簡易檢索 / 詳目顯示

研究生: 黃琮傑
Cong-Jie, Huang
論文名稱: 衛星追蹤南橫公路周邊熊鷹(Nisaetus nipalensis)空間利用與道路開放前後行為差異
Satellite tracking of mountain hawk eagle (Nisaetus nipalensis) around the Southern Cross-Island Highway and the difference in the behavior before and after road opening
指導教授: 孫元勳
Yuan-Hsum, Sun
學位類別: 碩士
Master
系所名稱: 獸醫學院 - 野生動物保育研究所
Institute of Wildlife Conservation
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 熊鷹(Nisaetus nipalensis)衛星追蹤空間利用南橫公路道路影響
外文關鍵詞: Mountain hawk eagle (Nisaetus nipalensis), Satellite tracking, Spatial use, Nanheng Highway, Road impact
DOI URL: http://doi.org/10.6346/NPUST202200192
相關次數: 點閱:38下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 熊鷹(Nisaetus nipalensis)在台灣作為高階捕食者可做為生態指標物種,但過往由於方法限制了追蹤的努力量。此外,隨著南橫公路的開放對熊鷹是否造成影響所知有限。在此本研究透過GPS/GSM太陽能衛星發報器追蹤玉山國家公園南橫公路周邊的熊鷹,探討活動範圍、活動模式、日夜棲地選擇與道路管制對熊鷹造成的活動影響。研究期間內捕獲2隻雌性熊鷹亞成鳥,一隻有固定領域且成功繁殖(N1930),另一隻則為遊蕩個體(Floater) (N1931),分別收集了4735與2986筆定位紀錄。研究顯示,兩者的活動範圍重疊度僅0.18。N1930的MCP有13.83 km2,是過往無線電追蹤的兩倍餘。活動模式以中午為高峰,在求偶期有最高的飛行占比(8.53%),。日棲地選擇以原生林與闊葉林較高(66%與75%),平均坡度約47.1 ± 10.3°,以北向坡為主要利用坡向。N1930共有15處夜棲地,選擇同樣以原生林與闊葉林最高(51%與56%),平均坡度約46.4 ±11.2°,同樣以北向坡為主要利用坡向,且當日平均溫度對夜棲時海拔不具有影響力。公路活動干擾方面,僅在長期無人車的時期下有趨近道路之現象。遊蕩的N1931的MCP達621.5 km2,活動模式亦以中午為高峰,惟活動高峰時段比N1930更晚來到,日棲時同樣對原生林與闊葉林具有高度選擇(55%與77%),但在原生林有低於環境占比的選擇性(p<0.05),平均坡度約為35.3 ± 10.2°,對南向坡具有高於環境占比的選擇性(p<0.05);N1931共有16處夜棲地,但夜棲地幾無選擇性,與日棲有所不同,僅對待成林地具有低於環境占比的選擇性(p<0.05),對於各坡度與向坡向亦不具有選擇性,當日平均溫度對夜棲海拔亦不具有影響力,而對於公路活動的干擾,其結果可能包含了許多個體播遷的混淆效應難以看出兩者間的關聯。兩隻個體在植被稀疏區的飛行比例皆高於植被覆蓋區域,但仍然以停棲為主。透過架設於捕捉陷阱旁之自動照相機顯示於公路開放前熊鷹主要造訪時段以13至16時為最高(76%),而在開放後此高峰則較不顯著;且開放後熊鷹以管制時段作為主要的造訪時段,與開放前呈現相反趨勢。本研究透過太陽能衛星發報器補足了過往台灣所缺乏的長期追蹤資料,與道路活動所帶來的影響分析。

    As a top predator, the Mountain hawk eagle (Nisaetus nipalensis) acts as an important ecological indicator species in Taiwan. However, due to the lack of long-term tracking data and method limitations, the disturbance of Nanheng Highway, recently opened to the public on the Mountain hawk eagle is still unknown. This study used GPS/GSM solar satellite transmitters to track the bird around the Highway in Yushan National Park, with the aim of investigating the home ranges, activity pattern, and roost site selection and the disturbance of traffic regulation. During the study period, two subadult females, N1930 and N1931, were captured. N1930 had a breeding home range while N1931 was a floater, each with 4735 and 2986 tracking fixes collected, respectively. Results showed that the home range overlap of the two eagle was only 0.18. The MCP of the N1930, 13.83 km2, is about twice the size as that recorded in previous work. It was most active at noon and flight activity peaked during the courtship period (8.53%). N1930 selected primary forest and broad-leaved forest more than other vegetation types (66% and 75%, respectively), area with average slope around 47.1 ± 10.3° and mainly north slope. Fifteen roosting sites were recorded for the bird, among them 51% are primary forest and 56% broad-leaved forest, with a mean slope of around 46.4 ± 11.2° , and mainly on the north slope. Air temperature had no effect on its roosting altitude. In terms of road activity interference, the phenomenon of approaching the road was only seen during long-term low traffic flow period. N1931 showed a larger MCP of 621.5 km2. The daily activity pattern also showed a bell-shaped distribution at noon, with the peak activity came later than N1930. It was also highly selective for primary forests and broad-leaved forests (55% and 77%) at daytime, whereas the primary forest was not selected (p<0.05). The average slope used was about 35.3 ± 10.2°, and the north slope was selected (p<0.05). N1931 had a total of 16 roosting sites without habitat selectivity, different from the daytime habitat selection. The pre-forest was avoided by the bird (p<0.05) during the night. The effect of road disturbance might be confounded by dispersal behavior of the bird. Aloft locations of the two birds were recorded more in the sparsely vegetated area than that in the vegetated area, while daytime perching was still the main activity. With trap cameras set beside the traps, I found the mountain hawk eagles visited mostly from 13:00 to 16:00 (76%) before the opening of the road, while during the closedown of the road the pattern became vague. This long-term tracking study strengths our understading of this species behavior.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖表目錄 IX
    壹、前言 1
    貳、研究方法 4
    一、 研究區域 4
    二、 捕捉追蹤與分析 5
    三、 活動範圍 6
    四、 活動模式 6
    (一) 每小時移動距離 6
    (二) 飛行活動占比 7
    五、 日棲地選擇 7
    (一) 土地利用 8
    (二) 坡度與坡向 8
    六、 夜棲地選擇 8
    七、 道路管制對熊鷹的活動影響 9
    (一) 定位點離路距離 9
    (二) 熊鷹造訪陷阱時段差異 10
    八、 資料處理與分析 10
    參、結果 12
    一、 活動範圍 13
    二、 活動模式 14
    (一) 每小時移動距離 14
    (二) 飛行活動占比 16
    三、 日棲地選擇 16
    (一) 土地利用 17
    (二) 坡度選擇 21
    (三) 坡向選擇 24
    四、 夜棲地選擇 25
    (一) 夜棲點海拔與每日溫度關係 26
    (二) 夜棲土地利用型選擇 27
    (三) 夜棲點坡度選擇 30
    (四) 夜棲點坡向選擇 32
    五、道路管制對熊鷹的活動影響 33
    (一) 定位點離路距離 34
    (二) 熊鷹造訪陷阱時段差異 35
    肆、 討論 38
    一、活動範圍 38
    二、活動模式 40
    三、日夜棲地選擇 41
    四、道路管制對熊鷹的活動影響 45
    五、未來研究方向與建議 47
    伍、結論 48
    參考文獻 49
    附錄 55

    2017年中華民國國家溫室氣體排放報告。行政院環境保護署。291頁。
    山崎亨 (2011) 日本熊鷹的分布與生態。台灣猛禽研究 12:15-27。
    王克孝 (2004) 台東縣熊鷹(赫氏角鷹)分布調查計畫。行政院農業委員會林務局保育研究系列 93-18號。18頁。
    王鑫文 (1996) 壯哉! 南橫!--南部橫貫公路沿線地形景觀。大自然10:72-77。
    何錦尚 (2007) 臺東赫氏角鷹生態行為、棲地環境與族群分佈研究計畫。 行政院農委會林務局保育研究系列 95-14 號。87頁
    李姚生 (2015) 森林資源現況與展望。行政院農委會。行政院第3465次院會會議。
    李宣德、馮豐隆 (2010) 台灣地區樟樹生物量擴展係數之建立。 林業研究季刊 32:45-53。
    周盈杉 (2004) 南橫中之關暖溫帶闊葉林植群分析。國立台南大學自然科學教育學系碩士班碩士論文。101頁。
    林文宏 (1992) 台灣地區猛禽調查(I)。農委會80年度生態研究報告第33號。15-48。
    孫元勳 (2005) 南北大武山熊鷹族群、生態與獵捕壓力。行政院農委會林務局保育研究系列 93-04 號。49頁。
    孫元勳 (2006) 南、北大武山地區赫氏角鷹族群監測與獵捕壓力。行政院農業委員會林務局保育研究系列94-02號。48頁。
    孫元勳 (2007) 南、北大武山地區熊鷹族群監測與獵捕壓力。行政院農委會林務局保育研究系列 95-02 號。94頁。
    孫元勳 (2020) 108-109 年度玉山國家公園熊鷹族群生態與周邊布農部 落之關聯計畫(成果報告書)。內政部營建署玉山國家公園管理處。86頁。
    孫元勳、黃永坤 (2022) 110-112年度玉山國家公園猛禽生態棲地及繁殖育幼行為監測暨科普書文稿收集(第2次期中報告)。內政部營建署玉山國家公園管理處。69頁。
    孫元勳、黃永坤、洪孝宇 (2010) 赫氏角鷹生態調查(北屏東及高雄縣地區)。行政院農委會林務局屏東林區管理處保育研究系列 98R23 號。86頁。
    徐正梅 (1999) 談地球上兩點間的球面距離。數學傳播 23(2):16-23。
    陳奕維 (2014) 由河川陡峭度指標探討台灣中央山脈東翼之構造活動特性。國立臺灣大學地質科學研究所碩士論文。144頁。
    黃永坤 (2021) 熊鷹(Nisaetus nipalensis)的鳴叫行為、民族鳥類學與保育策略。國立屏東科技大學生物資訊研究所博士論文。169頁。
    蘇俊榮、王克孝 (2005) 台東縣熊鷹分布調查 2004 年度報告。台灣猛禽研究4:1-8。
    上馬康生 (1989) 白山地域のクマタカの行動圏と行動様式。石川県白山自然保護センター研究報告。16:23-28。
    井上剛彦 (2005) 鈴鹿山脈におけるクマタカ幼鳥の分散事例。日本猛禽類研究フオーラム研究活動報告書 11-20。
    根本理、本田智明、高橋誠、竹内正人、杉山喜則 (2005) 巣外育雛期初期におけるイヌワシ幼鳥の飛翔能力の発達について。 総合政策 7:77-92。
    森本栄、飯田知彦 (1992) クマタカ Spizaetus nipalensis の生態と保護について。Strix 11:59-90。
    森本栄、飯田知彦 (1994) 広島県西部におけるクマタカSpizaetus nipalensis の営巣環境。Strix 13:179-190。
    Ballard, W. B., M. Edwards, S. G. Fancy, S. Boe, and P. R. Krausman. (1998) Comparison of VHF and satellite telemetry for estimating sizes of wolf territories in northwest Alaska. Wildlife Society Bulletin 26:823-829.
    Bautista, L. M., J. T. García, R. G. Calmaestra, C. Palacín, C. A. Martín, M. B. Morales, R. Bonal, and J. Viñuela. (2004) Effect of weekend road traffic on the use of space by raptors. Conservation Biology 18:726-732.
    Beyer, H. L., D. T. Haydon, J. M. Morales, J. L. Frair, M. Hebblewhite, M. Mitchell, and J. Matthiopoulos. (2010) The interpretation of habitat preference metrics under use–availability designs. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2245-2254.
    Brown, D. R., and J. A. Long. (2007) What is a winter floater? Causes, consequences, and implications for habitat selection. The Condor 109:548-565.
    Burt, W. H. (1943) Territoriality and home range concepts as applied to mammals. Journal of mammalogy 24:346-352.
    Calabrese, J. M., C. H. Fleming, M. J. Noonan, and X. Dong. (2021) ctmmweb: a graphical user interface for autocorrelation‐informed home range estimation. Wildlife Society Bulletin 45:162-169.
    Campioni, L., R. Lourenço, M. d. M. Delgado, and V. Penteriani. (2012) Breeders and floaters use different habitat cover: should habitat use be a social status-dependent strategy? Journal of Ornithology 153:1215-1223.
    Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman, and D. A. Wardle. (2012) Biodiversity loss and its impact on humanity. Nature 486:59-67.
    Caro, J., D. Ontiveros, M. Pizarro, and J. M. Pleguezuelos. (2011) Habitat features of settlement areas used by floaters of Bonelli’s and Golden Eagles. Bird Conservation International 21:59-71.
    Carrete, M., J. L. Tella, G. Blanco, and M. Bertellotti. (2009) Effects of habitat degradation on the abundance, richness and diversity of raptors across Neotropical biomes. Biological Conservation 142:2002-2011.
    Duerr, A. E., M. A. Braham, T. A. Miller, J. Cooper, J. T. Anderson, and T. E. Katzner. (2019) Roost-and perch-site selection by Golden Eagles (Aquila chrysaetos) in eastern North America. The Wilson Journal of Ornithology 131:310-328.
    Duffy, J. E. (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201-219.
    Ferguson-Lees, J., Christie, David A. (2001) Raptors of the world. Houghton Mifflin Harcourt. 717–719pp.
    Fieberg, J., and C. O. Kochanny. (2005) Quantifying home‐range overlap: The importance of the utilization distribution. The Journal of Wildlife Management 69:1346-1359.
    Forman, R. T., D. Sperling, J. A. Bissonette, A. P. Clevenger, C. D. Cutshall, V. H. Dale, L. Fahrig, R. L. France, C. R. Goldman, and K. Heanue. (2003) Road ecology: science and solutions. Island press.
    Getz, W. M., S. Fortmann-Roe, P. C. Cross, A. J. Lyons, S. J. Ryan, and C. C. Wilmers. (2007) LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions. PloS one 2:e207.
    Johnson, D. H. (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65-71.
    Kocina, M., and K. Aagaard. (2021) A review of home range sizes of four raptor species of regional conservation concern. Western North American Naturalist 81:87-96.
    Kristan III, W. B., M. D. Johnson, and J. T. Rotenberry. (2007) Choices and consequences of habitat selection for birds. The Condor 109:485-488.
    Lambertucci, S. A., K. L. Speziale, T. E. Rogers, and J. M. Morales. (2009) How do roads affect the habitat use of an assemblage of scavenging raptors? Biodiversity and Conservation 18:2063-2074.
    Moss, E. H., T. Hipkiss, F. Ecke, H. Dettki, P. Sandström, P. H. Bloom, J. W. Kidd, S. E. Thomas, and B. Hörnfeldt. (2014) Home-range size and examples of post-nesting movements for adult Golden Eagles (Aquila chrysaetos) in boreal Sweden. Journal of Raptor Research 48:93-105.
    Natsukawa, H., H. Yuasa, S. Komuro, and F. Sergio. (2021) Raptor breeding sites indicate high plant biodiversity in urban ecosystems. Scientific reports 11:1-8.
    Nishibayashi, N., W. Kitamura, and S. Yoshizaki. (2022) Comparison of the home ranges of Mountain Hawk-Eagles during different phases of wind farm construction. Ornithological Science 21:63-70.
    Peery, M. Z. (2000) Factors affecting interspecies variation in home-range size of raptors. The Auk 117:511-517.
    Powell, R. A. (2000) Animal home ranges and territories and home range estimators. Research techniques in animal ecology: controversies and consequences 442:65-110.
    Preston, C., and R. Beane. (1996) Occurrence and distribution of diurnal raptors in relation to human activity and other factors at Rocky Mountain Arsenal, Colorado. Raptors in human landscapes: adaptations to built and cultivated environments. Academic Press, San Diego, CA:365-374.
    Rudnick, J. A., T. E. Katzner, E. A. Bragin, and J. A. DeWoody. (2008) A non-invasive genetic evaluation of population size, natal philopatry, and roosting behavior of non-breeding eastern imperial eagles (Aquila heliaca) in central Asia. Conservation Genetics 9:667-676.
    Sarasola, J. H., and J. J. Negro. (2006) Role of exotic tree stands on the current distribution and social behaviour of Swainson's hawk, Buteo swainsoni in the Argentine Pampas. Journal of Biogeography 33:1096-1101.
    Scobie, C., E. Bayne, and T. Wellicome. (2014) Influence of anthropogenic features and traffic disturbance on burrowing owl diurnal roosting behavior. Endangered Species Research 24:73-83.
    Sergio, F., I. Newton, and L. Marchesi. (2005) Top predators and biodiversity. Nature 436:192-192.
    Sergio, F., I. Newton, L. Marchesi, and P. Pedrini. (2006) Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. Journal of Applied Ecology 43:1049-1055.
    Sergio, F., T. Caro, D. Brown, B. Clucas, J. Hunter, J. Ketchum, K. McHugh, and F. Hiraldo. (2008) Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annual review of ecology, evolution, and systematics 39:1-19.
    Smith, J. (1985) Perching and roosting patterns of raptors on power transmission towers in Southeast Idaho and Southwest Wyoming. Raptor Research 19:135-138.
    Stamps, J. A., V. Krishnan, and M. L. Reid. (2005) Search costs and habitat selection by dispersers. Ecology 86:510-518.
    Su, H. J. (1984) Studies on the climate and vegetation types of the natural forests in Taiwan(II): Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry 17(4): 57-73.
    Su, H. J. (1985) Studies on the Climate and Vegetation types of the natural forest in Taiwan. (Ⅲ). A scheme of geographical climatic regions. Quarterly Journal of Chinese Forestry 18(3): 33-44.
    Sun, Y.-H., Y. Wang, and C.-F. Lee. (2000) Habitat selection by tawny fish-owls. J. Raptor Res 34:102-107.
    Sun, Y.-H., Y.-K. Huang, W.-H. Tsai, S.-Y. Hong, and C.-C. Chen. (2009) Breeding-season diet of the mountain hawk-eagle in southern Taiwan. Journal of Raptor Research 43:159-163.
    Tanferna, A., L. López-Jiménez, J. Blas, F. Hiraldo, and F. Sergio. (2013) Habitat selection by Black kite breeders and floaters: Implications for conservation management of raptor floaters. Biological Conservation 160:1-9.
    Watson, K. A., and T. R. Simpson. (2014) Relationship of vehicular traffic flow and roadside raptor and vulture abundance in South-Central Texas. Texas Ornithological Society 47:17-23.
    Whiteman, C. D. (1990) Observations of thermally developed wind systems in mountainous terrain. Pages 5-42 in Atmospheric processes over complex terrain. Springer.
    Wilson, E. O. (1988) Biodiversity. 536pp.
    Winner, K., M. J. Noonan, C. H. Fleming, K. A. Olson, T. Mueller, D. Sheldon, and J. M. Calabrese. 2018. Statistical inference for home range overlap. Methods in Ecology and Evolution 9:1679-1691.
    Yamazaki,T. (2010) Mountain Hawk-Eagle Kuma-Taka (Jpn) Nisaetus nipalensis. Bird Research News. 7(12):6-7.
    Zylo, M. T. (2012) Bald eagles (Haliaeetus leucocephalus) wintering in northern Arizona select perches based on food availability, visibility and cover. Northern Arizona University.

    下載圖示
    QR CODE