簡易檢索 / 詳目顯示

研究生: 陳柏均
Chen, Bo-Jun
論文名稱: 構造用鋼銲接製程分析之研究
A Study on Analysis of Welding Process of Structural Steel
指導教授: 陳勇全
Chen, Yung-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 車輛工程系所
Department of Vehicle Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 152
中文關鍵詞: 構造用鋼銲接參數殘留應力EN 15085-3熱彈塑性有限元素模型銲後熱處理
外文關鍵詞: Structural Steel, Welding Parameters, Residual Stress, EN 15085-3, Thermo-elastic-plastic Finite Element Model, Post-weld Heat Treatment
DOI URL: http://doi.org/10.6346/NPUST202200188
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本論文主要是探討不同銲接製程參數對構造用鋼銲接變形與殘留應力之影響。首先,進行小型試片之銲接實驗,量測銲接過程之溫升、變形與殘留應力之變化情形,並觀察銲件的金相顯微組織與熔池幾何尺寸。接著,利用商用銲接模擬分析軟體Simufact Welding,建立小型試片之三維熱彈塑性有限元素模型,來進行試片銲接過程之模擬。模擬所得結果,並與試片之銲接實驗結果比對,確認所提有限元素模型之準確性。本研究,構造用鋼大型試片銲接接頭之設計是依據EN 15085-3。並建立其有限元素模型,來探討不同銲接長度、不同銲接順序、不同銲接參數及不同銲接道數,對構造用鋼銲接變形及殘留應力之影響。另外,也探討銲後熱處理對殘留應力之影響。
    研究結果顯示,在本文所探討之參數範圍內,最佳銲接製程參數為銲接長度為300 mm、銲接順序為Case 6、銲接參數為Case E以及銲接道數為打底銲加三道塡料銲接。依照此最佳銲接製程參數,對構造用鋼進行銲後熱處理模擬分析,結果得知其縱向殘留應力可降低22.5 %。

    In this thesis, the effects of various welding process parameters on the deformation and residual stress of structural steel are explored. Firstly, small test specimens are used to make the welding experiment. The temperature rise, deformation, and residual stress of the specimens are measured during the welding process. The metallography and the molten pool dimensions of the specimens are also obtained. Then, a three-dimensional thermo-elastic-plastic finite element model of the small test specimen is proposed to simulate the welding process using the commercial welding simulation software Simufact Welding. The simulation results are compared with the experimental results to confirm the accuracy of the proposed finite element model. In this study, the design of welding joints for large test specimens of structural steel follows EN 15085-3. The finite element model is established to explore the effects of different welding lengths, welding sequences, welding parameters, and different filler welding passes on the deformation and residual stress of the structural steel. In addition, the effect of post weld heat treatment on residual stress is also discussed.
    The results show that the optimum welding process parameters obtained from the parameters discussed in this study are the welding length of 300 mm, the welding sequence of Case 6, the welding parameters of Case E, and the welding pass of backing weld plus three filler welding. The longitudinal residual stress of the structural steel obtained from the post weld heat treatment simulation can be reduced by 22.5 %.

    第1章 緒論 1
    1.1 前言 1
    1.2 文獻回顧 2
    1.2.1 銲接殘留應力之相關研究 2
    1.2.2 銲接參數之相關研究 2
    1.2.3 銲接順序之相關研究 3
    1.2.4銲接簡化模型之相關研究 4
    1.3 研究目的 5
    1.4 組織與章節 5
    第2章 研究方法 6
    2.1電弧銲接原理[30] 8
    2.2雙橢球熱源模型[31] 10
    2.3熱傳導理論[34] 14
    2.4熱對流理論[35] 17
    2.5熱彈塑性理論[35] 19
    第3章 試片銲接實驗及有限元素分析模型建立 20
    3.1 實驗設備 22
    3.2 實驗步驟 31
    3.2.1 銲接實驗量測 31
    3.2.2試片蝕刻實驗流程 39
    3.3 實驗結果 41
    3.3.1銲接實驗量測結果 41
    3.3.2 銲接試片蝕刻實驗結果 50
    3.4 銲接試片有限元素分析 53
    3.4.1 小型試片幾何尺寸 53
    3.4.2 小型試片有限元素模型 56
    3.4.3 材料參數與邊界條件 59
    3.4.4建立熱源模型 71
    3.4.5小型試片銲接溫度結果與實驗比對 74
    3.4.6小型試片銲後變形及殘留應力結果與實驗比對 83
    3.5 I型樑大型試片銲接有限元素分析 92
    3.5.1 I型樑大型試片幾何尺寸 92
    3.5.2 I型樑大型試片有限元素模型 95
    3.5.3 材料參數與邊界條件 97
    3.5.4 建立熱源模型 103
    3.5.5 I型樑大型試片銲後殘留應力結果與實驗比對 105
    第4章 大型試片銲接製程模擬分析 107
    4.1 大型試片銲接有限元素模型分析 107
    4.1.1大型試片幾何尺寸模型 107
    4.1.2大型試片銲接有限元素模型 114
    4.1.3材料參數與邊界條件 117
    4.1.4建立熱源模型 119
    4.2 銲接製程參數模擬分析 122
    4.2.1銲接簡化模型模擬分析 122
    4.2.2銲接簡化模型之銲接模擬分析結果 123
    4.2.3不同銲接長度模擬分析 126
    4.2.4不同銲接長度之銲接模擬分析結果 128
    4.2.5不同銲接順序模擬分析 130
    4.2.6不同銲接順序之銲接模擬分析結果 135
    4.2.7不同銲接參數模擬分析 137
    4.2.8不同銲接參數之銲接模擬分析結果 139
    4.2.9不同銲接道數模擬分析 141
    4.2.10不同銲接道數之銲接模擬分析結果 143
    4.3 銲後熱處理模擬分析 145
    第5章 結論 148
    參考文獻 149

    1. Ren, S., Li, S., Wang, Y., Deng, D., and Ma, N., 2019, “Finite element analysis of residual stress in 2.25 Cr-1Mo steel pipe during welding and heat treatment process,” Journal of Manufacturing Processes, Vol. 47, pp. 110-118.
    2. 肖茂,2020,「轉向架側梁銲接殘餘應力與變形仿真分析」,碩士論文,西南交通大學,交通運輸工程學院,成都。
    3. Chen, Z., Chen, Z. C., and Shenoi, R., 2015, “Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure,” Ocean Engineering, Vol. 106, pp. 271-280.
    4. 黃小葉,2008,「銲接構架測梁殘餘應力數值模擬分析」,碩士論文,西南交通大學,車輛工程學院,成都。
    5. Islam, M., Buijk, A., Rais-Rohani, M., and Motoyama, K., 2014, “Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures,” Finite Elements in Analysis and Design, Vol. 84, pp. 54-64.
    6. Li, T., Zhang, L., Chang, C., and Wei, L., 2018, “A Uniform-gaussian distributed heat source model for analysis of residual stress field of S355 steel T welding,” Advances in Engineering Software, Vol. 126, pp. 1-8.
    7. Huang, B., Liu, J., Zhang, S., Chen, Q., and Chen, L., 2020, “Effect of post-weld heat treatment on the residual stress and deformation of 20/0Cr18Ni9 dissimilar metal welded joint by experiments and simulations,” Journal of Materials Research and Technology, Vol. 9, pp. 6186-6200.
    8. Mi, G., Xiong, L., Wang, C., Hu, X., and Wei, Y., 2016, “A thermal-metallurgical-mechanical model for laser welding Q235 steel,” Journal of Materials Processing Technology, Vol. 238, pp. 39-48.
    9. 劉盈成,2014,「使用Ssyweld進行銲件殘餘熱應力及變形之研究」,碩士論文,國立台灣大學,材料科學與工程學系,台北。
    10. 孫令飛,2017,「基於SYSWELD管板銲結構銲接變形的數值模擬」,碩士論文,山東大學,材料科學與工程學院,濟南。
    11. Daniyan, I., Mpofu, K., Fameso, F., and Adeodu, A., 2020, “Numerical simulation and experimental validation of the welding operation of the railcar bogie frame to prevent distortion,” The International Journal of Advanced Manufacturing Technology, Vol. 106, pp. 5213-5224.
    12. Panicker, C. J., Surya, K. R., and Senthilkumar, V., 2022, “Novel process parameters based approach for reducing residual stresses in WAAM,” Materials Today: Proceedings, Vol. 59, pp. 1119-1126.
    13. Kumar, P., Arif, A., Prasad, A. C. V., Danaiah, P., Singh, A. K., Patro, M., and Murugan, M., 2021, “Study of welding process parameter in TIG joining of Aluminum Aolly (6061),” Materials Today: Proceedings, Vol. 47, pp. 4020-4025.
    14. Baruah, S., Sarkar, S., Singh, I. V., and Mishra, B. K., 2022, “A computational framework based on FEA, ML and GA for estimation of welding residual stresses,” Finite Elements in Analysis and Design, Vol. 205, Article 103753.
    15. Li, Y., Xiong, M., He, Y., Xiong, J., Tian, X., and Mativenga, P., 2022, “Multi-objective optimization of laser welding process parameters: The trade-offs between energy consumption and welding quality,” Optics & Laser Technology, Vol. 149, 2022, Article 107861.
    16. Koli, Y., Yuvaraj, N., and Aravindan, S., 2021, “Multi-response mathematical model for optimization of process parameters in CMT welding of dissimilar thickness AA6061-T6 and AA6082-T6 alloys using RSM-GRA coupled with PCA,” Advances in Industrial and Manufacturing Engineering, Vol. 2, 2021, Article 100050.
    17. 繆澤宇,2017,「T91鋼管環形銲縫殘餘應力數值模擬分析及銲接工藝參數優化」,碩士論文,中國計量大學,控制工程學院,杭州。
    18. 王艷茹,2017,「低碳鋼材J型槽銲之GMAW銲接應力與應變分析」,碩士論文,國立高雄應用科技大學,機械工程系,高雄。
    19. Bai, R., Guo, Z., Tian, C., Lei, Z., Yan, C., and Tao, W., 2018, “Investigation on welding sequence of I-Beam by hybrid inversion,” Marine Structures, Vol. 62, pp. 23-39.
    20. Romero-Hdz, J., Saha, B. N., Tstutsumi, S., and Fincato, R., 2020, “Incorporating domain knowledge into reinforcement learning to expedite welding sequence optimization,” Engineering Applications of Artificial Intelligence, Vol. 91, 2020, Article 103612.
    21. Wang, J., Shi, X., Zhou, H., Yang, Z., and Liu, J., 2020, “Dimensional precision controlling on out-of-plane welding distortion of major structures in fabrication of ultra large container ship with 20000TEU,” Ocean Engineering, Vol. 199, 2020, Article 106993.
    22. 黃月雙,2019,「大型航空結構件銲接變形分析及數值模擬」,碩士論文,電子科技大學,機械工程,成都。
    23. 張永濤,2013,「大型鋼構件製作加工過程中殘餘應力與變形的理論分析與實踐」,碩士論文,河北工業大學,建築與土木工程,天津。
    24. 陳躍,2014,「地鐵構架多道銲應力調控與銲接順序優化方法研究」,博士論文,北京交通大學,載運工具應用工程學院,北京。
    25. Lu, Y., Lu, C., Zhang, D., Chen, T., Zeng, J., and Wu, P., 2019, “Numerical computation methods of welding deformation and their application in bogie frame for high-speed trains,” Journal of Manufacturing Processes, Vol. 38, pp. 204-213.
    26. Lu, Y., Zhu, S., Zhao, Z., Chen, T., and Zeng, J., 2020, “Numerical simulation of residual stresses in aluminum alloy welded joints,” Journal of Manufacturing Processes, Vol. 50, pp. 380-393.
    27. Shen, J., and Chen, Z., 2014, “Welding simulation of fillet-welded joint using shell elements with section integration,” Journal of Materials Processing Technology, Vol. 214, pp. 2529-2536.
    28. Karalis, D. G., 2020, “Increasing the efficiency of computational welding mechanics by combining solid and shell elements,” Materials Today Communications, Vol. 22, 2020, Article 100836.
    29. Tankova, T., da Silva, L. S., Balakrishnam, M., Rodrigues, D., Launert, B., Pasternak, H., and Tun, T. Y., 2019, “Residual stresses in welded I section steel members,” Engineering Structures, Vol. 197, 2019, Article 109398.
    30. 陳韋豪,2020,「活性銲接殘留應力分析之研究」,碩士論文,國立屏東科技大學,車輛工程系,屏東。
    31. 陳家權、肖順湖、陽新彥、吳剛,2005,「銲接過程數值類比熱源模型的研究進展」,設備製造技術,第3卷,第1-5頁.
    32. Goldak, J., Chakravarti, A., and Bibby, M., 1984, “A new finite element model for welding heat source,” Metall Trans B, Vol. 15, pp. 299-305.
    33. 蕭弘岳,2018,「軌道車實作與轉向架銲接殘留應力分析」,碩士論文,國立屏東科技大學,車輛工程系,屏東。
    34. 高健,2014,「7A52鋁合金銲接接頭殘餘應力對疲勞壽命影響的有限元模擬」,碩士論文,內蒙古工業大學,材料科學與工程學院,浩特。
    35. 劉曉苗,2009,「特殊形狀貫穿件銲接殘餘應力和疲勞分析」,碩士論文,哈爾濱工程大學,能源學院,哈爾濱。
    36. 陳尚青、許道生、吳威德,2016,「實物現場 X-ray 殘留應力量測及其振動應力消除技術」,科儀新知,第207卷,第44-54頁。
    37. Sun, J., Hensel, J., Klassen, J., Nitschke-Pagel, T., and Dilger, K, 2019, “Solid-state phase transformation and strain hardening on the residual stresses in S355 steel weldments,” Journal of Materials Processing Technology, Vol. 265, pp. 173-184.
    38. 莫春立、錢百年、國旭明、于少飛,2001,「銲接熱源計算模式的研究進展」,銲接學報,第22卷,第3期,第93-96頁。
    39. Spoorenberg, R. C., Snijder, H. H., and Hoenderkamp, J. C. D., 2010, “Experimental investigation of residual stresses in roller bent wide flange steel sections,” Journal of Constructional Steel Research, Vol. 66, pp. 737-747.
    40. BS EN 15085-3, 2007, “Railway applications Welding of railway vehicles and components,” No. EN 15085-3:2007.

    無法下載圖示 校外公開
    2027/07/20
    QR CODE