簡易檢索 / 詳目顯示

研究生: 盧思妤
Lu, Si-Yu
論文名稱: 酵素水解與高壓加工對檸檬外果皮抑制碳水化合物水解酶及抗氧化活性之影響
Effects of Enzymatic Hydrolysis and High-pressure Processing on Carbohydrate Hydrolyzing Enzymes Inhibition and Antioxidative Activity of Lemon Flavedo
指導教授: 蔡碧仁
Tsai, Pi-Jen
朱永麟
Chu, Yung-Lin
學位類別: 碩士
Master
系所名稱: 國際學院 - 食品科學國際碩士學位學程
International Master's Degree Program in Food Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 111
中文關鍵詞: 檸檬外果皮高壓加工碳水化合物水解酶抑制力酵素水解
外文關鍵詞: lemon peel, enzymatic hydrolysis, α-amylase inhibition, HPP, α-glucosidase inhibition
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6346/NPUST202200108
相關次數: 點閱:236下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 檸檬(Citrus limon L. Burm. f.) 為世界上最重要的經濟作物之一。台灣檸檬年產量約為4.5萬噸,而屏東為主要產地,約佔全台總量75%。檸檬外果皮為生產檸檬精油最重要的原料之一,而生產精油後之外果皮多棄之不用,少有文獻探討廢棄檸檬外果皮經再次萃取後是否仍保有檸檬外果皮中的活性成分。因此本研究探討酵素水解及高壓加工對檸檬外果皮精油殘留物對碳水化合物水解酶抑制能力 (α-澱粉酶 及α-葡萄糖苷酶) 、抗氧化成分(總酚、總類黃酮含量)、抗氧化能力(DPPH自由基清除能力、FRAP還原能力、SOD-like活性)之影響,並進一步使用HPLC探討酚類化合物含量,且與未經過精油萃取之烘乾與凍乾外果皮進行比較。
    研究結果顯示,酵素水解後檸檬外果皮α-澱粉酶及α-葡萄糖苷酶抑制能力約提升至90%及50%。HPLC分析顯示,芥子酸為檸檬外果皮中最主要酚類物質,約佔47-59%;水解後檸檬外果皮大部分酚類化合物皆有提升,其中以七葉素苷含量提升最多,成長約四倍。而七葉素苷與α-澱粉酶抑制率經統計分析顯示具有高度相關(r=0.913)。抗氧化成分及能力方面,總酚、總類黃酮含量、DPPH自由基清除能力、FRAP 還原能力以及SOD-like活性皆有提升,提升約一倍。高壓處理後之檸檬外果皮其α-澱粉酶及α-葡萄糖苷酶抑制能力各約為30%及36%。經HPLC分析顯示,高壓後檸檬外果皮酚類成分無明顯提升。綜合上述,在本研究條件下水解處理之檸檬外果皮其碳水化合物水解酶抑制活性、抗氧化成分及抗氧化能力皆優於高壓處理,故為一具有開發糖尿病相關保健食品潛力之原料。至於高壓處理效果不佳,可能受限於設備壓力僅到400 MPa,若能提高壓力可能有助於改善萃取效果。

    Lemon (Citrus limon L. Burm. f.) is one of the most important economical crops in the world. The productivity of lemon in Taiwan is about 45,000 tons annually, while Pingtung is the main production area, accounting for around 75% of the total. Lemon flavedo (the outer layer of lemon peel), is one of the most important materials for producing lemon essential oil. After the essential oil production, the flavedo is often discarded. However, there is less study related to the functional compounds of lemon flavedo essential oil residue (EOR). Therefore, the ability of EOR on the inhibition of carbohydrate hydrolase (α-amylase and α-glucosidase), antioxidant compounds (total phenol and total flavonoid content), antioxidant capacities (DPPH free radical scavenging ability, FRAP reducing ability, and SOD-like activity), and HPLC analysis after enzymatic hydrolysis treatment and high-pressure processing was conducted in this study, and compared with the flavedo without essential extract but with oven-dry (VD) and freeze-dry (FD).
    The results showed that the α-amylase and α-glucosidase inhibition of flavedo with enzymatic treatment increased to approximately 90% and 50%. HPLC analysis showed that sinapic acid is the most plentiful phenolic compound in the flavedo, accounting for about 47-59% of total phenolic compounds. Most of the phenolic compounds in the flavedo are improved after enzymatic treatment. While, the content of esculetin increased the most, about four times higher than that without treatment. The statistical analysis showed that esculetin exhibits a high correlation (r= 0.913) with α-amylase inhibition. In terms of antioxidant compounds and capacities, total phenol content, total flavonoid content, DPPH free radical scavenging ability, FRAP reducing ability, and SOD-like activity have all been improved about one-fold after enzymatic treatment. After high-pressure processing (HPP), the inhibition of α-amylase and α-glucosidase of flavedo is about 30% and 36%. Besides, HPLC analysis also showed that the phenolic composition of the flavedo did not increase significantly after HPP treatment. In summary, the flavedo with enzymatic treatment in this study has a better carbohydrate hydrolase inhibition, antioxidant components, and antioxidant capacity than HPP treatment. Thus, it could be a source of material that has the potential to develop diabetes-related health foods. As the poor effect of HPP might be due to the pressure limitation (400 MPa), it may ameliorate the extraction effect if the equipment pressure limit is improved.

    摘要 I
    Abstract III
    Acknowledgments V
    Table of Contents VI
    List of Tables IX
    List of Figures X
    1. Introduction 1
    2. Literature review 1
    2.1 Lemon 1
    2.1.1 Flavedo 6
    2.2 Polyphenols in lemon peel 7
    2.2.1 Phenolic acids 9
    2.2.2 Flavonoids 13
    2.3 Effect of processing on the bioactive compound 15
    2.3.1 Oven drying 15
    2.3.2 Freeze drying 16
    2.3.3 Essential oil extraction 16
    2.4 Diabetes mellitus (DM) 17
    2.5 Carbohydrate Hydrolyzing Enzymes 19
    2.5.1 α-Amylase (EC 3.2.1.1) 19
    2.5.2 α-Glucosidase (EC 3.2.1.20) 20
    2.6 Polyphenols against α-amylase and α-glucosidase 22
    2.7 Enzymatic hydrolysis treatment 24
    2.7.1 Pectin and Pectinase 24
    2.7.2 Cellulose and Cellulase 30
    2.8 High-Pressure Processing (HPP) 31
    2.8.1 Effect of HPP on releasing the phenolics compounds 34
    3. Materials and Methods 35
    3.1 Materials 35
    3.2 Reagents 35
    3.3 Equipment 36
    3.4 Experimental design 37
    3.4.1 Extraction condition on carbohydrate hydrolyzing enzyme inhibition of flavedo 37
    3.4.2 Optimal enzymatic treatment and HPP condition on inhibition of carbohydrate hydrolyzing enzymes of flavedo. 37
    3.4.3 Quality analysis of VD, FD, and EOR samples under the optimum extraction, enzymatic treatment, and HPP condition 38
    3.5 Analysis methods 42
    3.5.1 Analysis of α-amylase inhibition 42
    3.5.2 Analysis of α-glucosidase inhibition 42
    3.5.3 Total phenolic contents (TPC) 43
    3.5.4 Total flavonoid contents (TFC) 43
    3.5.5 Quantification of phenolic compounds 44
    3.5.6 Ferric ion reducing antioxidant power (FRAP) assay 46
    3.5.7 DPPH (2,2-diphenyl-1-picrylydrazyl) scavenging assay 46
    3.5.8 SOD-like activity assay 47
    3.5.9 Statistical analysis 47
    4. Results and Discussion 48
    4.1 Optimal extraction condition of flavedo 48
    4.2 Analysis of flavedo with VD, FD, and EOR samples 51
    4.2.1 Carbohydrate hydrolyzing enzymes inhibition 51
    4.2.2 Antioxidant capacities 53
    4.3 Effect of enzymatic treatments on flavedo 53
    4.3.1 The optimal condition of enzymatic treatment 55
    4.4 Effect of HPP treatments on flavedo and comparison with enzymatic treatment 58
    4.4.1 The optimal condition of HPP 58
    4.5 Quality analysis of flavedo with ultrasonic, enzymatic treatment, and HPP 60
    4.5.1 Carbohydrate hydrolyzing enzymes inhibition for VD, FD, and EOR 60
    4.5.2 Antioxidant capacities 64
    4.5.3 Quantification of phenolic compounds of flavedo 75
    4.6 Statistical analysis 84
    4.6.1 The correlation between antioxidant capacity and carbohydrate hydrolyzing enzymes inhibition of flavedo 84
    4.6.2 The correlation between individual phenolic components and carbohydrate hydrolyzing enzymes inhibition of flavedo 84
    4.6.3 Principal component analysis (PCA) of flavedo with different treatment 88
    5. Conclusions 92

    6. TOC 93
    7. Reference 94

    Alam, M. A., N. Subhan, H. Hossain, M. Hossain, H. M. Reza, M. M. Rahman, andM. O. Ullah. 2016. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutrition & metabolism, 13(1): 27.
    Aoki, K., T. Muraoka, Y. Ito, Y. Togashi, andY. Terauchi. 2010. Comparison of adverse gastrointestinal effects of acarbose and miglitol in healthy men: a crossover study. Internal Medicine, 49(12): 1085-1087.
    Aruoma, O. I., B. Landes, D. Ramful-Baboolall, E. Bourdon, V. Neergheen-Bhujun, K.-H. Wagner, andT. Bahorun. 2012. Functional benefits of citrus fruits in the management of diabetes. Preventive Medicine, 54: S12-S16.
    Asami, D. K., Y.-J. Hong, D. M. Barrett, andA. E. Mitchell. 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J Agric Food Chem, 51(5): 1237-1241.
    Bajalan, I., M. Mohammadi, M. Alaei, andA. G. Pirbalouti. 2016. Total phenolic and flavonoid contents and antioxidant activity of extracts from different populations of lavandin. Industrial Crops and Products, 87: 255-260.
    Balasundram, N., K. Sundram, andS. Samman. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1): 191-203.
    Benavente-García, O., andJ. Castillo. 2008. Update on Uses and Properties of Citrus Flavonoids: New Findings in Anticancer, Cardiovascular, and Anti-inflammatory Activity. J Agric Food Chem, 56(15): 6185-6205.
    Bhavsar, S. K., P. Joshi, M. B. Shah, andD. Santani. 2007. Investigation into Hepatoprotective Activity of Citrus limon. Pharmaceutical Biology, 45(4): 303-311.
    Brown, E. J., H. Khodr, C. R. Hider, andC. A. Rice-Evans. 1998. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochemical Journal, 330(3): 1173-1178.
    Butz, P., A. Fernandez, R. Lindauer, S. Dieterich, A. Bognár, andB. Tauscher. 2003. Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering, 56: 233-236.
    Cömert, E. D., andV. Gökmen. 2017. Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior, and Physiological Importance. Comprehensive Reviews in Food Science and Food Safety, 16(3): 382-399.
    Cameron, N. E., andM. A. Cotter. 1999. Effects of antioxidants on nerve and vascular dysfunction in experimental diabetes. Diabetes research and clinical practice, 45(2-3): 137-146.
    Canabarro, C. M., J. Ceolin, J. D. Siqueira, B. A. Iglesias, G. Manzoni de Oliveira, D. F. Back, andP. T. Campos. 2016. Evaluation of the Antioxidant Activity of Copper(II) Complexes containing Tris-(hydroxymethyl)aminomethane (TRIS) Units. Zeitschrift für anorganische und allgemeine Chemie, 642(21): 1192-1197.
    Casquete, R., S. M. Castro, A. Martín, S. Ruiz-Moyano, J. A. Saraiva, M. G. Córdoba, andP. Teixeira. 2015. Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innovative food science & emerging technologies, 31: 37-44.
    Chen, D., J. Shi, andX. Hu. 2016. Enhancement of polyphenol content and antioxidant capacity of oat (Avena nuda L.) bran by cellulase treatment. Applied Biological Chemistry, 59(3): 397-403.
    Chen, J. H., andC.-T. Ho. 1997. Antioxidant Activities of Caffeic Acid and Its Related Hydroxycinnamic Acid Compounds. J Agric Food Chem, 45(7): 2374-2378.
    Choi, C. W., Y. H. Choi, M.-R. Cha, J. H. Park, Y. S. Kim, Y.-K. Kim, S. U. Choi, G. hwan Yon, K. S. Hong, andY. H. Kim. 2009. α-Glucosidase inhibitiors from seed extract of paeonia lactiflora. Journal of the Korean Society for Applied Biological Chemistry, 52(6): 638-642.
    Choi, M.-Y., C. Chai, J. H. Park, J. Lim, J. Lee, andS. W. Kwon. 2011. Effects of storage period and heat treatment on phenolic compound composition in dried Citrus peels (Chenpi) and discrimination of Chenpi with different storage periods through targeted metabolomic study using HPLC-DAD analysis. Journal of Pharmaceutical and Biomedical Analysis, 54(4): 638-645.
    United States Department of Agriculture. 2020. Citrus: World Markets and Trade: 13.
    D Archivio, M., C. Filesi, R. Di Benedetto, R. Gargiulo, C. Giovannini, andR. Masella. 2007. Polyphenols, dietary sources and bioavailability. Annali-Istituto Superiore di Sanita, 43(4): 348.
    Danalache, F., P. Mata, V. D. Alves, andM. Moldão-Martins. 2018. Chapter 10 - Enzyme-Assisted Extraction of Fruit Juices. In Rajauria, G. and Tiwari, B. K. (Eds.), Fruit Juices (pp. 183-200). San Diego: Academic Press.
    Deshaware, S., S. Gupta, R. S. Singhal, andP. S. Variyar. 2017. Enhancing anti-diabetic potential of bitter gourd juice using pectinase: A response surface methodology approach. LWT, 86: 514-522.
    Dhanavade, M. J., C. B. Jalkute, J. S. Ghosh, andK. D. Sonawane. 2011. Study antimicrobial activity of lemon (Citrus lemon L.) peel extract. British Journal of pharmacology and Toxicology, 2(3): 119-122.
    Đilas, S., J. Čanadanović-Brunet, andG. Ćetković. 2009. By-products of fruits processing as a source of phytochemicals. Chemical Industry and Chemical Engineering Quarterly/CICEQ, 15(4): 191-202.
    Dong, X., Y. Hu, Y. Li, andZ. Zhou. 2019. The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Scientia Horticulturae, 243: 281-289.
    Dubey, S., A. Ganeshpurkar, A. Ganeshpurkar, D. Bansal, andN. Dubey. 2017. Glycolytic enzyme inhibitory and antiglycation potential of rutin. Future Journal of Pharmaceutical Sciences, 3(2): 158-162.
    El-Seedi, H. R., A. M. El-Said, S. A. Khalifa, U. Göransson, L. Bohlin, A.-K. Borg-Karlson, andR. Verpoorte. 2012. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem, 60(44): 10877-10895.
    Ellnain-Wojtaszek, M., Z. Kruczyński, andJ. Kasprzak. 2001. Analysis of the content of flavonoids, phenolic acids as well as free radicals from Ginkgo biloba L. leaves during the vegetative cycle. Acta Pol Pharm, 58(3): 205-209.
    Farkas, D. F., andD. G. Hoover. 2000. High pressure processing. Journal of Food Science, 65: 47-64.
    Femenia, A. 2007. High-value co-products from plant foods: cosmetics and pharmaceuticals. In Handbook of waste management and co-product recovery in food processing (pp. 470-501): Elsevier.
    Femenia, A., P. Garcı́a-Pascual, S. Simal, andC. Rosselló. 2003. Effects of heat treatment and dehydration on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller. Carbohydrate polymers, 51(4): 397-405.
    Ferhat, M. A., B. Y. Meklati, andF. Chemat. 2007. Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’ distillation. Flavour and Fragrance Journal, 22(6): 494-504.
    Funke, I., andM. F. Melzig. 2005. Effect of different phenolic compounds on alpha-amylase activity: screening by microplate-reader based kinetic assay. Pharmazie, 60(10): 796-797.
    Garau, M. C., S. Simal, C. Rosselló, andA. Femenia. 2007. Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104: 1014-1024.
    Ghasemi, K., Y. Ghasemi, andM. Ebrahimzadeh. 2009. Antioxidant activity, phenol and flavonoid contents of 13 Citrus species peels and tissues. Pakistan journal of pharmaceutical sciences, 22: 277-281.
    Gligor, O., A. Mocan, C. Moldovan, M. Locatelli, G. Crișan, andI. C. F. R. Ferreira. 2019. Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends in Food Science & Technology, 88: 302-315.
    González-Molina, E., R. Domínguez-Perles, D. Moreno, C. J. J. o. p. García-Viguera, andb. analysis. 2010. Natural bioactive compounds of Citrus limon for food and health. 51(2): 327-345.
    Gray, K. A., L. Zhao, andM. Emptage. 2006. Bioethanol. Curr Opin Chem Biol, 10(2): 141-146.
    Guenther, E., andD. Althausen. 1948. The essential oils: Van Nostrand New York.
    Gupta, R., G. Mehta, D. Deswal, S. Sharma, K. K. Jain, R. C. Kuhad, andA. Singh. 2013. Cellulases and their biotechnological applications. In Biotechnology for Environmental Management and Resource Recovery (pp. 89-106): Springer.
    Haidara, M. A., H. Z. Yassin, M. Rateb, H. Ammar, andM. A. J. C. v. p. Zorkani. 2006. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. 4(3): 215-227.
    Hanefeld, M., andF. Schaper. 2007. The role of alpha-glucosidase inhibitors (acarbose). In Pharmacotherapy of diabetes: New developments (pp. 143-152): Springer.
    Hayashi, R. 1991. High pressure in food processing and preservation: Principle, application and development. International Journal of High Pressure Research, 7: 15-21.
    Hemalatha, P., D. P. Bomzan, B. V. Sathyendra Rao, andY. N. Sreerama. 2016. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities. Food Chemistry, 199: 330-338.
    Himmel, M. E., J. O. Baker, andR. P. Overend. 1994. Enzymatic conversion of biomass for fuels production: American Chemical Society Washington, DC.
    Holland, C., P. Ryden, H. C. Edwards, andM. L. M. Grundy. 2020. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods, 9(2).
    Hoshino, R., S. Machmudah, H. Kanda, andM. Goto. 2014. Simultaneous extraction of water and essential oils from citrus leaves and peels using liquefied dimethyl ether. J. Nutr. Food, 4(5): 1-5.
    Ignat, I., I. Volf, andV. I. Popa. 2011. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126(4): 1821-1835.
    Ismail, T. S. E. S., andS. A. Deshmukh. 2012. Comparative study of effect of alpha glucosidase inhibitors–Miglitol, acarbose and voglibose on postprandial Hyperglycemia and glycosylated hemoglobin in type-2 Diabetes Mellitus. diabetes, 7: 8.
    Jayani, R. S., S. Saxena, andR. Gupta. 2005. Microbial pectinolytic enzymes: A review. Process Biochemistry, 40(9): 2931-2944.
    Jeong, E.-Y., K.-S. Cho, andH.-S. Lee. 2012. α-amylase and α-glucosidase inhibitors isolated from Triticum aestivum L. sprouts. Journal of the Korean Society for Applied Biological Chemistry, 55.
    Kabir, F., W. W. Tow, Y. Hamauzu, S. Katayama, S. Tanaka, andS. Nakamura. 2015. Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chemistry, 167: 358-362.
    Karasu, Ç. 2000. Time course of changes in endothelium-dependent and-independent relaxation of chronically diabetic aorta: role of reactive oxygen species. European journal of pharmacology, 392(3): 163-173.
    Keharom, S., R. Mahachai, andS. J. I. F. R. J. Chanthai. 2016. The optimization study of α-amylase activity based on central composite design-response surface methodology by dinitrosalicylic acid method. 23(1).
    Koshita, Y. 2015. Effect of Temperature on Fruit Color Development. 47-58.
    Krentz, A. J., andC. J. Bailey. 2005. Oral antidiabetic agents. Drugs, 65(3): 385-411.
    Kris-Etherton, P. M., K. D. Hecker, A. Bonanome, S. M. Coval, A. E. Binkoski, K. F. Hilpert, A. E. Griel, andT. D. Etherton. 2002. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American journal of medicine, 113(9): 71-88.
    Lattanzio, V. 2013. Phenolic Compounds: Introduction. In (pp. 1543-1580).
    Lee, C. Y., andJ. M. deMan. 2018. Enzymes. In Principles of Food Chemistry (pp. 397-433): Springer.
    Lee, O.-H., andB.-Y. Lee. 2010. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology, 101(10): 3751-3754.
    Levetan, C. 2007. Oral antidiabetic agents in type 2 diabetes. Curr Med Res Opin, 23(4): 945-952.
    Li, B. B., B. Smith, andM. M. Hossain. 2006. Extraction of phenolics from citrus peels: I. Solvent extraction method. Separation and Purification Technology, 48(2): 182-188.
    Li, B. B., B. Smith, andM. M. Hossain. 2013. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method. Separation and Purification Technology, 48: 189-196.
    Li, Y.-Q., F.-C. Zhou, F. Gao, J.-S. Bian, andF. Shan. 2009. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J Agric Food Chem, 57(24): 11463-11468.
    Lim, T. K. 2012. Citrus x limon. In Lim, T. K. (Ed.), Edible Medicinal And Non-Medicinal Plants: Volume 4, Fruits (pp. 849-864). Dordrecht: Springer Netherlands.
    Limmongkon, A., P. Janhom, A. Amthong, M. Kawpanuk, P. Nopprang, J. Poohadsuan, T. Somboon, S. Saijeen, D. Surangkul, M. Srikummool, andT. Boonsong. 2017. Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pacific Journal of Tropical Biomedicine, 7(4): 332-338.
    M’hiri, N., I. Ioannou, M. Ghoul, andN. M. Boudhrioua. 2014. Extraction methods of citrus peel phenolic compounds. Food Reviews International, 30(4): 265-290.
    M’hiri, N., I. Ioannou, N. Mihoubi Boudhrioua, andM. Ghoul. 2015. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food and Bioproducts Processing, 96: 161-170.
    Ma, Y.-Q., J.-C. Chen, D.-H. Liu, andX.-Q. Ye. 2009. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry, 16(1): 57-62.
    Mahato, N., K. Sharma, M. Sinha, andM. H. Cho. 2018. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. Journal of Functional Foods, 40: 307-316.
    Mahmood, N. 2016. A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comparative Clinical Pathology, 25(6): 1253-1264.
    Malik, N., z. m. Zin, s. b. Abd, andk. i. a. m. k. z. Razak. 2017. Antioxidative Activities and Flavonoids Contents in Leaves of Selected Mangrove Species in. Setiu Wetlands Extracted Using Different Solvents. Journal of Sustainability Science Management, 3: 14-22.
    Manthey, J. A., andK. Grohmann. 2001. Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J Agric Food Chem, 49(7): 3268-3273.
    Marques, L. G., M. M. Prado, andJ. T. Freire. 2009. Rehydration characteristics of freeze-dried tropical fruits. LWT - Food Science and Technology, 42(7): 1232-1237.
    Martinez, K. B., J. D. Mackert, andM. K. McIntosh. 2017. Chapter 18 - Polyphenols and Intestinal Health. In Watson, R. R. (Ed.), Nutrition and Functional Foods for Healthy Aging (pp. 191-210): Academic Press.
    Masmoudi, M., S. Besbes, M. Chaabouni, C. Robert, M. Paquot, C. Blecker, andH. Attia. 2008. Optimization of pectin extraction from lemon by-product with acidified date juice using response surface methodology. Carbohydrate polymers, 74(2): 185-192.
    Massiot, P., J.-F. Thibault, andX. Rouau. 1989. Degradation of carrot (Daucus carota) fibres with cell-wall polysaccharide-degrading enzymes. Journal of the Science of Food and Agriculture, 49(1): 45-58.
    McDougall, G. J., F. Shpiro, P. Dobson, P. Smith, A. Blake, andD. Stewart. 2005. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J Agric Food Chem, 53(7): 2760-2766.
    McHarek, N., andB. Hanchi. 2017. Maturational effects on phenolic constituents, antioxidant activities and LC-MS / MS profiles of lemon (Citrus limon) peels. 90: 1-9.
    Meena, S. N., U. kumar, M. M. Naik, S. C. Ghadi, andS. G. Tilve. 2019. α-Glucosidase inhibition activity and in silico study of 2-(benzo[d][1,3]dioxol-5-yl)-4H-chromen-4-one, a synthetic derivative of flavone. Bioorganic & Medicinal Chemistry, 27(12): 2340-2344.
    Merken, H. M., andG. R. Beecher. 2000. Measurement of food flavonoids by high-performance liquid chromatography: a review. J Agric Food Chem, 48(3): 577-599.
    Mphahlele, R. R., O. A. Fawole, N. P. Makunga, andU. L. Opara. 2016. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC complementary and alternative medicine, 16: 143.
    Mukhopadhyay, M. 2000. Natural extracts using supercritical carbon dioxide: CRC press.
    Nakamura, K., Y. Ogasawara, K. Endou, S. Fujimori, M. Koyama, andH. Akano. 2010. Phenolic Compounds Responsible for the Superoxide Dismutase-like Activity in High-Brix Apple Vinegar. J Agric Food Chem, 58(18): 10124-10132.
    Numao, S., I. Damager, C. Li, T. M. Wrodnigg, A. Begum, C. M. Overall, G. D. Brayer, andS. G. Withers. 2004. In situ extension as an approach for identifying novel α-amylase inhibitors. Journal of Biological Chemistry, 279(46): 48282-48291.
    Nwosu, F., J. Morris, V. A. Lund, D. Stewart, H. A. Ross, andG. J. McDougall. 2011. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chemistry, 126(3): 1006-1012.
    Obiro, W. C., T. Zhang, andB. Jiang. 2008. The nutraceutical role of the Phaseolus vulgaris α-amylase inhibitor. British journal of nutrition, 100(1): 1-12.
    Oboh, G., andA. O. Ademosun. 2011. Shaddock peels (Citrus maxima) phenolic extracts inhibit α-amylase, α-glucosidase and angiotensin I-converting enzyme activities: A nutraceutical approach to diabetes management. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 5(3): 148-152.
    Oboh, G., A. O. Ademosun, P. O. Ayeni, O. S. Omojokun, andF. Bello. 2015. Comparative effect of quercetin and rutin on α-amylase, α-glucosidase, and some pro-oxidant-induced lipid peroxidation in rat pancreas. Comparative Clinical Pathology, 24(5): 1103-1110.
    Oikonomopoulou, V. P., M. K. Krokida, andV. T. Karathanos. 2011. The influence of freeze drying conditions on microstructural changes of food products. Procedia food science, 1: 647-654.
    Olennikov, D., N. Kashchenko, andC. Vennos. 2017. A new esculetin glycoside from Calendula officinalis (Asteraceae) and its bioactivity. Farmacia, 65: 698-702.
    Orikasa, T., L. Wu, T. Shiina, andA. Tagawa. 2008. Drying characteristics of kiwifruit during hot air drying. Journal of Food Engineering, 85(2): 303-308.
    Ou, M. 1999. Regular Chinese medicine handbook. Taiwan: Warmth Publishing Ltd.
    Oyedemi, S. O., B. O. Oyedemi, I. I. Ijeh, P. E. Ohanyerem, R. M. Coopoosamy, andO. A. Aiyegoro. 2017. Alpha-Amylase Inhibition and Antioxidative Capacity of Some Antidiabetic Plants Used by the Traditional Healers in Southeastern Nigeria. The Scientific World Journal, 2017: 3592491.
    Padilla, E., E. Lazcano-Díaz, M. Owolabi, K. Allen, S. Villanueva, andJ. Flores-Fernández. 2014. Evaluation of the Inhibition of Carbohydrate Hydrolyzing Enzymes, the Antioxidant Activity, and the Polyphenolic Content of Citrus limetta Peel Extract. The Scientific World Journal, 2014: 121760.
    Palma, J. M., F. J. Corpas, andL. A. del Río. 2011. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. Journal of Proteomics, 74(8): 1230-1243.
    Pandey, K. B., andS. I. Rizvi. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2(5): 270-278.
    Parmar, H. S., andA. Kar. 2008a. Antiperoxidative, antithyroidal, antihyperglycemic and cardioprotective role of Citrus sinensis peel extract in male mice. Phytotherapy Research, 22(6): 791-795.
    Parmar, H. S., andA. Kar. 2008b. Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones. J Med Food, 11(2): 376-381.
    Patras, A. 2009. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative food science & emerging technologies, v. 10(no. 3): pp. 308-313-2009 v.2010 no.2003.
    Pietta, P.-G. 2000. Flavonoids as antioxidants. Journal of natural products, 63(7): 1035-1042.
    Pinelo, M., M. Rubilar, M. Jerez, J. Sineiro, andM. J. Núñez. 2005. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J Agric Food Chem, 53(6): 2111-2117.
    Pinelo, M., B. Zornoza, andA. S. Meyer. 2008. Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction. Separation and Purification Technology, 63(3): 620-627.
    Prasad, K. N., J. Hao, J. Shi, T. Liu, J. Li, X. Wei, S. Qiu, S. Xue, andY. Jiang. 2009a. Antioxidant and anticancer activities of high pressure-assisted extract of longan (Dimocarpus longan Lour.) fruit pericarp. Innovative food science & emerging technologies, 10(4): 413-419.
    Prasad, K. N., B. Yang, J. Shi, C. Yu, M. Zhao, S. Xue, andY. Jiang. 2010. Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction. Journal of Pharmaceutical and Biomedical Analysis, 51(2): 471-477.
    Prasad, K. N., B. A. O. Yang, M. Zhao, N. Ruenroengklin, andY. Jiang. 2009b. Application of Ultrasonication or High-pressure Extraction of Flavonoids from Litchi Fruit Pericarp. Journal of Food Process Engineering, 32(6): 828-843.
    Proença, C., M. Freitas, D. Ribeiro, E. F. Oliveira, J. L. Sousa, S. M. Tomé, M. J. Ramos, A. M. Silva, P. A. Fernandes, E. J. J. o. e. i. Fernandes, andm. chemistry. 2017. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. 32(1): 1216-1228.
    Putter, J., U. Keup, H. Krause, L. Muller, andH. Weber. 1982. Pharmacokinetics of acarbose. Proceedings of the first international symposium on acarbose (pp. 38-48): Excerpta Medica Amsterdam.
    Rafiq, S., R. Kaul, S. Sofi, N. Bashir, F. Nazir, andG. A. Nayik. 2018. Citrus peel as a source of functional ingredient: A review. Journal of the Saudi Society of Agricultural Sciences, 17(4): 351-358.
    Ramful, D., T. Bahorun, E. Bourdon, E. Tarnus, andO. I. Aruoma. 2010. Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology, 278(1): 75-87.
    Rashed, T., M. Menon, andS. Thamilselvan. 2004. Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. American journal of nephrology, 24(5): 557-568.
    Rasouli, H., S. M.-B. Hosseini-Ghazvini, H. Adibi, andR. Khodarahmi. 2017. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food & function, 8(5): 1942-1954.
    Rawson, N. E., C.-T. Ho, andS. Li. 2014. Efficacious anti-cancer property of flavonoids from citrus peels. Food Science and Human Wellness, 3(3): 104-109.
    Ren, J., L. Sun, J. Wu, S. Zhao, C. Wang, Y. Wang, K. Ji, andP. Leng. 2010. Cloning and expression analysis of cDNAs for ABA 8′-hydroxylase during sweet cherry fruit maturation and under stress conditions. Journal of Plant Physiology, 167(17): 1486-1493.
    Rice-Evans, C. A., N. J. Miller, andG. Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine, 20(7): 933-956.
    Ringblom, U. 2017. The Orange Book: Tetra Pak Processing Systems.
    Robbins, R. J. 2003. Phenolic Acids in Foods:  An Overview of Analytical Methodology. J Agric Food Chem, 51(10): 2866-2887.
    Rossi, E. J., L. Sim, D. A. Kuntz, D. Hahn, B. D. Johnston, A. Ghavami, M. G. Szczepina, N. S. Kumar, E. E. Sterchi, B. L. Nichols, B. M. Pinto, andD. R. Rose. 2006. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives. The FEBS Journal, 273(12): 2673-2683.
    Saifullah, M., R. McCullum, A. McCluskey, andQ. Vuong. 2019. Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5(12): e03044.
    Schieber, A., F. C. Stintzing, andR. Carle. 2001. By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science & Technology, 12(11): 401-413.
    Schwarz, A., L. Brecker, andB. Nidetzky. 2007. Acid–base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237→ Gln mutant enzymes. Biochemical Journal, 403(3): 441-449.
    Seabra, R. M., P. Andrade, P. Valentão, E. Fernandes, F. Remião, andM. L. Bastos. 2006. Anti-oxidant compounds extracted from several plant materials. Biomaterials from aquatic and terrestrial organisms: 115-174.
    Sels, J.-P. J., M. S. Huijberts, andB. H. Wolffenbuttel. 1999. Miglitol, a new α-glucosidase inhibitor. Expert opinion on pharmacotherapy, 1(1): 149-156.
    Sembiring, E. N., B. Elya, andR. J. P. J. Sauriasari. 2018. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. 10(1).
    Shahidi, F., andJ. D. Yeo. 2016. Insoluble-Bound Phenolics in Food. Molecules, 21(9).
    Shahram, H., S. T. Dinani, andM. Amouheydari. 2019. Effects of pectinase concentration, ultrasonic time, and pH of an ultrasonic-assisted enzymatic process on extraction of phenolic compounds from orange processing waste. Journal of Food Measurement and Characterization, 13(1): 487-498.
    Shakir, I., andS. Salih. 2015. Extraction of Essential Oils from Citrus By-Products Using Microwave Steam Distillation. Iraqi Journal of Chemical and Petroleum Engineering, 16: 11-22.
    Shibano, M., K. Kakutani, M. Taniguchi, M. Yasuda, andK. Baba. 2008. Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. Journal of natural medicines, 62: 349-353.
    Shofian, N. M., A. A. Hamid, A. Osman, N. Saari, F. Anwar, M. S. Pak Dek, andM. R. Hairuddin. 2011. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. International Journal of Molecular Sciences, 12(7): 4678-4692.
    Sicari, V., T. M. Pellicanò, A. M. Giuffrè, C. Zappia, andM. Capocasale. 2016. Bioactive compounds and antioxidant activity of citrus juices produced from varieties cultivated in Calabria. Journal of Food Measurement and Characterization, 10(4): 773-780.
    Sikorska, M., I. Matławska, K. Głowniak, andG. Zgórka. 2000. Qualitative and quantitative analysis of phenolic acids in Asclepias syriaca L. Acta Pol Pharm, 57(1): 69-72.
    Sridharan, B., S. T. Michael, R. Arya, S. Mohana Roopan, R. N. Ganesh, andP. Viswanathan. 2016. Beneficial effect of Citrus limon peel aqueous methanol extract on experimentally induced urolithic rats. Pharmaceutical Biology, 54(5): 759-769.
    Su, M.-S., Y.-T. Shyu, andP.-J. Chien. 2008. Antioxidant activities of citrus herbal product extracts. Food Chemistry, 111(4): 892-896.
    Tadera, K., Y. Minami, K. Takamatsu, andT. Matsuoka. 2006. Inhibition of α-glucosidase and α-amylase by flavonoids. Journal of nutritional science and vitaminology, 52(2): 149-153.
    Tag, H. M., O. E. Kelany, H. M. Tantawy, andA. A. Fahmy. 2014. Potential anti-inflammatory effect of lemon and hot pepper extracts on adjuvant-induced arthritis in mice. The Journal of Basic & Applied Zoology, 67(5): 149-157.
    Tan, Y., S. K. C. Chang, andY. Zhang. 2017. Comparison of alpha-amylase, alpha-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem, 214: 259-268.
    Taofiq, O., A. M. González-Paramás, M. F. Barreiro, andI. C. F. R. Ferreira. 2017. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 22(2): 281.
    Teixeira, J., A. Gaspar, E. M. Garrido, J. Garrido, andF. Borges. 2013. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. BioMed Research International, 2013: 251754.
    Tomás‐Barberán, F. A., andM. N. Clifford. 2000. Dietary hydroxybenzoic acid derivatives–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7): 1024-1032.
    Tripoli, E., M. L. Guardia, S. Giammanco, D. D. Majo, andM. Giammanco. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry, 104(2): 466-479.
    Tsao, R., andR. Yang. 2003. Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography. Journal of Chromatography A, 1018(1): 29-40.
    Tsujiyama, I., S. Mubassara, H. Aoshima, andS. J. Hossain. 2013. Anti-histamine release and anti-inflammatory activities of aqueous extracts of citrus fruits peels. Oriental Pharmacy and Experimental Medicine, 13(3): 175-180.
    Ververis, C., K. Georghiou, D. Danielidis, D. G. Hatzinikolaou, P. Santas, R. Santas, andV. Corleti. 2007. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresource Technology, 98(2): 296-301.
    Voragen, A. G. J., andW. Pilnik. 1989. Pectin-Degrading Enzymes in Fruit and Vegetable Processing. In Biocatalysis in Agricultural Biotechnology (pp. 93-115): American Chemical Society.
    Wang, T.-y., Q. Li, andK.-s. Bi. 2018. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian journal of pharmaceutical sciences, 13(1): 12-23.
    Wang, Y.-C., Y.-C. Chuang, andH.-W. Hsu. 2008. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chemistry, 106: 277-284.
    Wickramaratne, M. N., J. Punchihewa, andD. Wickramaratne. 2016. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC complementary alternative medicine, 16(1): 466.
    Wojdyło, A., K. Lech, P. Nowicka, F. Hernandez, A. Figiel, andA. A. Carbonell-Barrachina. 2019. Influence of Different Drying Techniques on Phenolic Compounds, Antioxidant Capacity and Colour of Ziziphus jujube Mill. Fruits. Molecules (Basel, Switzerland), 24(13): 2361.
    Xi, J., W. Du, andL. Zhong. 2013. Probing the interaction between cellulose and cellulase with a nanomechanical sensor. In Cellulose-Medical, Pharmaceutical and Electronic Applications: IntechOpen.
    Xi, W., J. Lu, J. Qun, andB. Jiao. 2017. Characterization of phenolic profile and antioxidant capacity of different fruit part from lemon (Citrus limon Burm.) cultivars. Journal of food science technology, 54(5): 1108-1118.
    Yao, Y., X. Cheng, L. Wang, S. Wang, andG. Ren. 2011. A determination of potential α-glucosidase inhibitors from azuki beans (Vigna angularis). International Journal of Molecular Sciences, 12(10): 6445-6451.
    Yu, X., S. Sun, Y. Guo, Y. Liu, D. Yang, G. Li, andS. Lü. 2018. Citri Reticulatae Pericarpium (Chenpi): Botany, ethnopharmacology, phytochemistry, and pharmacology of a frequently used traditional Chinese medicine. Journal of Ethnopharmacology, 220: 265-282.
    Zaidi, H., S. Ouchemoukh, N. Amessis-Ouchemoukh, N. Debbache, R. Pacheco, M. L. Serralheiro, andM. E. Araujo. 2019. Biological properties of phenolic compound extracts in selected Algerian honeys—The inhibition of acetylcholinesterase and α-glucosidase activities. European Journal of Integrative Medicine, 25: 77-84.
    Zhang, B., Z. Deng, D. D. Ramdath, Y. Tang, P. X. Chen, R. Liu, Q. Liu, andR. Tsao. 2015. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chemistry, 172: 862-872.
    Zhao, C.-L., Y.-Q. Yu, Z.-J. Chen, G.-S. Wen, F.-G. Wei, Q. Zheng, C.-D. Wang, andX.-L. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry, 214: 119-128.
    Zou, Y.-J. 2017. Effects of Enzyme Treatment on Antioxidative Activity of Djulis (Chenopodium formosanum Koidz.) Hull. International Master's Degree Program in Food Science (Vol. Master, p. 109): National Pingtung University of Science and Technology.

    下載圖示
    QR CODE