簡易檢索 / 詳目顯示

研究生: 陳娣伶
Chen, Di-Ling
論文名稱: 生物炭之不同炭化溫度與施用量對新竹油菊生長與成分 及紫錐菊之抗氧化能力與成分之研究
Studies of Different Biochar Pyrolysis Temperature and Application Amounts on the Growth and Components of Chrysanthemum lavandulifolium var. tomentellum Handel-Mazzetti and of the Antioxidant Capacity and Components of Echinacea spp.
指導教授: 賴宏亮
Lay, Horng-Liang
學位類別: 碩士
Master
系所名稱: 農學院 - 農園生產系所
Department of Plant Industry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 新竹油菊紫錐菊高效液相層析儀生物炭抗氧化
外文關鍵詞: Chrysanthemum lavandulifolium var. tomentellum Handel-Mazzetti,, Echinacea spp, Biochar, High-performance liquid chromatography (HPLC), Antioxidant Capacity
DOI URL: http://doi.org/10.6346/NPUST202200189
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 摘要 Ⅰ
    Abstract Ⅲ
    謝誌 Ⅴ
    目錄 Ⅵ
    圖目錄 Ⅶ
    表目錄 Ⅸ
    壹、前言 1
    貳、文獻回顧 3
    一、分類及形態特徵 3
    二、成分及藥理活性 3
    三、生物炭之介紹 6
    四、氧化及抗氧化能力 7
    參、材料方法 10
    一、新竹油菊試驗設計 10
    二、紫錐菊試驗設計 17
    肆、結果 23
    一、新竹油菊土壤及生物炭之性質 23
    二、新竹油菊植株性狀與產量調查 24
    三、HPLC成分分析 28
    四、紫錐菊之抗氧化能力 34
    伍、討論 36
    一、不同溫度炭化之生物炭及土壤性狀之影響 36
    二、不同生物炭處理對新竹油菊性狀及生長之影響 37
    三、不同生物炭處理對新竹油菊HPLC成分分析之探討 37
    四、紫錐菊成分分析之探討 38
    五、紫錐菊各部位之抗氧化能力 39
    陸、結論 41
    柒、參考文獻 42

    王志強、張坤城、黃敏惠. 2018. 臺灣產菊屬植物分類研究. 林業研究季刊 40: 111-131.

    行政院衛生福利部食品藥物管理署編. 2000. 現行藥品優良製造規範-分析確校作業指導手冊. 行政院衛生福利部食品藥物管理署,第2-17頁.

    邱建中、張隆仁、秦立德、勵鑫齋. 2001. 西方藥草-紫錐花(Echinacea)的栽培與利用. 臺中區農業改良場研究彙報,第43-54頁.

    林資哲. 2003. 紫錐菊咖啡酸生物含量與抗氧化能力分析. 國立中興大學農藝學系碩士學位論文.

    黃敏惠. 2016. 臺灣產菊科菊屬植物分類研究. 國立屏東科技大學森林系碩士學位論文.

    陳裕星、蔡宜峰、陳鐶斌. 2013. 紫錐花栽培與功效成分簡介. 農政與農情247 :97-102.

    陳鐶斌、林訓仕. 2019. 紫錐菊‘台中1號’之育成. 臺中區農業改良場研究彙報145: 41-51.

    鄧維豐. 2005. 孟宗竹炭及其高溫蒸餾產物之分析. 國立屏東科技大學木材工業系碩士學位論文.

    彭鏡毅、鍾國芳、李惠林. 1998. 台灣植物誌第二版. 國立臺灣師大出版社,第807頁.

    Ahmed, M. B., J. L. Zhou, H. H. Ngo, and W. Guo. 2016. Insight into biochar
    properties and its cost analysis. Biomass Bioenergy 84: 76-86.

    Akanda, M. R., M. N. Uddin, I. S. Kim, D. Ahn, H. J. Tae, and B. Y. Park. 2019. The biological and pharmacological roles of polyphenol flavonoid tilianin. Eur. J. Pharmacol. 842: 291-297.

    Amarowicz, R., R. B. Pegg, P. Rahimi-Moghaddam, B. Barl, and J. A. Weil. 2004. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 84: 551-562.

    Banica, F., S. Bungau, D. M. Tit, T. Behl, P. Otrisal, A. C. Nechifor, D. Gitea, F. M. Pavel, and S. Nemeth. 2020. Determination of the total polyphenols content and antioxidant activity of Echinacea purpurea extracts using newly manufactured glassy carbon electrodes modified with carbon nanotubes. Processes 8: 807-833.

    Beesley, L., and M. Marmiroli. 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 159: 474-480.

    Bruni, R., V. Brighenti, L. K. Caesar, D. Bertelli, N. B. Cech, and F. Pelltai. 2018. Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. J. Pharm. Biomed. Anal. 160: 443-447.

    Cha, J. S., S. H. Park, S. C. Jung, C. Ryu, J. K. Jeon, M. C. Shin, and Y. K. Park. 2016. Production and utilization of biochar: A review. Ind. Eng. Chem. Res. 40: 1-15.

    Chen, B., Z. Chen, and S. Lv. 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 102: 716-723.

    Dai, Z., J. Meng, N. Muhammad, X. Liu, H. Wang, Y. He, P. C. Brookes, and J. Xu. 2013. The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. J. Soils Sediments 13: 989-1000.

    El-Shafey, N. M. and H. AbdElgawad. 2012. Luteolin, a bioactive flavone compound extracted from Cichorium endivia L. subsp. divaricatum alleviates the harmful effect of salinity on maize. Acta. Physiol. Plant 34: 2165-2177.

    Fu, R., P. Zhang, Z. Deng, G. Jin, Y. Guo, and Y. Zhang. 2021. Diversity of antioxidant ingredients among Echinacea species. Ind. Crops Prod. 170: 113699.

    Hagner, M., R. Kamppanien, L. jauhiainen, K. Tiilikkala, and H. Setälä. 2016. The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil Tillage Res. 163: 224-234.

    Hansen, V., H. Hauggaard-Nielsen, C. T. Petersen, T. N. Mikkelsen, and D. Müller-Stöver. 2016. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res. 161: 1-9.

    Hassan, M., Y. Liu, R. Naidu, S. J. Parikh, J. Du, F. Qi, and I. R. Willett. 2020. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci. Total Environ. 744: 140714.

    Hossain, M. K., V. Strezov, K. Y. Chan, A. Ziolkowski, and P. F. Nelson. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 92: 223-228.

    Hu, C., and D. D. Kitts. 2002. Studies on the antioxidant activity of echinacea root extract. J. Agric. Food Chem. 48: 1466-1472.

    Ippolito, J. A., L. Cui, C. Kammann, N. Wrage‑Mönnig, J. M. Estavillo, T. Fuertes‑Mendizabal, M. L. Cayuela, G. Sigua, J. Novak, K. Spokas, and N. Borchard. 2020. Feedstock choice, pyrolysis temperature and type infuence biochar characteristics: a comprehensive meta‑data analysis review. Adv. Electron. Mater. 2: 421-438.

    Jiang, M., M. Zhu, L. Wang, and S. Yu. 2019. Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed. Pharmacother. 120: 109506.

    Kapoor, D., S. Singh, V. Kumar, R. Romero, R. Prasad, and J. Singh. 2019. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19: 100182.

    Keshari, A. K., A. Srivastava, M. Upadhayaya, and R. Srivastava. 2018. Antioxidants and free radicals scavenging activity of Medicinal Plants. J. Pharmacogn. Phytochem. 7: 1499-1504.

    Kim, Y., J. Sung, M. Sung, Y. Choi, H. S. Jeong, and J. Lee. 2010. Involvement of heme oxygenase-1 in the anti-inflammatory activity of Chrysanthemum boreale Makino extracts on the expression of inducible nitric oxide synthase in RAW264.7 macrophages. J. Ethnopharmacol. 131: 550-554.

    Konar, N., S. Dalabasmaz, E. S. Poyrazoglu, N, Artik, and A. Colak. 2014. The determination of the caffeic acid derivatives of Echinacea purpurea aerial parts under various extraction conditions by supercritical fluid extraction (SFE). J. Supercrit. Fluids 89:128-136.

    Kwapinski, W., C. M. P. Byrne, E. Kryachko, P. Wolfram, C. Adley, J. J. Leahy, E. H. Novotny, and M. H. B. Hayes. 2010. Biochar from biomass and waste. Waste Biomass Valor. 1: 177-189.

    Lehmann, J., J. Pereira da Silva, C. Steiner, T. Nehls, W. Zech, and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249: 343-357.

    Lehmann, S., M. Serrano, F. L’Haridon, S. E. Tjamos, and J. P. Metraux. 2015. Reactive oxygen species and plant resistance to fungal pathogens. Phytochem. Rev. 112: 54-62.

    Letchamo, W., J. Livesey, T. J. Arnason, C. Bergeron, and V.S. Krutilina. 1999. Cichoric acid and isobutylamide content in Echinacea purpurea as influenced by flower developmental stages.pp. 494-498. n: J. Janick (ed.), Perspectives on new crops and new uses. ASHS Press, Alexandria, VA.

    Lepojević, I., Z. Lepojević, B. Pavlić, M. Ristić, Z. Zeković, and S. Vidović. 2017 Solid-liquid and high-pressure (liquid and supercritical carbon dioxide) extraction of Echinacea purpurea L. J. Supercrit. Fluids 119: 159-168.

    Lin, S. D., J. M. Sung, and C. L. Chen. 2011. Effect of drying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea purpurea grown in Taiwan. Food Chem. 125: 226-231.

    Liu, X., A. Zhang, C. Ji, S. Joseph, R. Bian, L. Li, G. Pan, and J. P. Ferreiro. 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373: 583-594.

    Lou, Z., H. Wang, S. Zhu, C. Ma, and Z. Wang. 2011. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 76: 399-403.

    Lv, P. C., H. Q. Li, J. Y. Xue, L. Shi, and H. L. Zhu. 2009. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents. Eur. J. Med. Chem. 44: 908-914.

    Meng, S., J. Cao, Q. Fwng, J. Peng, and Y. Hu. 2013. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A Review. Evid. Based Complementary Altern. Med. 10: 801457.

    Méndez, A., M. Terradillos, and G. Gascó. 2013. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrolysis 102: 124-130.

    Murthy, H. N., Y. S. Kim, S. Y. Park, and K. Y. Paek. 2014. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species. Appl. Microbiol. Biotechnol. 98: 7707-7717.

    Olthof, M. R., P. C. H. Hollman, and M. B. Katan. 2001. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 131: 66-71.

    Palansooriya, K. N., Y. S. Ok, Y. M. Awad, S. S. Lee, J. K. Sung, A. Koutsospyros, and D. H. Moon. 2019. Impacts of biochar application on upland agriculture: A review. J. Environ. Manage. 234: 52-64.

    Pariyar, P., K. Kumari, M. K. Jain, and P. S. Jadhao. 2020. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ. 713: 136433.

    Pellati, F., S. Benvenuti, L. Magro, M. Melegari, and F. Soragni. 2004. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharm. Anal. 35: 289-301.

    Peng, X., L. Ye, C. H. Wang, H. Zhou, and B, Sun. 2011. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res. 112: 159-166.

    Petruccelli, R., A. Bonetti, M. L. Traversi, C. Faraloni, M. Valagussa, and A. Pozzi. 2015. Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop Pasture Sci. 66: 747-755.

    Pukalskas, A., P. R. Venskutonis, I. Dijkgraaf, and T. A. Beek. 2010. Isolation, identification and activity of natural antioxidants from costmary (Chrysanthemum balsamita) cultivated in Lithuania. Food Chem. 122: 804-811.

    Qian, K., A. Kumar, H. Zhang, D. Bellmer, and R. Huhnke. 2015. Recent advances in utilization of biochar. Renew. Sust. Energ. Rev. 42:1055-1064.

    Rizwan, M., S. Ali, T. Abbas, M. Zia-ur-Rehman, M. Ibrahim, F. Abbas, M.F. Qayyum, and R. Nawaz. 2018. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J. Environ. Manage. 206: 676-683.

    Saha, A., B. B. Basak, N. A. Gajbhiye, K. A. Kalariya, and P. Manivel. 2019. Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of andrographis paniculata and soil health. Ind. Crops Prod. 140: 111607.

    Sánchez, C. 2017. Reactive oxygen species and antioxidant properties from mushrooms. Synth. Syst. Biotechnol. 2: 13-22.

    Santos, J. S., J. P. G. Cirino, P. O. Carvalho, and M. M. Ortega. 2021. The pharmacological action of kaempferol in central nervous system diseases: A Review. Front. Pharmacol. 11: 565700.

    Sato, Y., S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara, and K. Iseki. 2011. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 403: 136-138.

    Semwal, D. K., R. B. Semwal, S. Combrinck, and A. Viljoen. 2016. Myricetin: a dietary molecule with diverse biological activities. Nutrients 8: 90.

    Semwal, R. B., D. K. Semwal, S. Combrinck, J. Trill, S. Gibbons, and A. Viljoen. 2019 Acacetin—A simple flavone exhibiting diverse pharmacological activities. Phytochem. Lett. 32: 56-65.

    Song, C., Y. Liu, A. Song, G. Dong, H. Zhao, W. Sun, S. Ramakrishnan, Y. Wang, S. Wang, T. Li, Y. Niu, J. Jiang, B. Dong, Y. Xia, S. Chen, Z. Hu, F. Chen, and S. Chen. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits. Mol. Plant 11: 1482-1491.

    Song, X., L. Tan, M. Wang, C. Ren, C. Guo, B. Yang, Y. Ren, Z. Cao, Y. Li, and J. Pei. 2021. Myricetin: A review of the most recent research. Biomed. Pharmacother. 134: 111017.
    Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclocdextrin emulsion. J. Agric. Food. Chem. 40: 495-498.

    Shiu, G. K. 1993. The Validation of analytical assays for biopharmaceutical studies. J Food Drug Anal. 1: 1-6.

    Smith, J. L., H. P. Collins, and V. L. Bailey. 2010. The effect of young biochar on soil respiration. J. Environ. Sci. 42: 2345-2347.

    Song, X. D., X. Y. Xue, D. Z. Chen, P. J. He, and X. H. Dai. 2014. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 109: 213-220.

    Srinivas, K., J. W. King, L. R. Howard, and H. J. Monrad. 2010. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng. 100: 208-218.

    Stanisavljeviü, I., S. Stojiþeviü, D. Veliþkoviü, V. Veljkoviü, and M. Laziü. 2009. Antioxidant and Antimicrobial Activities of Echinacea (Echinacea purpurea L.) Extracts obtained by classical and ultrasound extraction. Chin. J. Chem. Eng. 17: 478-483.

    Stantons, F. T., H. Trindade, M. S. S. M. Costa, L. A. M. Costa, and P. Goufo. 2021. Effects of composts made from broiler chicken residues and blended with biochar on the minerals and phenolic compounds in parsley (Petroselinum crispum Mill.). Agriculture 11: 1168.

    Sun, Q. L., S. Hua, J, H. Ye, X. Q. Zheng, and Y. R. Liang. 2010. Flavonoids and volatiles in Chrysanthemum morifolium Ramat flower from tongxiang county in China. Afr. J. Biotechnol. 9: 3817-3821.

    Sun, J., Z. Wang, L. Chen, and G. Sun. 2021. Hypolipidemic Effects and preliminary mechanism of Chrysanthemum flavonoids, its main components luteolin and luteoloside in hyperlipidemia rats. Antioxidants 10: 1309.

    Sun, Y., B. Gao, Y. Yao, J, Fang, M. Zhang, Y. Zhou, H. Chen, and L. Yang. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 240: 574-578.

    Tang, J., W. Zhu, R. Kookana, and A. Katayama. 2013. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 116: 653-659.

    Tsai, Y. L., S. Y. Chiou, K. C. Chan, J. M. Sung, and S. D. Lin. 2012. Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts. Food Sci. Technol. 46: 169-176.

    Tian, C., X. Liu, Y. Chang, R. Wang, T. Lv, C. Cui, and M. Liu. 2021. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 137: 257-264.

    Wei, W., X. B. Lan, N. Liu, J. M. Yang, J. Du, L. Ma, W. J. Zhang, and J. G. Niu. 2019. Echinacoside alleviates hypoxic-Ischemic brain injury in neonatal rat by enhancing antioxidant capacity and inhibiting apoptosis. J. Neurosci. Res. 44: 1582-1592.

    Wu, C., J. Yan, and W. Li. 2022. Acacetin as a potential protective compound against cardiovascular diseases. evid. based complementary altern. Med. 10: 6265198.

    Wu, W., M. Yang, Q. Feng, K. McGrouther, H. Wang, H. Lu, and Y. Chen. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47: 268-276.

    Xu, D., Y. Zhao, K. Sun, B. Gao, Z. Wang, J. Jin, Z. Zhang, S. Wang, Y. Yan, X. Liu, and F. Wu. 2014. Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: Impact of bulk and surface properties. Chemosphere 320-326.

    Yang, P. F., Y. N. Yang, Z. M., Feng, J., S. Jiang, and P. C. Zhang. 2019. Six new compounds from the flowers of Chrysanthemum morifolium and their biological activities. Bioorg. Chem. 82: 139-144.

    Yuan, J., L. J. Hao, G. Wu, S. Wang, J. A. Duan, G. Y. Xie, and M. J. Qin. 2015. Effects of drying methods on the phytochemicals contents and antioxidant properties of Chrysanthemum flower heads harvested at two developmental stages. J. Funct. Foods 19: 786-795.

    Zeka, K., C. Ruparelia, M. A. Continenza, D. Stagos, F. veglio, and R. R. J. Arroo. 2015. Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol. Fitoterapia 107: 128-134.

    Zhang, J., B. Huang, L. Chen, Y. Li, W. Li, and X. Luo. 2018. Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chem. Speciat. Bioavailab. 30: 57-67.

    Zheng, H., Z. Wang, X. Deng, J. Zhao, Y. Luo, J. Novak, S. Herbert, and B. Xing. 2013. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 130: 463-471.

    The European Biochar Certificate (EBC). 2022. Source:
    https://www.european-biochar.org/en.

    無法下載圖示 本全文未授權公開
    QR CODE