簡易檢索 / 詳目顯示

研究生: 陳聲愷
Chne, Sheng-Kai
論文名稱: 單磷酸腺苷活化蛋白激酶對白蝦免疫抗病及肝醣代謝之研究
Study of adenosine 5’-monophosphate activated protein kinase on the immunity, disease resistance and glycolysis of white shrimp, Litopenaeus vannamei
指導教授: 劉俊宏
Liu, Chun-Hung
學位類別: 碩士
Master
系所名稱: 農學院 - 水產養殖系所
Department of Aquaculture
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 66
中文關鍵詞: 白蝦單磷酸腺苷活化蛋白激酶 免疫抗病肝醣代謝
外文關鍵詞: White shrimp, Adenosine 5'-monophosphate-activated protein kinase (AMPK), disease resistance and immunity, glycolysis
DOI URL: http://doi.org/10.6346/NPUST202200142
相關次數: 點閱:64下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 單磷酸腺苷活化蛋白激酶 (Adenosine 5’-monophosphate activated protein kinase, AMPK)是一種高度保守的真核蛋白,在哺乳動物體內其為能量代謝的總開關,當細胞缺乏能量時會被激活,而被激活的AMPK會透過抑制糖酵解、蛋白質合成和脂質生成來減少三磷酸腺苷 (Adenosine triphosphate, ATP)的消耗,且增加葡萄糖攝取、脂質氧化抑制膽固醇合成來獲得細胞所需的能量。然而目前關於AMPK調控白蝦的免疫抗病力及肝醣代謝的機制仍不清楚,因此本研究將利用注射dsRNA來靜默白蝦的AMPK基因,並分析白蝦的抗病力、免疫力、mTOR相關基因與醣類代謝基因,以了解AMPK在白蝦體內所扮演的角色,在抗病力和免疫力的結果顯示,以dsAMPK沉默白蝦AMPK基因經24小時後,能夠降低白蝦受弧菌感染的累積死亡率,提高RBs、LYZ和PA的活性,而SOD活性則是下降的。除此之外,當抑制白蝦的AMPK基因會使Rheb基因上升,並激活mTORC1複合體進而促使下游缺氧誘導因子HIF-1α、蛋白質合成相關酵素S6K和脂質合成相關基因Lipin-1增加。本實驗研究結果顯示白蝦AMPK基因被沉默後在肝胰腺中mTOR相關基因的表現較為明顯,而血球細胞中AMPK基因雖然會隨著dsRNA的抑制表現量也有所下調,但在mTOR相關基因表現則無明顯影響。從糖解作用來看,當白蝦AMPK基因被靜默後,會使血淋巴葡萄糖和肝胰腺肝醣表現提高,同時參與糖酵解之酵素己醣激酶、磷酸果醣激酶和丙酮酸激酶表現也有所提高。因此,綜合上面的結果顯示,靜默白蝦AMPK基因能夠提升白蝦在免疫抗病力及肝醣代謝上的能力。

    Adenosine 5'-monophosphate-activated protein kinase (AMPK) is a highly conserved eukaryotic protein responsible for energy metabolism in mammals and is activated when cells lack energy. Activated AMPK reduces the consumption of adenosine triphosphate (ATP) by inhibiting glycosis, protein synthesis, and lipid production, increasing glucose uptake and lipid oxidation, and inhibiting cholesterol synthesis from obtaining energy required by cells. However, the mechanism by which AMPK regulates immune resistance and glucose metabolism in the hepatopancreas of white shrimp is still unclear. In this study, the AMPK gene was silenced by injecting dsRNA into white shrimp to analyze disease resistance and immunity. In addition, the mammalian target of rapamycin (mTOR) and other carbohydrate metabolism-related genes were used to understand the role of AMPK in white shrimp. The disease resistance and immunity results showed that silencing AMPK gene with dsAMPK after 24 hours can reduce white shrimp infected with Vibrio. The cumulative mortality from infection increased the activity of RBs, LYZ, and PA, while SOD activity decreased. In addition, silencing the AMPK gene increased the Rheb gene and activated the mTORC1 complex, thereby promoting the increase of the downstream glycolysis gene HIF-1α, protein synthesis gene S6K and lipid synthesis related gene Lipin-1., and decreasing protein translation of the 4E-BP gene. This experimental study showed that the expression of mTOR-related genes in the hepatopancreas was more evident after the AMPK gene was silenced in white shrimp. Although the AMPK gene in hemocyte was down-regulated with the inhibition of dsRNA, the expression of mTOR-related genes in the hepatopancreas was higher than that of mTOR-related genes in the hemocyte with no significant difference. In terms of glycolysis, when the AMPK gene was inhibited, the expression of glucose in the hemolymph and hepatopancreas was improved. The expression of glycolysis by-products hexokinase, phosphofructokinase and pyruvate kinase were also improved. Therefore, these results show that the AMPK gene negatively regulates immune response and glucose metabolism in the hepatopancreas of white shrimp.

    摘要 II
    Abstract III
    圖目錄 X
    表目錄 XII
    第一章 前言 1
    第二章 文獻回顧 6
    2.1.白蝦簡介 6
    2.1.1.白蝦分類地位及生長環境 6
    2.1.2.白蝦養殖現況 6
    2.1.3.疾病防治 7
    2.2.白蝦免疫機制 8
    2.2.1.細胞免疫反應 8
    2.2.2.體液免疫反應 9
    2.3.碳水化合物結構及功能 10
    2.4.甲殼類之碳水化合物代謝 11
    2.5. 核糖核酸干擾 (RNA interference, RNAi) 11
    2.6. AMPK與mTOR路徑之關係 13
    第三章 材料與方法 15
    3.1.實驗架構 15
    3.2.實驗動物 15
    3.3.雙股RNA製備 15
    3.4. AMPK基因沉默對肝胰腺及血球細胞效力分析 17
    3.4.1. 白蝦肝胰腺及血球細胞核糖核酸 (RNA)萃取 18
    3.4.2. 互補去氧核醣核酸 (Complementary deoxyribonucleic acid)合成 18
    3.4.5. 即時定量聚合酶連鎖反應 (Real-time quantitation PCR, RT-PCR) 19
    3.5. dsRNA沉默白蝦AMPK基因對肝胰腺AMPK蛋白質含量之影響 20
    3.5.1. 蛋白質萃取 20
    3.5.2. 蛋白質電泳 21
    3.5.3. 轉印 21
    3.5.4. 免疫反應 21
    3.6. dsRNA沉默白蝦之AMPK基因對白蝦抗病力之影響 22
    3.6.1. 感染實驗菌液製備 22
    3.6.2. 感染實驗 22
    3.7. 利用dsRNA沉默白蝦AMPK基因後對其免疫之影響 23
    3.7.1. 血淋巴總血球計數 23
    3.7.2. 酚氧化酶活性測定 23
    3.7.3. 呼吸爆活性測定 24
    3.7.4. 血球細胞均質液製備 24
    3.7.5. 超氧化物岐化酶活性測定 24
    3.7.6. 溶菌酶活性測定 25
    3.7.7. 血球細胞總蛋白質含量測定 25
    3.7.8. 體外吞噬活性測定 26
    3.8. dsRNA沉默白蝦AMPK基因其肝胰腺及血球細胞中mTOR路徑相關基因及醣類代謝基因表現量之影響 26
    3.9. 利用dsRNA沉默白蝦AMPK基因後對白蝦血淋巴及肝胰腺葡萄糖和肝胰腺肝醣之影響 27
    3.9.1. 血淋巴液和肝胰腺葡萄糖含量測定 27
    3.9.2. 肝胰腺肝醣含量測定 27
    3.10. 統計分析 28
    第四章 結果 29
    4.1. 白蝦AMPK基因靜默之效力分析 29
    4.2. 白蝦AMPK基因靜默後對肝胰腺之AMPK蛋白質表現情形 31
    4.3. 白蝦AMPK基因靜默後以V. alginolyticus進行攻毒實驗 33
    4.4. 白蝦AMPK基因靜默後對白蝦免疫因子之影響 35
    4.5. 白蝦AMPK基因靜默後對白蝦肝胰腺mTOR路徑相關基因表現之影響 37
    4.6. 白蝦AMPK基因靜默後對白蝦血球細胞之mTOR相關路徑基因表現之影響 39
    4.7. 白蝦AMPK基因靜默後對白蝦血淋巴葡萄糖及肝胰腺之肝醣及葡萄糖濃度變化 42
    4.8 白蝦AMPK基因靜默後對白蝦肝胰腺醣類代謝基因表現之影響 44
    第五章 討論 46
    第六章 結論 50
    參考文獻 51

    Alfaro C.A., Nguyen T.V., Bayot B., Rodriguez Leon J.A., Domínguez-Borbor C., Sonnenholzner S. 2021. Metabolic responses of whiteleg shrimp to white spot syndrome virus (WSSV). Journal of Invertebrate Pathology, 180:107545.

    Amparyup P., Charoensapsri W., Tassanakajon A. 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish & Shellfish Immunology, 34:990-1001.

    Attasart P., Namramoon O., Kongphom U., Chimwai C., Panyim S. 2013. Ingestion of bacteria expressing dsRNA triggers specific RNA silencing in shrimp. Virus Research, 171(1):252-256.

    Barbara E.C., Kimberly S., James G., Bruce E.K., Lee A.W. 1998. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. Journal of Biological Chemistry, 273(52):35347-35354.

    Bhatt A.P., Jacobs S.R., Freemerman A.J., Damania B. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Biological Sciences, 109(29):11818-11823.

    Bolliet V., Labonne J., Olazcuaga L., Panserat S., Seiliez I. 2017. Modeling of autophagy-related gene expression dynamics during long term fasting in European eel (Anguilla anguilla). Scientific Reports, 7(1):17896.

    Bray K., Mathew R., Lau A., Kamphorst J.J., Fan J., Chen J., Chen H.Y., Ghavami A., Stein M., Dipaola R.S., Zhang D., Rabinowitz J.S., White E. 2012. Autophagy Suppresses RIP Kinase-Dependent Necrosis Enabling Survival to mTOR Inhibition. PLoS ONE, 7(7):e41831.

    Cheng W., Chen J.C. 2000. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish & Shellfish Immunology, 10:387-391.
    Chen I.T., Aoki T., Huang Y.T., Hirono I., Chen T.C., Huang J.Y., Chang G.D., Lo C.F., Wang H.C. 2011. White Spot Syndrome Virus Induces Metabolic Changes Resembling the Warburg Effect in Shrimp Hemocytes in the Early Stage of Infection. Journal of Virology, 85(24):12919-12928.

    Choi K.M., McMahon L.P., Lawrence J.C. 2003. Two Motifs in the Translational Repressor PHAS-I Required for Efficient Phosphorylation by Mammalian Target of Rapamycin and for Recognition by Raptor. Journal of Biological Chemistry, 278(28):P19667-19673.

    Dang C.V. 2012.Links between metabolism and cancer. Genes & Development, 26:877-890.

    Dasgupta B., Chhipa R.R. 2016. Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer. Trends in Pharmacological Sciences, 37(3):192-206.

    Deberardinis R., Sayed N., Ditsworth D., Thompson C.B. 2008. Brick by brick: metabolism and tumor cell growth. Current Opinion in Genetics & Development, 18(1):54-61.

    Dekham K., Jitrakorn S., Charoonnart P., Isarangkul D., Chaturongakul S., Saksmerprome V. 2022. Probiotics expressing double-stranded RNA targeting VP28 efficiently protect shrimps from WSSV infection. Aquaculture Reports, 23.

    Delgado T., Carroll P.A., Punjabi A.S., Lagunoff M. 2010. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proceedings of the National Academy of Sciences, 107(23):10696-10701.

    Dennis P.B., Jaeschke A., Saitoh M., Fowler B., Kozma S.C., Thomas G. 2001. Mammalian TOR: A Homeostatic ATP Sensor. Science, 294(5544):1102-1105.

    Dolezal T., Krejcova G., Bajgar A., Nedbalova P., Strasser P. 2019. Molecular regulations of metabolism during immune response in insects. Insect Biochemistry and Molecular Biology, 109: 31-42.

    Dreiling C.E., Brown D.E., Casale L., Kelly L. 1987. Muscle Glycogen: Comparison of Iodine Binding and Enzyme Digestion Assays and Application to Meat Samples. Meat Science, 20(3):167-177.

    Duvel K., Yecies J.L., Menon S., Raman P., Lipovsky A.I., Souza A.L., Triantafellow E., Ma Q., Gorski R., Cleaver S., Heiden M.G.V., MacKeigan J.P., Finan P.M., Clish C.B., Murphy L.O., Manning B.D. 2010. Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex1. Molecular Cell, 39(2):171-183.

    Edinger A.L., Thompson C.B. 2017. Akt Maintains Cell Size and Survival by Increasing mTOR-dependent Nutrient Uptake. Molecular Biology of the Cell, 13(7):2276-2288.

    Egan D.F., Shackelford D.B., Mihaylova M.M., Gelino S., Kohnz R.A., Mair W. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 331(6016):456-461.

    Ehrkamp A., Herrmann C., Stoll R., Heumann R. 2013. Ras and Rheb Signaling in Survival and Cell Death. Cancers, 5(2):639-661.

    Fadaka A., Ajiboye B., Ojo O., Adewale O., Olayide I., Emuowhochere R. 2017. Biology of glucose metabolization in cancer cells. Journal of Oncological Sciences, 3: 45-51.

    Fanjul-Moles. 2006. Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: Review and update. Comparative Biochemistry and Phyiology Part C:Toxicology & Pharmacology, 142(3-4):390-400.

    Fonseca V.J.A., Braga A.L., Filho J.R., Teixeira C.S., da Hora C.A., Morais-Braga M.F.B. 2022. A review on the antimicrobial properties of lectins. International Journal of Biological Macromolecules, 195:163-178.

    Frederich M., O’Rourke M.R., Furey N.B., Jost J.A. 2009. AMP-activated protein kinase (AMPK) in the rock crab, Cancer irroratus: an early indicator of temperature stress. Journal of Experimental Biology, 212(5):722-730.

    Furuta E., Pai S.K., Zhan R., Bandyopadhyay S., Watabe M., Mo Y.Y., Hirota S., Hosobe S., Tsukada T., Miura K., Kamada S., Saito K., Liizumi M., Liu W., Ericsson J., Watabe K. 2008. Fatty Acid Synthase Gene Is Up-regulated by Hypoxia via Activation of Akt and Sterol Regulatory Element Binding Protein-1. Cancer Research, 68(4):1003-1011.

    Galina P., Abhilasha G., Belinda J.M., Bryce ven D., Sid M., Susanne C.F., Ian G.J., Duncan J.C., Lee A.W., Michael W.P., Bruce E.K., David S. 2003. AMPK β Subunit Targets Metabolic Stress Sensing to Glycogen. Current Biology, 13(10):867-871.

    Gao X., Zhang Y., Arrazola P., Hino O., Kobayashi T., Yeung R.S., Ru B., Pan D. 2002. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nature Cell Biology, 4:699-704.

    Goldstein J.L., Brown M.S. 2008. From fatty streak to fatty liver: 33 years of joint publications in the JCI. The Journal of linical Investigation, 118(4):1220-1222.

    Gonzalez A., Hall M.N., Lin S.C., Hardie D.G. 2020. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metabolism, 31(3): 472-492.

    Grave K., Lingaas E., Bangen M., and Rønning M., 1999. Surveillance of the overall consumption of antibacterial drugs in humans, domestic animals and farmed fish in Norway in 1992 and 1996. Journal of Antimicrobial Chemotherapy, 43: 243-252.

    Greer E.L., Oskoui P.R., Banoko M.R., Maniar J.M., Gygi M.P., Gygi S.P., Brunet A. 2007. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. The Journal of Biological Chemistry, 282(41):30107-30119.

    Guevelou E., Huvet A., Sussarellu R., Milan Massimo., Guo X., Li L., Zhang G., Quillien V., Daniel J.Y., Quere C., Boudry P., Corporeau C. 2013. Regulation of a truncated isoform of AMP-activated protein kinase a (AMPKα) in response to hypoxia in the muscle of Pacific oyster Crassostrea gigas. Joural of Comparative Physiology B, 183(5):597-611.

    Hambright H.G., Meng P., Kumar A.P., Ghosh R. 2015. Inhibition of PI3K/AKT/mTOR axis disrupts oxidative stress-mediated survival of melanoma cells. Oncotarget, 6(9):7195-7208.

    Hara K., Maruki Y., Long X., Yoshino K., Oshiro N., Hidayat S., Tokunaga C., Avruch J., Yonezawa K. 2002. Raptor, a Binding Partner of Target
    of Rapamycin (TOR), Mediates TOR Action. Cell Press, 110:177-189.

    Hara K., Yonezawa K., Weng Q.P., Kozlowski M.T., Belham C., Avruch J. 1998. Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism. Journal of Biological Chemistry, 273(23):P14484-14494.

    Hardie D.G., Carling D., Carison M. 1998. THE AMP-ACTIVATED/SNF1 PROTEIN KINASE SUBFAMILY: Metabolic Sensors of the Eukaryotic Cell? Annual Review of Biochemistry, 67(1):821-855.

    Hardie D.G., Pan D.A. 2002. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase.. Biochemical Society Transactions, 30(6):1064-1070.

    Hardie D., Grahame., Ross., Fiona A., Hawley., Simon A. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasiss. Cell Metabolism,13(4):251-262.

    Hasanain M., Bhattacharjee A., Pandey P., Ashraf R., Singh N., Sharma S., Vishwakarma A.L., Datta D., Mitra K., Sarkar J. 2015. α-Solanine induces ROS-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/mTOR pathway. Cell Death & Disease, 6:e1860.

    Holmblad T. and Soderhall K. 1999. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture, 172(1-2):111-123.

    Horton J.D., Goldstein J.L., Brown M.S. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Hournal of Clinical Investigation, 109(9):1125-1131.

    Hu C.J., Wang L.Y., Chodosh L.A., Kelth B., Simon M.C. 2003. Differential Roles of Hypoxia-Inducible Factor 1α (HIF-1α) and HIF-2α in Hypoxic Gene Regulation. Molecular and Cellular Biology, 23(24):9361-9374.

    Hunter RW., Treebak J.T., Wojtaszewski J.F.P., Sakamoto K. 2011. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes, 60, 7966-774.

    Ichimura Y., Waguri S., Sou Y.S., Kageyama S., Hasegawa J., Ishimura R., Saito T., Yang Y., Kouno T., Fukutomi T., Hoshii T., Hirao A., Takagi K., Mizushima T., Motohashi H., Lee M.S., Yoshimori T., Tanaka K., Tamamoto M., Komatsu M. 2013. Phosphorylation of p62 Activates the Keap1-Nrf2 Pathway during Selective Autophagy. Molecular Cell, 51(5):618-631.

    Jeon S.M. 2016. Regulation and function of AMPK in physiology and diseases. Experimental and Molecular Medicine, 48(7):e285.

    Johansson M.W., Keyser P., Sritunyalucksana K., Söderhäll K. 2000. Crustacean haemocytes and haematopoiesis. Aquaculture, 191: 45-52.

    Johansson M.W., Söderhäll K. 1985. Exocytosis of the prophenoloxidase activating system from crayfish haemocytes. Journal of Comparative Physiology B, 156(2):175-181.

    Johansson M.W., Söderhäll K. 1989. Cellular immunity in crustaceans and the proPO system. Parasitology Today, 5(6):171-176.

    Kim D.H., Sarbassov D.D., Ali S.M., King J.E., Latek .R.R., Erdjument-Bromage H., Tempst P., Sabatini D.M. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell Press, 110:163-175.

    Kim D.H., Sarbassov D.D., Ali S.M., Latek R.R., Guntur K.V., Erdjument-Bromage H., Tempast P., Sabatini D.M. 2002. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Molecular Cell, 11(4):895-904.

    Kim J., Kundu M., Viollet B., Guan K.L. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 13(2):132-141.

    Kulkarni A., Krishnan S., Anand D., Kokkattunivarthil Uthaman S., Otta S.K., Karunasagar I. and Kooloth Valappil R. 2021. Immune responses and immunoprotection in crustaceans with special reference to shrimp. Reviews in Aquaculture, 13:431-459.

    Laughner E., Taghavi P., Chiles K., Mahon P.C., Semenza G.L. 2001. HER2 (neu) Signaling Increases the Rate of Hypoxia-Inducible Factor 1α (HIF-1α) Synthesis: Novel Mechanism for HIF-1-Mediated Vascular Endothelial Growth Factor Expression. Molecular and Cellular Biology, 21(12):3995-4004.

    Le T.X. and Munekage Y., 2004. Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Marine Pollution Bulletin, 49: 922-929.

    Le T.X., Munekage Y., and Kato S., 2005. Antibiotic resistance in bacteria from shrimp farming in mangrove areas. Science of the Total Environment, 349: 95-105.

    Liang Q., Ou M., Li Z.H., Ren Y.H., Wei W., Qiao X., Hu R., Wu X., Liu Y., Wang W. 2020. Functional analysis target of rapamycin (TOR) on the Penaeus vannamei in response to acute low temperature stress. Fish & Shellfish Immunology, 96:53-61.

    Li Y., Xu S., Mihaylova MM., Zheng B., Hou X., Jiang B. 2011. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metabolism, 13(4):376-388.

    Li X.N., Song J., Zhang L., Lemaire S.A., Hou X., Zhang C., Coselli J.S., Chen L., Wang X.L., Zhang Y., Shen Y.H. 2009. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes, 58(10):2246-2257.

    Lugo J.M., Morera Y., Rodriguez T., Huberman A., Ramos L., Estrada M.P. 2006. Molecular cloning and characterization of the crustacean hyperglycemic hormone cDNA from Litopenaeus schmitti Functional analysis by double-stranded RNA interference technique. The FEBS Journla, 273(24):3669-77.

    Manning B.D., Cantley L.C. 2003. Rheb fills a GAP between TSC and TOR. Trends in Biochemical Sciences, 28(11):573-576.

    Martínez-Quintana J.A., alenzuela-Soto E.M., Martínez-Téllez M.A., Peregrino-Uriarte A.B., Gómez-Jiménez S., Kikuta S., Yepiz-Plascencia G. 2016. Functionality of the white shrimp glucose transporter 1: Expression in Xenopus oocytes and gene silencing during hypoxia. Journal of Experimental Marine Biology and Ecology, 474: 109-115.

    Marino G., Santano M.N., Baehrecke E.H., Kroemer G. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 15:81-94.

    Martin G.G., Hose J.E., Omori S., Chong C., Hoodbhoy T., Mckrell N. 1991. Localization and roles of coagulogen and transglutaminase in hemolymph coagulation in decapod crustaceans. Department of Biology, 100(3):517-522.

    Mates J.M., Perez-Gomez C., Nunez de Castro I. 1999. Antioxidant enzymes and human diseases. Clinical Biochemistry,32(8):595-603.

    Marygold S.J., Leevers S.J. 2002. Growth Signaling:TSC Takes Its Place. Current Biology, 12(22):R785-R787.

    Menendez J.A., Lupu R. 2007. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer, 7:763-777.

    Mejia-Ruiz C.H., Vega-Pena S., Alvarez-Ruiz P., Escobedo-Bonilla C.M. 2011. Double-stranded RNA against white spot syndrome virus (WSSV) vp28 or vp26 reduced susceptibility of Litopenaeus vannamei to WSSV, and survivors exhibited decreased susceptibility in subsequent re-infections. Journal of Invertebrate Pathology, 107(1):65-68.

    Munger J., Bennett B.D., Parikh A., Feng X.J., Mcardle J., Rabitz H.A., Sheng T., Rabinowitz J.D. 2008. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nature Biotechnology, 26:1179-1186.

    Nojima H., Tokunage C., Eguchi S., Oshiro N., Hidayat S., Yoshino K.I., Hara K., Tanaka N., Avruch J., Yonezawa K. 2003. The Mammalian Target of Rapamycin (mTOR) Partner, Raptor, Binds the mTOR Substrates p70 S6 Kinase and 4E-BP1 through Their TOR Signaling (TOS) Motif. Journal of Biological Chemistry, 278(18):P15491-15464.

    Oakhill J.J., Chen Z.P., Scott J.W., Steel R., Castelli L.A., Ling N., Macaulay S.L., Kemp B.E. 2010. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proceedings of the National Academy of Sciences, 107(45):19237-19241.

    Pal N., Karlsen M., Sritunyalucksana K., Thitamadee. 2017. White spot syndrome virus VP28 specific double-stranded RNA provides protection through a highly focused siRNA population. Scientific Reports, 7(1):1028.

    Porstmann T., Santos C.R., Griffiths B., Cully M., Wu M., Leevers S., Griffiths J.R., Chung Y.L., Schulze A. 2008. SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth. Cell Metabolism, 3(3):224-236.

    Quan H.Y., Kim D.Y., Kim S.J., Jo H.K., Kim G.W., Chung S.H. 2013. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK–mTOR–SREBP signaling pathway. Biochemical Pharmacology, 85(9):1330-1340.

    Ragland S.A., Criss A.K. 2017. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLOS Pathogens, 13(9):e1006512.

    Ross F.A., Jensen T.E., Hardie D.G. 2016. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Biochemical Journal, 473(2):189-199.

    Sajeevan T.P., Philip R., Bright Singh I.S. 2006. Immunostimulatory effect of a marine yeast Candida sake S165 in Fenneropenaeus indicus. Aquaculture, 257(1-4):150-155.

    Saksmerprome V., Charoonnart P., Gangnonngiw W., Withyachumnarnkul W. 2009. A novel and inexpensive application of RNAi technology to protect shrimp from viral disease. Journal of Virological Methods, 162(1-2):213-217.

    Saksmerprome V., Thammasorn T., Jitrakorn S., Wongtripop S., Borwornpinyo S., Withyachumnarnkul B. 2013. Using double-stranded RNA for the control of Laem-Singh Virus (LSNV) in Thai P. monodon. Journal of Biotechnology, 164(4):449-453.

    Sánchez-Paz A., García-Carreño F., Hernández-López J., Muhlia-Almazán A., Yepiz-Plascencia G. 2007. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). Journal of Experimental Marine Biology and Ecology, 340:184-193.

    Sarbassov D.D., Ali S.M., Sabatini D.M. 2005. Growing roles for the mTOR pathway. Current Opinion in Cell Biology, 17(6):596-603.

    Schalm S.S., Blenis J. 2002. Identification of a Conserved Motif Required for mTOR Signaling. Current Biology, 12(8):632-639.

    Schalm S.S., Fingar D.C., Sabatini D.M., Blenis J. 2003. TOS Motif-Mediated Raptor Binding Regulates 4E-BP1 Multisite Phosphorylation and Function. Current Biology, 13(10):797-806.

    Schuster S., Ewald J., Kaleta, C. 2021. Modeling the energy metabolism in immune cells. Current Opinion in Biotechnology, 68: 282-291.

    Semenza G.L., Roth P.H., Fang H.M., Wang G.L. 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry, 269(38):23757-23763.

    Shan H., Wang T., Dong Y., Ma S. 2019.Effects of dietary Ampithoe sp. supplementation on the growth, energy status, antioxidant capacity, and ammonia-N tolerance of the shrimp Litopenaeus vannamei: Continuous versus interval feeding. Aquaculture, 509:32-39.

    Shimobayashi M., Hall M.N. 2014. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nature Reviews Molecular Cell Biology, 15(3):155-162.

    Smith V., Chisholm J.R.S. Non-cellular immunity in crustaceans. Fish & Shellfish Immunology, 2(1):1-31.

    Söderhäll K., A. Aspan, and B. Duvic. 1990. The proPO-system and associated proteins; role in cel- lular communication in arthropods. Immunologic Research, 141:896-907.

    Söderhäll K., Cerenius L. 1992. Crustacean immunity. Annual Review of Fish Diseases, 2:3-23.

    Söderhäll K., Smith V.S., Johansson W.J. 1986. Exocytosis and uptake of bacteria by isolated haemocyte populations of two crustaceans: evidence for cellular co-operation in the defence reactions of arthropods. Cell Tissue Res, 245:43-49.

    Su M.A., Huang Y.T., Chen I.T., Lee D.Y., Hsieh Y.C., Li C.Y., Ng T.H., Liang S.Y., Lin S.Y., Huang S.W., Chiang Y.A., Yu H.T., Khoo K.H., Cheng G.D., Lo C.F., Wang H.C., Lagunoff M. 2014. An Invertebrate Warburg Effect: A Shrimp Virus Achieves Successful Replication by Altering the Host Metabolome via the PI3K-Akt-mTOR Pathway. PLOS Pathogens, 10(6):e1004196.

    Tassanakajon A., Rimphanitchayakit V., Visetnan S., Amparyup P., Somboonwiwat K., Charoensapsri W., Tang S. 2018. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Developmental & Comparative Immunology, 80: 81-93.

    Tassanakajon A., Somboonwiwat K., Supungul P., Tang S. 2013. Discovery of immune molecules and their crucial functions in shrimp immunity. Fish & Shellfish Immunology, 34:954-967.

    Thomas G.V., Tran C., Mellinghoff I.K., Welsie D.S., Chan E., Fueger B., Czernin J., Sawyers. 2005. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Medicine, 12:122-127.

    Vasseur S., Afzal S., Lacombe J.T., Mak T.W. 2009. DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Biological Sciences, 106(4):1111-1116.

    Winder W., Hardie D.G. 1999. AMP-activated protein kinase, a metabolic master switch:possible roles in Type 2 diabetes. American Journal of Physiology Endocrinology and Metabolism, 277(1):E1-E10.

    Wojtaszewski J.F.P., Macdonald C., Nielsen J.N., Hellsten Y., Hardie D.G., Kemp B.E., Kiens B., Richter E.A. 2003. Regulation of 5’AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. American Jouranl of Physiology-Endocrinology and Metabolism, 284(4):E813-E822.

    Wu J., Tian S., Luo K., Zhang Y., Pan H., Zhang W., Mai K. 2022. Dietary recombinant human lysozyme improves the growth, intestinal health, immunity and disease resistance of Pacific white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 121:39-52.

    Wullschleger S., Loewith R., Hall M.N. 2006. TOR Signaling in Growth and Metabolism. Cell, 124(3):471-484.

    Xu C., Li E., Liu Y., Wang S., Wang X., Chen K., Qin J.G., Chen L. 2017. Effect of dietary lipid level on growth, lipid metabolism and health status of the Pacific white shrimp Litopenaeus vannamei at two salinities. Aquaculture, 24:201-214.

    Xu L., Pan L., Zhang X., Wei C. 2019. Effects of crustacean hyperglycemic hormone (CHH) on regulation of hemocyte intracellular signaling pathways and phagocytosis in white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 93:559-566.

    Yang L., Liu J., Liu M., Qian M., Zhang M., Hu H. 2011. Identification of fatty acid synthase from the Pacific white shrimp, Litopenaeus vannamei and its specific expression profiles during white spot syndrome virus infection. Fish & Shellfish Immunology, 30(2):744-749.

    Yamauchi Y., Furukawa K., Hamamura K., Furukawa K. 2011. Positive Feedback Loop Between PI3K-Akt-mTORC1 Signaling and the Lipogenic Pathway Boosts Akt Signaling: Induction of the Lipogenic Pathway by a Melanoma Antigen. Cancer Research, 71(14):4989-4997.

    Yuan X.Y., Liu M.Y., Cheng H.H., Huang Y.Y., Dai Y.J., Liu W.B., Jiang G.Z. 2019. Replacing fish meal with cottonseed meal protein hydrolysate affects amino acid metabolism via AMPK/SIRT1 and TOR signaling pathway of Megalobrama amblycephala. Aquaculture, 510:225-233.

    下載圖示
    QR CODE