. 2021. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int J Biol Macromol, 191: 899-917.

    Dashtban, M., M. Maki, K. T. Leung, C. Mao, W. Qin. 2010. Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol, 30(4): 302-309.

    Desvaux, M. 2005. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev, 29(4): 741-764.

    Díaz-Reinoso, B., A. Moure, H. Domínguez, J. C. Parajó. 2006. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J Agric Food Chem, 54(7): 2441-2469.

    Donkoh, A., C. C. Atuahene, B. N. Wilson, D. Adomako. 1991. Chemical composition of cocoa pod husk and its effect on growth and food efficiency in broiler chicks. Anim. Feed Sci Technol, 35(1-2): 161-169.

    Dorta, E., M. G. Lobo, M. González. 2012. Using drying treatments to stabilise mango peel and seed: Effect on antioxidant activity. LWT, 45(2): 261-268.

    Espinosa-Pardo, F. A., V. M. Nakajima, G. A. Macedo, J. A. Macedo, J. Martínez. 2017. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. FOOD BIOPROD PROCESS, 101: 1-10.

    Fan, T., J. Hu, L. Fu, L. Zhang. 2015. Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology. Carbohydr Polym, 115: 701-706.

    Felice, F., A. Fabiano, M. D. Leo, A. M. Piras, D. Beconcini, M. M. Cesare, A. Braca, A. Zambito, R. D. Stefano. 2020. Antioxidant effect of cocoa by-product and cherry polyphenol extracts: a comparative study. Antioxidants, 9(2) 132: 1-14.

    Fernandez, K., M. Vega, E. Aspe. 2015. An enzymatic extraction of proanthocyanidins from Pais grape seeds and skins. Food Chem, 168: 7-13.

    Ferrari, S., D. V. Savatin, F. Sicilia, G. Gramegna, F. Cervone, G. De Lorenzo. 2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Plant sci, 4(49): 1-9.

    Ferreira, S. L., R. E. Bruns, E. G. da Silva, W. N. Dos Santos, C. M. Quintella, J. M. David, J. B. de Andradea, M. C. Breitkreitz, I. C. S. F. Jardim, B. B. Neto. 2007. Statistical designs and response surface techniques for the optimization of chromatographic systems. J Chromatogr A, 1158(1-2): 2-14.

    Figueira, A., J. Janick, J. N. BeMiller. 1993. New products from Theobroma cacao: Seed pulp and pod gum. New crops, 475-478.

    Floegel, A., D. O. Kim, S. J. Chung, S. I. Koo, O. K. Chun. 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal, 24(7): 1043-1048.

    Fu, Y. J., W. Liu, Y. G. Zu, M. H. Tong, S. M. Li, M. M. Yan, E. Thomas, H. Luo. 2008. Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Food Chem, 111(2): 508-512.

    García, C. Á. 2018. In Fruit Juices. Amsterdam, Netherlands, Elsevier. p: 201-216.

    Ghandahari Yazdi, A. P., M. Barzegar, M. A. Sahari, H. A. Gavlighi. 2019. Optimization of the enzyme‐assisted aqueous extraction of phenolic compounds from pistachio green hull. Food Sci Nutr, 7(1): 356-366.

    Ghose, T. K. 1977. Cellulase biosynthesis and hydrolysis of cellulosic substances. Adv Biochem Eng Biotechnol, 6: 39-76.

    Gligor, O., A. Mocan, C. Moldovan, M. Locatelli, G. Crișan, I. C. F. R. Ferreira. 2019. Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends Food Sci Technol, 88: 302-315.

    Guirlanda, C. P., G. G. da Silva, J. A. Takahashi. 2021. Cocoa honey: agro-industrial waste or underutilized cocoa by-product?. Future Foods, 100061.

    Gullón, P., B. Gullón, A. Romaní, G. Rocchetti, J. M. Lorenzo. 2020. Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci Technol, 101: 182-197.

    Hasanuddin, A., K. Anwar, M. Mappatoba. 2019. Antibacterial and antioxidant activities of ethanol extracts of cocoa husk (Theobroma cacao L.) with maltodextrine in various concentration. Earth Environ Sci, 255: 012017.

    Herrero, M., J. A. Mendiola, A. Cifuentes, E. Ibanez. 2010. Supercritical fluid extraction: Recent advances and applications. J Chromatogr A, 1217(16): 2495-2511.

    Hoegger, P. J., A. Majcherczyk, R. C, Dwivedi, K. Svobodová, S. Kilaru, U. Kües. 2007. Enzymes in Wood Degradation. Wood production, wood technology, and biotechnological impacts. Lower Saxony, Germany, Universitätsverlag Göttingen. p: 380-385.

    Hsu, Y. T., C. S. Su. 2020. Application of Box-Behnken design to investigate the effect of process parameters on the microparticle production of ethenzamide through the rapid expansion of the supercritical solutions process. Pharmaceutics, 12(1) 42: 1-11.

    Huang, D., B. Ou, R. L. Prior. 2005. The chemistry behind antioxidant capacity assays. J Agric Food Chem, 53(6): 1841-1856.

    Huang, Z., H. X. Shi, W. J. Jiang. 2012. Theoretical models for supercritical fluid extraction. J Chromatogr A, 1250: 2-26.

    Ignat, I., I. Volf, V. I. Popa. 2011. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem, 126(4): 1821-1835.

    International Cocoa Organization (ICCO). 2021. Quarterly Bulletin of Cocoa Statistics. https://www.icco.org/statistics/ (Oct. 26, 2021)

    Ioannone, F., C. D. Di Mattia, M. De Gregorio, M. Sergi, M. Serafini, G. Sacchetti. 2015. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food chemistry, 174: 256-262.

    Karim, A. A., A. Azlan, A. Ismail, P. Hashim, Puziah, S. S. A. Gani, B. H. Zainudin N. A. Abdullah. 2014. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Altern Med, 14(1) 381: 1-13.

    Karimifard, S., M. R. A. Moghaddam. 2018. Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci Total Environ, 640: 772-797.

    Karmakar, M., R. R. Ray. 2011. Current trends in research and application of microbial cellulases. Res Microbiol, 6(1): 41-53.

    Krakowska, A., K. Rafińska, J. Walczak, B. Buszewski. 2018. Enzyme-assisted optimized supercritical fluid extraction to improve Medicago sativa polyphenolics isolation. Ind Crops Prod, 124: 931-940.

    Lang, Q., C. M. Wai. 2001. Supercritical fluid extraction in herbal and natural product studies—a practical review. Talanta, 53(4): 771-782.

    Lima, G. P. P., F. Vianello, C. R. Corrêa, R. A. da S. Campos, M. G. Borguini. 2014. Polyphenols in fruits and vegetables and its effect on human health. Food Sci Nutr, 5(11): 1065-1082.

    Lobos, S., J. Larraín, L. Salas, D. Cullen, R. Vicuña. 1994. Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology, 140(10): 2691-2698.

    Lou, H., M. Wang, H. Lai, X. Lin, M. Zhou, D. Yang, X. Qiu. 2013. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresour Technol, 146: 478-484.

    Lu, F., J. Rodriguez-Garcia, I. V. Damme, N. J. Westwood, L. Shaw, Liz, J. S. Robinson, G. Warren, A. Chatzifragkou, S. M. Mason, L. Gomez, L. Faas, K. Balcombe, C. Srinivasan, F. Picchioni, P. Hadley, D. Charalampopoulos. 2018. Valorisation strategies for cocoa pod husk and its fractions. Curr Opin Green Sustain Chem, 14: 80-88.

    Lynd, L. R., P. J. Weimer, W. H. V. Zyl, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66(3): 506-577.

    Machmudah, S., A. Shotipruk, M. Goto, M. Sasaki, T. Hirose. 2006. Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Ind Eng Chem Res, 45(10): 3652-3657.

    Maran, J. P., S. Manikandan, B. Priya, P. Gurumoorthi. 2015. Box-Behnken design based multi-response analysis and optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from tea (Camellia sinensis L.) leaves. J Food Sci Technol, 52(1): 92-104.

    Marathe, S. J., S. B. Jadhav, S. B. Bankar, R. S. Singhal. 2017. Enzyme-assisted extraction of bioactives. Food bioactives. Berlin, Germany, Springer. p: 171-201.

    Mariatti, F., V. Gunjević, L. Boffa, G. Cravotto. 2021. Process intensification technologies for the recovery of valuable compounds from cocoa by-products. Innov Food Sci Emerg Technol, 68: 102608.

    Martínez, R., P. Torres, M. A. Meneses, J. G. Figueroa, J. A. Pérez-Álvarez, M. Viuda-Martos. 2012. Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products. Food Res Int, 49(1): 39-45.

    Masghati, S., S. M. Ghoreishi. 2018. Supercritical CO2 extraction of cinnamaldehyde and eugenol from cinnamon bark: Optimization of operating conditions via response surface methodology. J Supercrit Fluids, 140: 62-71.

    Mashuni, F. H. Hamid, Muzuni, L. O. Kadidae, M. Jahiding, L. O. Ahmad, D. Saputra. 2020. The determination of total phenolic content of cocoa pod husk based on microwave-assisted extraction method. AIP Conf Proc, 2243: 030013.

    McCleary, B. V., P. McGeough. 2015. A comparison of polysaccharide substrates and reducing sugar methods for the measurement of endo-1, 4-β-xylanase. Appl Biochem Biotechnol, 177(5): 1152-1163.

    Md, Y. A. H., S. S. A. Gani, U. H. Zaidan, M. I. E. Halmi, B. H. Zainudin. 2019. Optimization of an ultrasound-assisted extraction condition for flavonoid compounds from cocoa shells (Theobroma cacao) using response surface methodology. Molecules, 24(4) 711: 1-16.

    Miles, J. 2005. R‐squared, adjusted R‐squared. Encyclopedia of statistics in behavioral science. New Jersey, USA, Wiley Online Library. p:1655-1657.

    Miron, T. L., M. Herrero, E. Ibanez. 2013. Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. J Chromatogr A, 1288: 1-9.

    Motamayor, J. C., P. Lachenaud, E. da Silva, J. W. Mota, R. Loor, D. N. Kuhn, J. S. Brown, R. J. Schnell. 2008. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One, 3(10): e3311.

    Munteanu, I. G., C. Apetrei. 2021. Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci, 22(7) 3380: 1-30.

    Mushtaq, M., B. Sultana, F. Anwar, A. Adnan, S. S. Rizvi. 2015. Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. J Supercrit Fluids, 104: 122-131.

    Nighojkar, A., M. K. Patidar, S. Nighojkar. 2019. Pectinases: production and applications for fruit juice beverages. In Processing and Sustainability of Beverages. Elsevier. Amsterdam, Netherlands. p: 235-273.

    Oddoye, E. O. K., C. K. Agyente-Badu, E. Gyedu-Akoto. 2013. Cocoa and its by-products: identification and utilization. Chocolate in Health and Nutrition. Berlin, Germany, Springer. p: 32-37.

    Patil, P. D., S. P. Patil, R. K. Kelkar, N. P. Patil, P. V. Pise, S. S. Nadar. 2021. Enzyme-assisted supercritical fluid extraction: An integral approach to extract bioactive compounds. Trends Food Sci Technol, 116: 357-369.

    Páulia, M. C. L. R., C. Dariva, A. B. V. Gizelle, H. Haiko. 2016. Extraction and evaluation of antioxidant potential of the extracts obtained from tamarind seeds (Tamarindus indica), sweet variety. J Food Eng, 173: 116-123.

    Phayanak. 2021. https://chocolatephayanak.com/unkategorisiert/what-are-the-different-varieties-of-cacao/ (Sept. 5, 2021)

    Pico Hernández, S. M., J. J. Estévez, L. J. L. Giraldo, C. J. M. Méndez. 2019. Supercritical extraction of bioactive compounds from cocoa husk: study of the main parameters. Rev Fac de Ing, 91: 95-105.

    Pinelo, M., A. Arnous, A. S. Meyer. 2006. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Technol, 17(11): 579-590.

    Pinelo, M., M. Rubilar, M. Jerez, J. Sineiro, M. J. Núñez. 2005. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J Agric Food Chem, 53(6): 2111-2117.

    Pourmorad, F., S. J. Hosseinimehr, N. Shahabimajd. 2006. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Adv Biotechnol, 5(11): 1142-1145.

    Puri, M., D. Sharma, C. J. Barrow. 2012. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol, 30(1): 37-44.

    Qadir, R., F. Anwar, F. Batool, M. Mushtaq, A. Jabbar. 2018. Enzyme-assisted extraction of Momordica balsamina L. fruit phenolics: process optimized by response surface methodology. J Food Meas Charact, 13(1): 697-706.

    Reis, P. M. C. L., C. Dariva, G. Â. B. Vieira, H. Hense. 2016. Extraction and evaluation of antioxidant potential of the extracts obtained from tamarind seeds (Tamarindus indica), sweet variety. J Food Eng, 173: 116-123.

    Rojo-Poveda, O., L. Barbosa-Pereira, G. Zeppa, C. Stévigny. 2020. Cocoa bean shell-a by-product with nutritional properties and biofunctional potential. Nutrients, 12(4): 1123.

    Rozzi, N. L., R. K. Singh. 2002. Supercritical fluids and the food industry. Compr Rev Food Sci Food Saf, 1(1): 33-44.

    Santana, A. L., G. A. Macedo. 2019. Effects of hydroalcoholic and enzyme-assisted extraction processes on the recovery of catechins and methylxanthines from crude and waste seeds of guarana (Paullinia cupana). Food Chem, 281: 222-230.

    Shimada, K., K. Fujikawa, K. Yahara, T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem, 40(6): 945-948.

    Silva, V. 2018. Statistical approaches with emphasis on design of experiments applied to chemical processes. Norderstedt, Germany, BoD–Books on Demand. p: 158-169.

    Suhaimi, H., D. J. Dailin, R. A. Malek, S. Z. Hanapi, K. K. Ambehabati, H. C. Keat, S. Prakasham, E. A. Elsayed, M. Misson, H. E. Enshasy. 2021. Fungal pectinases: production and applications in food industries. Fungi in Sustainable Food Production. Berlin, Germany, Springer. p: 85-93.

    Sun, Y. X., J. C. Liu, J. F. Kennedy. 2010. Extraction optimization of antioxidant polysaccharides from the fruiting bodies of Chroogomphis rutilus (Schaeff.: Fr.) O.K. Miller by Box-Behnken statistical design. Carbohydr Polym, 82(1): 209-214.

    Tarley, C. R. T., G. Silveira, W. N. L. dos Santos, G. D. Matos, E. G. P. da Silva, M. A. Bezerra, M. Miró, S. L. C. Ferreirac. 2009. Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology. Microchem J, 92(1): 58-67.

    Ulaganathan, K., S. G. Burragoni, M. R. Mettu, P. K. Vanaparthi, J. Balsingh, S. Radhakrishna. 2015. Proteins for breaking barriers in lignocellulosic bioethanol production. Curr Protein Pept Sci, 16(2): 100-134.

    Valadez-Carmona, L., A. Ortiz-Moreno, G. Ceballos-Reyes, J. A. Mendiola, E. Ibáñez. 2018. Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J Supercrit Fluids, 131: 99-105.

    Valadez-Carmona, L., C. P. Plazola-Jacinto, M. Hernández-Ortega, M. D. Hernández-Navarro, F. Villarreal, H. Necoechea-Mondragón, A. Ortiz-Moreno, G. Ceballos-Reyes. 2017. Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innov Food Sci Emerg Technol, 41: 378-386.

    Vasquez, Z. S., D. P. de C. Neto, G. V. M. Pereira, L. P. S. Vandenberghe, P. Z. de Oliveira, P. B. Tiburcio, H. L. G. Rogez, N. G. Neto, C. R. Soccol. 2019. Biotechnological approaches for cocoa waste management: A review. Waste Manag Res, 90: 72-83.

    Vriesmann, L. C., C. A. de Mello, D. Renata, P. de Oliveira, L. Carmen. 2011. Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins. Ind Crops Prod, 34(1): 1173-1181.

    Wanasundara, P. K. J. P. D., F. Shahidi. 1996. Optimization of hexametaphosphate‐assisted extraction of flaxseed proteins using response surface methodology. J Food Sci Technol, 61(3): 604-607.

    Wang, L., C. L. Weller. 2006. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol, 17(6): 300-312.

    Witek-Krow W. L., B. Yang, X. Du, C. Yi. 2008. Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chem, 108(2): 737-741.

    Witek-Krowiak, A., K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda. 2014. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour Technol, 160: 150-160.

    Wollgast, J., E. Anklam. 2000. Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int, 33(6): 423-447.

    Wootton-Beard, P. C., A. Moran, L. Ryan. 2011. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res Int, 44(1): 217-224.

    Wu, S., G. Gong, Y. Wang, F. Li, S. Jia, F. Qin, H. Ren, Liu, Y. 2013. Response surface optimization of enzyme-assisted extraction polysaccharides from Dictyophora indusiata. Int J Biol Macromol, 61: 63-68.

    Yadav, S., P. K. Yadav, D. Yadav, K. D. S. Yadav. 2009. Pectin lyase: a review. Process Biochem, 44(1): 1-10.

    Yapo, B. M., V. Besson, B. B. Koubala, K. L. Koffi. 2013. Adding value to cacao pod husks as a potential antioxidant-dietary fiber source. Am J Food Nutr, 1(3): 38-46.

    Yolmeh, M., S. M. Jafari. 2017. Applications of response surface methodology in the food industry processes. Food Bioproc Tech, 10(3): 413-433.

    Zhang, X., D. Jiang, D. Li, C. Yu, X. Dong, H. Qi. 2019. Characterization of a seafood-flavoring enzymatic hydrolysate from brown alga Laminaria japonica. Food Meas Charact, 13(2): 1185-1194.

    Zhao, Y., H. Sun, B. Yang, Y. Weng. 2020. Hemicellulose-based film: potential green films for food packaging. Polymer, 12(8) 1775: 1-14.
    Ziegleder, G. 2017. Flavour development in cocoa and chocolate. Beckett's Industrial Chocolate Manufacture and Use. New Jersey, USA, Wiley Online Library. p:185-215.
    Zulkafli, Z. D., H. Wang, F. Miyashita, N. Utsumi, K. Tamura. 2014. Cosolvent-modified supercritical carbon dioxide extraction of phenolic compounds from bamboo leaves (Sasa palmata). J Supercrit Fluids, 94: 123-129

    下載圖示
    QR CODE