簡易檢索 / 詳目顯示

研究生: 姜順元
Jiang, Shun-Yuan
論文名稱: 應用模糊多目標規劃法於離岸風力場之維修決策與規劃
Application of a Fuzzy Multi-Objective Programming Method for Maintenance Decision-Making and Planning on an Offshore Wind Farm
指導教授: 蘇泰盛
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系所
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 131
中文關鍵詞: 離岸風力場維修決策模糊多目標線性規劃法互動式二階段方法低碳經濟
外文關鍵詞: Offshore wind system, Maintenance decision, Fuzzy multi-objective linear programming, Interactive two-phase method, Low-carbon economy
DOI URL: http://doi.org/10.6346/NPUST202200171
相關次數: 點閱:20下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究探討離岸風力系統的不確定因素,包括參數與目標函數具模糊性,利用模糊多目標線性規劃與可能線性規劃法,來建構一個新的離岸風力系統的維修決策模式,模式中同時考量風場總維護成本最小化與風場總平均可靠度最大化兩個模糊目標,並以線性隸屬函數來表示模糊目標值,模糊參數中相關的維護成本採用三角可能性分配來表示,可靠度則採用Weibull分配來表示。該模式也加入實際維修作業的相關限制,包括定期維修、採購零件、零件可靠度等。本研究也提出一個二階段互動式可能性規劃的決策程序,提供決策者獲得一組有效的滿意解,再以一個離岸風場為例進行模式測試,來驗證本研究提出的模式具實用性與適用性。最後,針對模式中重要的決策參數進行敏感度分析,研究結果可有效地協助運維商決定最適維修決策與規劃行程,以滿足低碳經濟的發展終旨。

    This study discusses the uncertain nature of the offshore wind farm for the parameters and objective functions. This nature uses a fuzzy multi-objective linear programming (FMOLP) method and possibilistic linear programming approach for developing a novel maintenance decision model in a fuzzy environment. The proposed model aims to simultaneously minimize total maintenance costs and maximize total system reliability with the linear membership for the offshore wind farm. The maintenance cost associated with the fuzzy parameters is represented by triangular distribution, and the reliability is represented by the Weibull distribution. This model also incorporates constraints related to actual maintenance operations, including normal maintenance and component reliability. This study proposes an interactive two-phase method, which provides decision-makers with a set of effective and satisfactory solutions, and then takes an offshore wind farm as an example to test the model in order to verify the practicability and applicability. Sensitivity analysis is also carried out for the important decision parameters in the model. The analytical results presented in this study will effectively assist the operation and maintenance company to evaluate the optimal maintenance decision and achieve the ultimate goal of low-carbon economy development.

    摘要 I
    Abstract III
    致謝 V
    目錄 VI
    圖目錄 IX
    表目錄 XI
    第一章 緒論 1
    1.1 研究背景與動機 1
    1.2 研究目的 5
    1.3 研究架構與流程 7
    第二章 文獻探討 9
    2.1 離岸風力發電介紹 9
    2.2 離岸風電系統維護策略之相關文獻 13
    2.3 可能性數學規劃模式之相關研究 17
    2.4 模糊多目標規劃問題之相關研究 18
    第三章 模式建構 23
    3.1問題描述 23
    3.2 研究假設與限制 26
    3.3 符號定義 27
    3.4 模糊多目標規劃模式 29
    3.4.1目標函數式一:最小化總維護成本 29
    3.4.2目標函數式二:最大化離岸風場總平均可靠度 30
    3.4.3零組件可靠度計算 30
    3.4.4限制式 32
    3.5 求解具不確定性目標函數之策略 33
    3.6 模式求解程序 38
    3.7 互動式二階段PLP法求解模糊多目標 41
    3.7.1第一階段 41
    3.7.2第二階段 45
    第四章 案例分析 47
    4.1 案例敘述 47
    4.2案例數值之敘述 48
    4.3案例求解 57
    4.3.1案例求解程序 57
    4.3.2案例求解結果分析 64
    4.4結果分析與討論 84
    4.5模糊多目標可能線性規劃模式敏感度分析 88
    4.5.1敏感度分析之求解 89
    4.5.2敏感度分析之總結 100
    第五章 結論與建議 101
    5.1結論 101
    5.2建議 102
    參考文獻 104
    附錄A 目標函數模式之結果分析 111
    作者簡介 132

    1. 工業技術研究院,https://www.itri.org.tw/。
    2. 我國風力發電產業發展現況與未來展望,經濟部/產業拓展處(2018)。
    3. 林伯峰,「離岸風電之風險評估、對策與管理」,技師月刊,第83期,第24-37頁(2018)。
    4. 翁欣瑜,「模糊多目標規劃法於多機離岸風力系統之最佳維修批量決策」,國立屏東科技大學碩士論文 (2021)。
    5. 國際工程顧問公司4C Offshore官方網站,https://www.4coffshore.com/。
    6. 張喆韋、黃千倫、邱子慈與王幸君,「離岸風力發電產業介紹」,產業發展研究報告,台北(2016)。
    7. 張智綸,「引進預測性維護之探討-以鍛造模具設備為例」,國立台灣科技大學論文(2018)。
    8. 郭家瑋,「離岸風電產業開發商之競爭策略分析」,國立台灣大學工學院土木工程系(2017)。
    9. 陳芙靜,「台灣離岸風力發電在地化產業之推動與規劃」,金屬工業研究發展中心,綠色金融暨離岸風電發展之風險與前瞻國際研討會(2017)。
    10. 尋找寶藏即刻啟航 船員職涯手冊,交通部航港局(2019)。
    11. 黃湘凌,「離岸風電開發之風險控管與保險規劃方法概述」,台灣經濟研究月刊,第42卷,第4期,第120 – 128頁(2019)。
    12. 劉瑞弘、吳宗亮、鍾裕亮,「風力機智慧維護系統介紹」,機械工業,第319期,第53-60頁(2009)。
    13. 簡連貴、林伯峯、廖銘洋、王迦曄、吳憶珊、沈育霖與曹常成,「離岸風電施工關鍵技術與作業安全準則之探討」,技師月刊,第83期,第55-64頁(2018)。
    14. 離岸風力發電產業政策,經濟部工業局(2018)。
    15. 離岸風電知識網,http://www.nepii.tw/KM/OWE/index.html。
    1. Amruthnath, N., Gupta, T., (2018), “A Research Study on Unsupervised Machine Learning Algorithms for Fault Detection in Predictive Maintenance,” International Conference on Industrial Engineering and Applications, DOI: 10.1109/IEA.2018.8387124.
    2. Bai, Y. and Jin, W.L, (2016), “Chapter 44 - Risk-Centered Maintenance”, Marine Structural Design (Second Edition), 803-825.
    3. Bellman, R.E. and Zadeh, L.A., (1970), “Decision-making in a fuzzy environment”, Management Science l7, 141-164.
    4. Buckley, J.J.,(1988). “Possibilistic linear programming with triangular fuzzy numbers.” Fuzzy Sets and Systems, 26(1), 135-138.
    5. Chou, S. Y., and Yu, T. H. K. (2022). Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation. Energy, 249, 123613.
    6. Cevasco, D., Koukoura, S., Kolios, A.J., (2020), “Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications,” Renewable and Sustainable Energy Reviews, 136, 110414.
    7. Denice, U., (2019), “Hydraulic System Maintenance. How to Succeed?,” The Hope Group.
    https://www.thehopegroup.com/blog/2019/10/hydraulic-system-maintenance-how-to-succeed/
    8. Dalgic, Y., Lazakis, I., Dinwoodie, I., McMillan, D., Revie, M., (2015), “Advanced logistics planning for offshore wind farm operation and maintenance activities,” Ocean Engineering, 101, 211-226.
    9. Erguido, A., Crespo Marquez, A., Castellano, E., Gomez Fernandez, J.F., (2017), “A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms,” Renewable Energy, 114, 843-856.
    10. Erginel, N. and Gecer, A., (2016), “Fuzzy multi-objective decision model for calibration supplier selection problem,” Computers & Industrial Engineering, 102, 166-174.
    11. Fan, D., Ren, Y., Feng, Q., Zhu, B., Liu, Y., and Wang, Z., (2019), “A hybrid heuristic optimization of maintenance routing and scheduling for offshore wind farms,” Journal of Loss Prevention in the Process Industries, 62, 103949.
    12. Global Wind Council:http://gwec.net/
    13. Gonzalo, A.P., Benmessaoud, T., Entezami, M., and Márquez, F. P. G. (2022). Optimal maintenance management of offshore wind turbines by minimizing the costs. Sustainable Energy Technologies and Assessments,52, 102230.
    14. González,J.S., Payán, M.B., Santos, J.M.R., (2018), “Optimal design of neighbouring offshore wind farms: a co-evolutionary approach, ” Applied Energy, 209, 140-152
    15. Idris, A.M., Rusli, R., Nasif, M.S., Ramli, A. F., and Lim, J. S., (2022), A fuzzy multi-objective optimisation model of risk-based gas detector placement methodology for explosion protection in oil and gas facilities.Process Safety and Environmental Protection,161, 571-582.
    16. Herbert, G.J., Iniyan, S., and Goic, R., (2010), Performance, reliability and failure analysis of wind farm in a developing country.Renewable energy,35(12), 2739-2751.
    17. Kao, S.M. and Pearre, N.S., (2017), “Administrative arrangement for offshore wind power developments in Taiwan: Challenges and prospects,” Energy Policy, 109, 463-472.
    18. Lin, Z., Cevasco, D., Collu, M., (2020), “A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines,” Applied Energy,259,114228.
    19. Lu, Y., Sun, L., Zhang, X., Feng, F., Kang, J., Fu, G., (2018), “Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach,” Applied Ocean Research, 74, 69-79.
    20. Martin, R., Lazakis, I., Barbouchi, S., Johanning, L., (2016), “Sensitivity analysis of offshore wind farm operation and maintenance cost and availability,” Renewable Energy, 85, 1126-1236.
    21. Madsen, T., and Krogsgaard, P., (2006), “Delivering power stations: Wind power joins the mainstream,” Refocus, 28, 30-31.
    22. Nguyen, T.A.T. and Chou, S.Y., (2018), “Maintenance strategy selection for improving cost-effectiveness of offshore wind systems,” Energy Conversion and Management, 157, 86-95.
    23. Nguyen, T.A.T. and Chou, S.Y., (2019), “Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model,” Energy, 187, 115909.
    24. Rivera-Niquepa, J.D., De Oliveira-DeJesus, P.M., Castro-Galeano, J.C., Hernández-Torres, D., (2020), “Planning stand-alone electricity generation systems, a multiple objective optimization and fuzzy decision making approach,” Heliyon, 6(3), e03534.
    25. Ren, G., Liu, J., Wan, J., Guo, Y., Yu, D., (2017), “Overview of wind power intermittency: impacts, measurements, and mitigation solutions,” Applied Energy, 204, 47-65.
    26. Saraçoğlu, İ. and Süer, G.A., (2018),” Multi-objective fuzzy flow shop scheduling model in a manufacturing company, ” Procedia Manufacturing, 17, 214-221.
    27. Su, T.S., (2017),” A fuzzy multi-objective linear programming model for solving remanufacturing planning problems with multiple products and joint components,” Computers & Industrial Engineering, 110, 242-254.
    28. Soares, P.M., Lima, D.C., Cardoso, R.M., Nascimento, M.L., Semedo, A., (2017), “Western Iberian offshore wind resources: more or less in a global warming climate?,” Applied Energy, 203, 72-90.
    29. Shafiee, M., Finkelstein, M., Berenguer, C., (2015), “An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks,” Reliability Engineering and System Safety, 142, 463-471.
    30. Stocker, T.F, (2013), “Climate change 2013: the physical science basis. contribution of working group 1 to the fifth assessment Report of the intergovernmental panel on climate change,” Cambridge Univ. Press, Cambridge, U. K., and New York ,1535.
    31. Tirkolaee, E.B., & Aydin, N.S., (2022), “Integrated design of sustainable supply chain and transportation network using a fuzzy bi-level decision support system for perishable products”.Expert Systems with Applications, 195, 116628.
    32. Tsao, Y.C. and Thanh, V.V., (2020), “A multi-objective fuzzy robust optimization approach for designing sustainable and reliable power systems under uncertainty,” Applied Soft Computing Journal, 92, 106317.
    33. Torabi, S.A. and Hassini, E., (2008), “An interactive possibilistic programming approach for multiple objective supply chain master planning,” Fuzzy Sets and Systems, 159, 193-214.
    34. Tang, J., Wang, D., and Fung, R.Y., (2001), “Formulation of general possibilistic linear programming problems for complex industrial systems,” Fuzzy sets and systems, 119(1), 41-48.
    35. Yu, V.F., Le, T.H.A., Su, T.S., Lin, S.W., (2021), Optimal maintenance policy for offshore wind systems. Energies 14, 6082.
    36. Wu, S., Zuo, M.J., (2019), “Linear and nonlinear preventive maintenance models,” IEEE Transactions on Reliability, 59, 242-249.
    37. Wu, Y., Tao, Y., Zhang, B., Wang, S., Xu, C., & Zhou, J., (2020), “A decision framework of offshore wind power station site selection using a PROMETHEE method under intuitionistic fuzzy environment: A case in China,” Ocean & Coastal Management, 184, 105016.
    38. Yu, S., Zhou, S., Zheng, S., Li, Z., Liu, L., (2019), “Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach,” Renewable Energy, 139, 1086-1098.
    39. Zheng, J., Wang, L., Wang, J., (2020), “A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop,” Knowledge-Based Systems, 194, 105536.
    40. Zhou, P., Yin, P.T., (2019), “An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics,” Renewable and Sustainable Energy Reviews, 109, 1-9.
    41. Zhong, S., Pantelous, A.A., Goh,M., Zhou, J., (2019), “A reliability-and-cost-based fuzzy approach to optimize preventive maintenance scheduling for offshore wind farms,” Mechanical Systems and Signal Processing, 124, 643-663.
    42. Zhong, S., Pantelous, A.A., Beer, M., Zhou, J., (2018), “Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms,” Mechanical Systems and Signal Processing, 104, 347-369.
    43. Zhang, Y., Zhang, C., Chang, C.Y, Liu, W.H, Zhang, Y., (2017), “Offshore wind farm in marine spatial planning and the stakeholders engagement: Opportunities and challenges for Taiwan,” Ocean & Coastal Management, 149,69-80.
    44. Zimmermann, H.J., (1978), “Fuzzy programming and linear programming with several objective functions,” Fuzzy Sets and Systems 1, 45-55.
    45. Zadeh, L.A., (1965), “Fuzzy set,” Information and Control, 8, 38-53.
    46. Zadeh, L. A., (1978), “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, 1, 3-28.
    47. Zadeh, L. A., Klir, G. J., & Yuan, B., (1996), “Fuzzy sets,”Fuzzy Logic, and Fuzzy Systems: selected papers (Vol.6). World Scientific.

    無法下載圖示 校外公開
    2027/07/18
    QR CODE