簡易檢索 / 詳目顯示

研究生: 林國輝
Lin, Guo-Hui
論文名稱: 以定量胜肽體學自牛奶蛋白水解物中大規模篩選二肽基肽酶-4 (DPP-4) 之外源性受質與抑制肽
Large-scale Screening of Dipeptidyl Peptidase-4 (DPP-4) Exogenous Substrates and Inhibitory Peptides from Milk Protein Hydrolysate Using Quantitative Peptidomics
指導教授: 徐睿良
Hsu, Jue-Liang
學位類別: 碩士
Master
系所名稱: 農學院 - 生物科技系
Department of Biological Science and Technology
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 二肽基肽酶-4液相層析-串聯式質譜二甲基穩定同位素標記受質
外文關鍵詞: Dipeptidyl peptidase-4, LC-MS/MS, Stable-isotopes dimethyl labeling, Substrate
DOI URL: http://doi.org/10.6346/NPUST202200015
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 超過500個 (大約占2%) 人類基因編碼為蛋白酶 (proteases) 或肽酶(peptidases),這些功能不明確的蛋白酶或肽酶,其生理受質 (substrates) 大多未知,且不易以傳統分析方法鑑定,然而二肽基肽酶-4 (DPP-4) 已被認為是糖尿病的新興治療標的。在本研究中,以DPP-4、液相層析串聯式質譜 (LC-MS/MS) 結合二甲基穩定同位素標記來大規模篩選肽酶之外源性受質。使用三種胃腸道蛋白酶水解牛奶蛋白以建立胜肽庫 (peptide library)。胜肽混合物分成兩等分,一等分標記為輕原子;另一等分在DPP-4預培養後以重原子標記,之後將兩等分合併後以LC-MS/MS分析。經過DPP-4預培養裂解導致重原子標記之胜肽訊號減少或消失者被認為是DPP-4受質。
    結果顯示,從牛奶蛋白水解物鑑定的975個胜肽中篩選出41個受質候選胜肽,並使用Web Logo分析其序列保守性。自N端第二個胺基酸為Proline 與Alanine是受DPP-4裂解之保守序列。使用了6種合成肽LPLSLLK (LK-7)、FALPQYLK (FK-8)、RPKHPIKHQGLPQE (RE-14)、YPELFR (YR-6)、VPQLEIVPN (VN-9)、VPYPQRDMPIQA (VA-12)來確認它們與DPP-4的反應。LK-7、YR-6、VN-9被DPP-4迅速地裂解,自N端釋放二肽且觀察到LSLLK、ELFR、QLEIVPN的片段,還觀察到FK-8、VA-12自N端裂解兩次,分別得到產物LPQYLK、QYLK和YPQRDMPIQA、QRDMPIQA的片段,6種合成肽在DPP-4的切位以及其裂解速率與D/H 比值呈現一致的趨勢。然而VN-9有較佳的DPP-4抑制活性,其IC50值為217.3 ±9.99 µM,抑制型態為真實底物 (real substrate)。有趣的是,還發現當P1和P1’為A和V時,DPP-4難以裂解出二肽。我們相信,DPP-4的外源性受質或抑制劑的發現將有利於降血糖藥物的開發。

    More than 500 (around 2%) of human genes are encoded as proteases or peptidases that have still not yet understood clearly about their functions. According to previous publications, the inhibition of dipeptidyl peptidases- 4 (DPP-4) is considered an emerging therapeutic target for diabetes. In this study, DPP-4, liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with stable-isotope dimethyl labeling were used to screen the exogenous peptidase substrates on a large scale. After hydrolyzing milk protein using three gastrointestinal proteases, the resulting peptides were used to generate the peptide library. The peptide mixture was divided into two parts. One part was labeled with hydrogen (H) atom and used as the control (without DPP-4 treatment); while the remaining one was incubated with DPP-4 following by deuterium (D) atom labeling. After that, both samples were combined and analyzed by LC-MS/MS. After DPP-4 pre-incubation, the reduction or disappearance of the peptide signal of heavy-atoms (D/H < 1) was regarded as a DPP-4 substrate candidate.
    The results showed that 41 of the 975 peptides identified from the milk protein hydrolysate were assumed as DPP-4 substrate candidates and their sequence conservation was analyzed using Web Logo. Proline and alanine at the second position from the N-terminal were the most common sites for DPP-4 cleavage. The six peptides LPLSLLK (L-7), FALPQYLK (FK-8), RPKHPIKHQGLPQE (RE-14), YPELFR (YR-6), VPQLEIVPN (VN-9) and VPYPQRDMPIQA (VA-12) were synthesized and analyzed their reactivities towards DPP-4. Among them, LK-7, YR-6 and VN-9 were cleaved rapidly from the N-terminus by DPP-4 to release dipeptides, and their products of LSLLK, ELFR, and QLEIVPN were also observed, respectively. Moreover, FK-8 and VA-12 was cleaved two times to release its products as LPQYLK, QYLK and YPQRDMPIQA, QRDMPIQA, respectively. The reactivity confirmation of six synthetic peptides towards DPP-4 indicated that they were readily cleaved by DPP-4 and their cleavage rate showed a similar trend with the D/H ratio values observed in the above-mentioned experiment. Furthermore, the peptides inhibitory activities against DPP-4 were also evaluated. Among them, the VN-9 showed the best DPP-4 inhibitory activity, with an IC50 value of 217.3 ± 9.99 µM, and its inhibition type was characterized as a real substrate. Interestingly, we found that DPP-4 is difficult to cleave the peptide when its P1 and P1' residue are A and V respectively. We believe that the discovery of DPP-4’s exogenous substrates or inhibitors can benefit the development of blood glucose-lowering agents.

    摘 要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 IX
    表目錄 XII
    1. 前言 1
    1.1 研究背景 1
    1.2 研究動機 2
    2. 文獻回顧 4
    2.1 蛋白質體學 4
    2.2 胜肽體學 4
    2.3 肽酶 4
    2.4 生物活性肽 5
    2.5 糖尿病 6
    2.6 二肽基肽酶-4 (Dipeptidyl peptidase-4, DPP-4)與腸泌素(Incertin) 6
    2.6.1 DPP-4結構與特性 7
    2.6.2 DPP-4作用機制 8
    2.6.3 DPP-4之內源性受質切位 9
    2.6.4 DPP-4抑制劑 10
    2.6.5 抑制DPP-4活性之體外測定 10
    2.7 二甲基穩定同位素標定法 (Stable isotope dimethyl labeling) 10
    2.8 液相層析串聯式質譜分析 11
    2.8.1 離子源 (Ion source) 11
    2.8.2 質量分析器 (Mass analyzer) 12
    2.8.2.1 離子阱 (Ion trap) 12
    2.8.2.2 四極柱軌道阱 (Q Exactive Orbitrap) 12
    2.9 蛋白質鑑定與胜肽定序 13
    2.9.1 資料庫比對 (Database search) 13
    2.9.2 從頭定序 (de novo sequencing) 14
    2.10生物資訊工具:WebLogo 14
    2.11 BIOPEP資料庫 14
    2.12 固相胜肽合成 (Solid Phase Peptide Synthesis, SPPS) 15
    2.13 牛奶蛋白 16
    3. 材料與方法 17
    3.1 實驗架構 17
    3.2 實驗材料 19
    3.2.1 藥品與試劑 19
    3.2.2 儀器設備與材料 20
    3.3 實驗方法 21
    3.3.1 酵素水解 21
    3.3.2 固相萃取 (Solid Phase Extraction) 21
    3.3.3 DPP-4之預培養 22
    3.3.4 二甲基穩定同位素標示法 22
    3.3.5 液相層析-串聯式質譜(LC-MS/MS)定性與相對定量分析 22
    3.3.6 In silico鑑定與分析受質胜肽之序列及其對DPP-4抑制活性潛力 24
    3.3.6.1 蛋白質鑑定與胜肽定序 24
    3.3.6.2 DPP-4受質胜肽之篩選 24
    3.3.6.3 使用WebLogo分析受質候選胜肽之序列保留性 25
    3.3.6.4 使用BIOPEP資料庫工具預測受質之DPP-4抑制活性 25
    3.3.7 胜肽合成 25
    3.3.7.1 固相微波胜肽合成 25
    3.3.7.2 合成胜肽確認與純化 27
    3.3.8 在不同時間下的DPP-4預培養 27
    3.3.9 體外之DPP-4抑制型態測定 28
    3.3.10 內源性受質GLP-1與候選胜肽之DPP-4預培養 28
    3.3.11 統計方法 29
    4. 結果 30
    4.1 胜肽序列鑑定與H /D定量之結果 30
    4.2 候選胜肽之序列保留性結果 40
    4.3候選受質胜肽之驗證 40
    4.4 受質在不同時間下之DPP-4預培養的變化 47
    4.5 受質之DPP-4抑制型態分析 53
    4.6 比較GLP-1與外源性受質共同在DPP-4預培養下之結果 55
    5. 討論 58
    5.1 以二甲基穩定同位素標記搭配LC-MS/MS篩選外源性受質方法之探討 58
    5.2 DPP-4對受質裂解偏好與不切序列之探討 58
    5.3 具潛力DPP-4抑制肽之篩選 65
    6. 結論 67
    參考文獻 68
    附錄 77

    圖目錄
    圖 1、肽酶裂解之胺基酸殘基判讀示意圖 5
    圖 2、腸泌素與DPP-4作用機制示意圖 7
    圖 3、DPP-4蛋白示意圖 8
    圖 4、DPP-4內源性受質裂解示意圖 9
    圖 5、穩定二甲基同位素標定反應 11
    圖 6、實驗流程圖 18
    圖 7、DPP-4候選胜肽LK-7與其產物LK-5之鑑定 33
    圖 8、DPP-4候選胜肽FK-8與其產物LK-6之鑑定 34
    圖 9、DPP-4候選胜肽RE-14與其產物KE-12之鑑定 35
    圖10、DPP-4候選胜肽YR-6與其產物RE-4之鑑定 36
    圖11、DPP-4候選胜肽VN-9與其產物QN-7之鑑定 37
    圖 12、DPP-4候選胜肽VA-12與其產物YA-10與QA-8之鑑定 39
    圖 13、webLogo分析41條受質候選胜肽之序列 40
    圖 14、合成候選胜肽LK-7之驗證 41
    圖 15、合成候選胜肽RE-14之驗證 42
    圖 16、合成候選胜肽YR-6之驗證 43
    圖 17、合成候選胜肽VN-9之驗證 44
    圖 18、合成候選胜肽FK-8之驗證 45
    圖 19、合成候選胜肽VA-12之驗證 46
    圖 20、LK-7在DPP-4不同時間的預培養下之層析圖 47
    圖 21、FK-8在DPP-4不同時間的預培養下之層析圖 48
    圖 22、RE-14在DPP-4不同時間的預培養下之層析圖 48
    圖 23、YR-6在DPP-4不同時間的預培養下之層析圖 49
    圖 24、VN-9在DPP-4不同時間的預培養下之層析圖 49
    圖 25、VA-12在DPP-4不同時間的預培養下之層析圖 50
    圖 26、受質之DPP-4預培養在不同時間下的變化比較 51
    圖 27、源自CASA1蛋白之受質被DPP-4裂解之速率比較 51
    圖 28、6個合成受質在常規與預培養下之DPP-4抑制活性 54
    圖 29、VN-9對DPP-4抑制活性之IC50值 55
    圖 30、GLP-1在DPP-4不同時間預培養下之層析圖 56
    圖 31、GLP-1加入VN-9在DPP-4不同時間預培養下之層析圖 56
    圖 32、DPP-4預培養在有無加入VN-9的GLP-1變化比較 57
    圖 33、LALSLLK在DPP-4不同時間預培養下之層析圖 59
    圖 34、P1位置為P或A之DPP-4裂解變化比較 59
    圖 35、webLogo分析P1為P/A且P1’為P的D/H≈1序列 61
    圖 36、webLogo分析P1為P/A且D/H≈1之序列 61
    圖 37、FL-7與DPP-4預培養之結果 62
    圖 38、VV-7與DPP-4預培養之結果 62
    圖 39、合成肽NL-9、YK-7、KQ-7與DPP-4預培養8小時之含量變化 63
    圖 40、比較FAVPQYLK和FALPQYLK在DPP-4不同時間預培養的變化 64
    圖 41、DPP-4對胜肽序列之裂解特異性示意圖 65

    表目錄
    表 1、液相層析-串聯式質譜分析梯度 23
    表 2、質譜分析參數 23
    表 3、Peaks studio鑑定設定參數 24
    表 4、固相微波胜肽合成條件 26
    表 5、牛奶水解物鑑定之候選胜肽序列 31
    表 6、DPP-4受質在不同時間下的含量比例 51
    表 7、合成受質被DPP-4裂解速率 52
    表 8、合成受質之DPP-4抑制活性與抑制型態測定 54
    表 9、有無加入VN-9的GLP-1在DPP-4預培養不同時間的含量比例 57
    表 10、GLP-1被DPP-4裂解速率與VN-9保護力 57
    表 11、統整P1位置為P/A且D/H比值約為1之序列 60
    表 12、已發表之DPP-4抑制肽 (IC50 < 100µM) 66

    Agyei, D., & Danquah, M. K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances, 29(3), 272-277.
    Ashok, A., Brijesha, N., & Aparna, H. S. (2019). Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. European Journal of Medicinal Chemistry, 180, 99-110.
    Behrendt, R., White, P., & Offer, J. (2016). Advances in Fmoc solid-phase peptide synthesis. Journal of Peptide Science : an Official Publication of the European Peptide Society, 22(1), 4-27.
    Biniossek, M. L., Niemer, M., Maksimchuk, K., Mayer, B., Fuchs, J., Huesgen, P. F., McCafferty, D. G., Turk, B., Fritz, G., Mayer, J., Haecker, G., Mach, L., & Schilling, O. (2016). Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics. Molecular & Cellular Proteomics, 15(7), 2515-2524.
    Boucher, J., Kleinridders, A., & Kahn, C. R. (2014). Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology, 6(1), a009191.
    Bongers, J., Lambros, T., Ahmad, M., & Heimer, E. P. (1992). Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1122(2), 147-153.
    Cermeño, M., Connolly, A., O'Keeffe, M. B., Flynn, C., Alashi, A. M., Aluko, R. E., & FitzGerald, R. J. (2019). Identification of bioactive peptides from brewers’ spent grain and contribution of Leu/Ile to bioactive potency. Journal of Functional Foods, 60, 103455.
    Dallas, D. C., Guerrero, A., Parker, E. A., Robinson, R. C., Gan, J., German, J. B., Barile, D., & Lebrilla, C. B. (2015). Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics, 15(5-6), 1026-1038.
    Deacon, C. F. (2019). Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Frontiers in Endocrinology, 10(80).
    Deacon, C. F., Nauck, M. A., Toft-Nielsen, M., Pridal, L., Willms, B., & Holst, J. J. (1995). Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes, 44(9), 1126-1131.
    Duez, H., Cariou, B., & Staels, B. (2012). DPP-4 inhibitors in the treatment of type 2 diabetes. Biochemical Pharmacology, 83(7), 823-832.
    Fahed, A. C., El-Hage-Sleiman, A.-K. M., Farhat, T. I., & Nemer, G. M. (2012). Diet, Genetics, and Disease: A Focus on the Middle East and North Africa Region. Journal of Nutrition and Metabolism, 2012, 109037.
    Flatt, P. R., Bailey, C. J., & Green, B. D. (2008). Dipeptidyl peptidase IV (DPP IV) and related molecules in type 2 diabetes. Frontiers in Bioscience-Landmark, 13(10), 3648-3660.
    Groop, L., & Pociot, F. (2014). Genetics of diabetes – Are we missing the genes or the disease? Molecular and Cellular Endocrinology, 382(1), 726-739.
    Gu, Y., & Wu, J. (2016). Bovine lactoferrin-derived ACE inhibitory tripeptide LRP also shows antioxidative and anti-inflammatory activities in endothelial cells. Journal of Functional Foods, 25, 375-384.
    Gygi, S. P., Rochon, Y., Franza, B. R., & Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology, 19(3), 1720-1730.
    Harnedy-Rothwell, P. A., McLaughlin, C. M., O'Keeffe, M. B., Le Gouic, A. V., Allsopp, P. J., McSorley, E. M., Sharkey, S., Whooley, J., McGovern, B., O'Harte, F. P. M., & FitzGerald, R. J. (2020). Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity. Food Research International, 131, 108989.
    Hartmann, R., & Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology, 18(2), 163-169.
    Hatanaka, T., Inoue, Y., Arima, J., Kumagai, Y., Usuki, H., Kawakami, K., Kimura, M., & Mukaihara, T. (2012). Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chemistry, 134(2), 797-802.
    Howlader, M., Sultana, M. I., Akter, F., & Hossain, M. M. (2021). Adiponectin gene polymorphisms associated with diabetes mellitus: A descriptive review. Heliyon, 7(8), e07851.
    Hsieh, K.-H., Demaine, M. M., & Gurusidaiah, S. (1996). Side reactions in solid-phase peptide synthesis and their applications. International Journal of Peptide and Protein Research, 48(3), 292-298.
    Hsu, J. L., Huang, S. Y., Chow, N. H., & Chen, S. H. (2003). Stable-isotope dimethyl labeling for quantitative proteomics. Analytical Chemistry, 75(24), 6843-6852.
    Huang, S.-L., Jao, C.-L., Ho, K.-P., & Hsu, K.-C. (2012). Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides, 35(1), 114-121.
    Hughes, C., Ma, B., & Lajoie, G. A. (2010). De Novo Sequencing Methods in Proteomics. In S. J. Hubbard & A. R. Jones (Eds.), Proteome Bioinformatics (pp. 105-121). Totowa, NJ: Humana Press.
    Jiang, J., Dutta, S., Books, C., Corner, E., Geis, I., & Goodsell, D. (2017). DPP4 inhibitor - Diabetes Mellitus: Drugs. RCSB PDB(Global Health articles).
    Lacroix, I. M. E., & Li-Chan, E. C. Y. (2012). Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. International Dairy Journal, 25(2), 97-102.
    Lambeir, A. M., Durinx, C., Scharpé, S., & De Meester, I. (2003). Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Critical Reviews in Clinical Laboratory Sciences 40(3), 209-294.
    Lin, C.-C. J., Chen, W.-N., Chen, C.-J., Lin, Y.-W., Zimmer, A., & Chen, C.-C. (2012). An antinociceptive role for substance P in acid-induced chronic muscle pain. Proceedings of the National Academy of Sciences of the United States of America, 109(2), E76-E83.
    Lin, S.-R., Chang, C.-H., Tsai, M.-J., Cheng, H., Chen, J.-C., Leong, M. K., & Weng, C.-F. (2019). The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: from in silico to in vivo. Therapeutic Advances in Chronic Disease, 10, 2040622319875305-2040622319875305.
    Liu, J., Cheng, X., & Fu, L. (2012). LC-MS based assay method for DPP-IV inhibitor screening and substrate discovery. Analytical Methods, 4, 1797-1805.
    Lone, A. M., Kim, Y.-G., & Saghatelian, A. (2013). Peptidomics methods for the identification of peptidase-substrate interactions. Current Opinion in Chemical Biology, 17(1), 83-89.
    Lone, A. M., Nolte, W. M., Tinoco, A. D., & Saghatelian, A. (2010). Peptidomics of the prolyl peptidases. The AAPS Journal, 12(4), 483-491.
    Ma, B., & Johnson, R. (2012). De novo sequencing and homology searching. Molecular & Cellular Proteomics, 11(2), O111.014902-O014111.014902.
    Maddelein, D., Colaert, N., Buchanan, I., Hulstaert, N., Gevaert, K., & Martens, L. (2015). The iceLogo web server and SOAP service for determining protein consensus sequences. Nucleic Acids Research, 43(W1), W543-W546.
    Mentlein, R. (1999). Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regulatory Peptides, 85(1), 9-24.
    Merrifield, R. B. (1963). Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society, 85(14), 2149-2154.
    Michalski, A., Damoc, E., Hauschild, J.-P., Lange, O., Wieghaus, A., Makarov, A., Nagaraj, N., Cox, J., Mann, M., & Horning, S. (2011). Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Molecular & Cellular Proteomics, 10(9).
    Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., & Darewicz, M. (2019). BIOPEP Database and Other Programs for Processing Bioactive Peptide Sequences. Journal of AOAC International, 91(4), 965-980.
    Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. International Journal of Molecular Sciences, 20(23), 5978.
    Mäde, V., Els-Heindl, S., & Beck-Sickinger, A. G. (2014). Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein Journal of Organic Chemistry, 10, 1197-1212.
    Moller, D. E. (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 414(6865), 821-827.
    Nauck, M. A., Vilsbøll, T., Gallwitz, B., Garber, A., & Madsbad, S. (2009). Incretin-Based Therapies. Diabetes Care, 32 Suppl 2, S223-S231.
    Ni, S. J., Zhang, H. B., Huang, W. L., Zhou, J. P., & Qian, H. (2010). Solid phase synthesis of fatty acid modified glucagon-like peptide-1 (7-36) amide under thermal and controlled microwave irradiation. Chinese Chemical Letters, 21(1), 27-30.
    Nielsen, L. L. (2005). Incretin mimetics and DPP-IV inhibitors for the treatment of type 2 diabetes. Drug Discovery Today, 10(10), 703-710.
    Nong, N. T. P., & Hsu, J.-L. (2021). Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. International Journal of Molecular Sciences, 22(17), 9508.
    Nongonierma, A. B., Cadamuro, C., Le Gouic, A., Mudgil, P., Maqsood, S., & FitzGerald, R. J. (2019). Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chemistry, 279, 70-79.
    Nongonierma, A. B., & FitzGerald, R. J. (2014). An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 165, 489-498.
    Nongonierma, A. B., Mooney, C., Shields, D. C., & FitzGerald, R. J. (2013). Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chemistry, 141(1), 644-653.
    Nongonierma, A. B., Paolella, S., Mudgil, P., Maqsood, S., & FitzGerald, R. J. (2018). Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chemistry, 244, 340-348.
    Overall, C. M., & Blobel, C. P. (2007). In search of partners: linking extracellular proteases to substrates. Nature Reviews. Molecular Cell Biology, 8(3), 245-257.
    Patil, P., Mandal, S., Tomar, S. K., & Anand, S. (2015). Food protein-derived bioactive peptides in management of type 2 diabetes. European Journal of Nutrition, 54(6), 863-880.
    Paz Ocaranza, M., Riquelme, J. A., García, L., Jalil, J. E., Chiong, M., Santos, R. A. S., & Lavandero, S. (2020). Counter-regulatory renin–angiotensin system in cardiovascular disease. Nature Reviews Cardiology, 17(2), 116-129.
    Power, O., Nongonierma, A. B., Jakeman, P., & FitzGerald, R. J. (2014). Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proceedings of the Nutrition Society, 73(1), 34-46.
    Röhrborn, D., Wronkowitz, N., & Eckel, J. (2015). DPP4 in Diabetes. Frontiers in Immunology, 6, 386-386.
    Schneider, T. D., & Stephens, R. M. (1990). Sequence logos: a new way to display consensus sequences. Nucleic Acids Research, 18(20), 6097-6100.
    Smacchi, E., & Gobbetti, M. (2000). Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes. Food Microbiology, 17(2), 129-141.
    Smithers, G. W. (2008). Whey and whey proteins—From ‘gutter-to-gold’. International Dairy Journal, 18(7), 695-704.
    Song, J. J., Wang, Q., Du, M., Ji, X. M., & Mao, X. Y. (2017). Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates. Journal of Dairy Science, 100(9), 6885-6894.
    Southan, C. (2001). A genomic perspective on human proteases as drug targets. Drug Discovery Today, 6(13), 681-688.
    Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science, 77(1), R11-24.
    van der Velden, V. H., & Hulsmann, A. R. (1999). Peptidases: structure, function and modulation of peptide-mediated effects in the human lung. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology, 29(4), 445-456.
    Vincent, D., Savin, K., Rochfort, S., & Spangenberg, G. (2020). The Power of Three in Cannabis Shotgun Proteomics: Proteases, Databases and Search Engines. Proteomes, 8(2), 13.
    Wilson, C. H., Zhang, H. E., Gorrell, M. D., & Abbott, C. A. (2016). Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches. Biological chemistry, 397(9), 837-856.
    Yates, N., Ekaterina, D., Geissler, W., Wiener, M., Sachs, J., Wong, K. K., Thornberry, N., Roy, R. S., Settlage, R., & Hendrickson, R. (2007). Identification of peptidase substrates in human plasma by FTMS based differential mass spectrometry. International Journal of Mass Spectrometry, 259, 174-183.
    Zambrowicz, A., Pokora, M., Setner, B., Dąbrowska, A., Szołtysik, M., Babij, K., Szewczuk, Z., Trziszka, T., Lubec, G., & Chrzanowska, J. (2015). Multifunctional peptides derived from an egg yolk protein hydrolysate: isolation and characterization. Amino Acids, 47(2), 369-380.

    無法下載圖示 校外公開
    2027/01/13
    QR CODE