簡易檢索 / 詳目顯示

研究生: 孫慧欣
Soon, Hui Sing
論文名稱: 台灣豬瘟之群體免疫狀態
Herd immunity status of classical swine fever in Taiwan
指導教授: 邱明堂
Chiou, Ming-Tang
林昭男
Lin, Chao-Nan
學位類別: 碩士
Master
系所名稱: 獸醫學院 - 獸醫學系所
Department of Veterinary Medicine
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 76
中文關鍵詞: 豬瘟豬瘟免疫成效豬瘟群體免疫狀態
外文關鍵詞: Classical swine fever, Classical swine fever immune efficacy, Classical swine fever herd immunity status, IDEXX CSFV Ab ELISA
DOI URL: http://doi.org/10.6346/NPUST202200274
相關次數: 點閱:20下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 豬瘟 (Classical swine fever)是世界動物衛生組織 (World Organizations for Animal Health)列出之重要疾病。台灣於1938年首次爆發豬瘟疫情,自從1958年乾燥兔化豬瘟疫苗研發成功並常規施打後,豬瘟發生率顯著下降。為因應近年來台灣政府正積極執行豬瘟撲滅計劃,豬瘟免疫適期與免疫成效監控之探討具有其重要性。本研究目的為探討近期台灣豬瘟之群體免疫狀況。研究分成兩部分進行,第一部分試驗為分析仔豬施打疫苗後6至10週之免疫成效 (post immunization efficacy, PIE);第二部分試驗為了解上市年齡豬隻之免疫保護強度 (finisher pig immunization efficacy, FPE)。血液樣本收集期間為2018年1月至2021年12月,各豬場均收集完整之牧場資料。豬瘟特異性抗體選用IDEXX CSFV Ab ELISA診斷試劑套組檢測,並以群體抗體陽性率、抗體力價平均值及抗體力價平均值之變異係數等三項指標進行免疫成效結果評估。之後再以chi-squared test及Fisher’s exact test針對年度、牧場分佈區域、牧場飼養規模、豬瘟疫苗廠牌和免疫計劃等因素進行分析。第一部分試驗共收集136場,1,188個血液樣本,免疫成效良好的牧場數為90場 (66.2%);而第二部分試驗收集79場,761個血液樣本,其中33場 (41.8%)為免疫成效良好。第一部分試驗顯示不同年度、豬瘟疫苗廠牌間、母豬每空胎補強疫苗,其仔豬於不同時間施打一劑疫苗及母豬產前補強疫苗,其仔豬於不同時間施打一劑疫苗之免疫成效,組別間均無顯著差異 (P > 0.05);中北部牧場免疫成效良好率顯著高於南部牧場 (P < 0.05);飼養1,000-1,999母豬頭數之牧場免疫成效良好率顯著高於飼養201-499母豬頭數之牧場 (P < 0.05),除外,飼養500-999及1,000-1,999母豬頭數之牧場免疫成效良好率顯著高於飼養 ≥2,000母豬頭數之牧場 (P < 0.05);免疫計劃的部分,母豬每空胎補強疫苗,其仔豬於4-5週齡施打第一劑疫苗和7-9週齡補強第二劑疫苗組別之免疫成效良好率顯著高於0-1日齡施打第一劑疫苗和4-6週齡補強第二劑疫苗組別,以及3週齡施打第一劑疫苗和6-8週齡補強第二劑疫苗組別 (P < 0.05)。第二部分試驗在不同年度、牧場分佈區域、牧場飼養規模、免疫計劃之免疫成效並無顯著差異 (P > 0.05);然而豬瘟疫苗廠牌間有統計上之顯著差異 (P < 0.05)。綜上所述,本研究顯示母豬產前補強次單位疫苗,其仔豬於9-12週齡施打一劑疫苗和母豬每空胎補強減毒活毒疫苗,其仔豬於5-8週齡施打一劑疫苗為較適合之免疫適期。最後,台灣部分豬群之豬瘟疫苗免疫成效仍有持續改善之空間。

    Classical swine fever (CSF) has been identified as a crucial disease by the World Organizations for Animal Health. The first outbreak of CSF in Taiwan was in 1938. With the routine application of the lapinized Chinese C-strain vaccine since 1958, the prevalence of CSF has decreased considerably. With the implementation of the Taiwanese government’s CSF eradication program, monitoring the effectiveness of immunization and discussion of appropriate CSF vaccination program are crucial. For these reasons, this study investigated CSF immunity in Taiwan in two parts. The first part was analyzing post immunization efficacy (PIE) after 6 to 10 weeks; the second part was evaluating the immune efficacy of finisher pigs (FPE). Blood samples with complete farm information were collected from January 2018 to December 2021. Samples were tested using an IDEXX CSFV Ab ELISA kit and evaluated in terms of the herd antibody positive rate, mean blocking value of ELISA, and coefficient value of the mean blocking value of ELISA. The data were analyzed through a chi-squared test and Fisher’s exact test on the basis of year, farm location, herd size, CSF vaccine brand, and vaccination program. A total of 1,188 serum samples were collected from 136 PIE herds; 90 herds (66.2%) exhibited satisfactory immune efficacy. A total of 761 serum samples from 79 FPE herds were analyzed; 33 (41.8%) exhibited satisfactory immune efficacy. Factors including year of collection, vaccine brand, sows being vaccinated while not pregnant and piglets receiving one shot of the vaccine, sows being vaccinated during the pre-farrowing stage and piglets receiving one shot of the vaccine did not statistically significantly differ in terms of PIE (P > 0.05). However, the herds from northern and central Taiwan exhibited an immune efficacy that was significantly higher than that of the herds from the south (P < 0.05). The rate of satisfactory immune efficacy in herds of 1,000-1,999 sows was significantly higher than that in herds of 201-499 sows (P < 0.05). The rates of satisfactory immune efficacy in herds of 500-999 and 1,000-1,999 sows were significantly higher than that in herds of ≥2,000 sows (P < 0.05). When sows were vaccinated while not pregnant, piglets vaccinated at 4-5 and 7-9 weeks of age exhibited satisfactory immune efficacy that was significantly higher than that in herds for which piglets were vaccinated at 0-1 day, 4-6 weeks of age and 3, 6-8 weeks of age (P < 0.05). For the FPE, year of collection, farm location, herd size, and vaccination program did not create significant differences (P > 0.05), whereas vaccine brand created significant differences. This study showed appropriate vaccination program are as follows: 1) Swine herds vaccinate sows at the pre-farrowing stage, most likely with CSF-E2 subunit vaccine, and vaccinate piglets at 9 to 12 weeks old; 2) Swine herds vaccinate sows during non-pregnant stage, most commonly with live attenuated vaccines, and vaccinate piglets at 5 to 8 weeks old. The unsatisfactory herd immunity to CSF in Taiwan highlights room for improvement.

    摘要 I
    Abstract III
    Acknowledgments V
    Table of Contents VI
    List of Tables and Figures IX
    CHAPTER 1 10
    Introduction 10
    CHAPTER 2 13
    Literature review 13
    2.1 Background 13
    2.2 Introduction of CSFV 13
    2.2.1 Relevance and functions 13
    2.2.2 Pathobiological characteristics 14
    2.3 Epidemiology characteristics and genotype distribution 16
    2.4 Clinical signs, pathomorphological lesions 18
    2.4.1 The peracute and acute forms of CSF 18
    2.4.2 The subacute form of CSF 19
    2.4.3 The chronic form of CSF 19
    2.4.4 The persistent form of CSF 20
    2.5 Diagnosis 20
    2.5.1 Detection of the agent: CSFV isolation, antigen, and nucleic acid 21
    2.5.2 Detection of CSFV-specific antibodies 22
    2.6 Prevention and control 23
    CHAPTER 3 26
    Materials and Methods 26
    3.1 Experimental design 26
    3.2 Sample source and processing 27
    3.2.1 Sample selection and criteria 27
    3.2.1.1 Experiment 1: Evaluation of post immunization efficacy (PIE) 27
    3.2.1.2 Experiment 2: Evaluation of immunization efficacy in finisher pigs (FPE) 27
    3.3 Serological Assessment: ELISA test 28
    3.3.1 Procedures of sample preparation 28
    3.3.2 Validity criteria and data interpretation 29
    3.4 Category of immune efficacy evaluation 29
    3.5 Data classification 30
    3.5.1 Year 30
    3.5.2 Regions 30
    3.5.3 Herd sizes 30
    3.5.4 The brands of CSFV vaccines applied in piglets 31
    3.5.5 Vaccination programs of CSFV vaccines 31
    3.5.5.1 Vaccination program of sows 31
    3.5.5.2 Vaccination program of piglets 31
    3.6 Statistical analysis 32
    CHAPTER 4 34
    Results 34
    4.1 Sample source 34
    4.1.1 Number of herds and serum samples collected to assess PIE 34
    4.1.2 Number of herds and serum samples collected to assess FPE 34
    4.2 Immune status of each year 34
    4.2.1 Post immunization efficacy 34
    4.2.2 Immunization efficacy in finisher pigs 35
    4.3 Immune status based on regions 35
    4.3.1 Post immunization efficacy 35
    4.3.2 Immunization efficacy in finisher pigs 35
    4.4 Immune status based on herd size of pig herds 36
    4.4.1 Post immunization efficacy 36
    4.4.2 Immunization efficacy in finisher pigs 36
    4.5 Immune status based on the brands of CSFV vaccines applied in piglets 37
    4.5.1 Post immunization efficacy 37
    4.5.2 Immunization efficacy in finisher pigs 37
    4.6 Immune status based on vaccination programs of CSFV vaccines 37
    4.6.1 Immune efficacy evaluation of vaccination program with sows vaccinated in non-pregnant stage and piglets vaccinated with one shot of CSFV vaccine 37
    4.6.1.1 Post immunization efficacy 38
    4.6.1.2 Immunization efficacy in finisher pigs 38
    4.6.2 Immune efficacy evaluation of vaccination program with sows vaccinated in non-pregnant stage and piglets vaccinated with two shots of CSFV vaccines 38
    4.6.2.1 Post immunization efficacy 39
    4.6.2.2 Immunization efficacy in finisher pigs 39
    4.6.3 Immune efficacy evaluation of vaccination program with sows vaccinated in pre-farrowing stage and piglets vaccinated with one shot of CSFV vaccine 39
    4.6.3.1 Post immunization efficacy 40
    4.6.3.2 Immunization efficacy in finisher pigs 40
    4.6.4 Immune efficacy evaluation of unclassified vaccination programs 40
    CHAPTER 5 58
    Discussions 58
    CHAPTER 6 63
    References 63

    江柏偉 (2008)。彰化地區肉豬之豬瘟抗體及潛在慢性豬瘟病毒感染之監控。 國立中興大學獸醫病理學研究所碩士論文。
    林晏丞 (2014)。台灣豬瘟病毒持續性感染及不同免疫計畫下抗體反應之監控。 國立中興大學獸醫病理學研究所碩士論文。
    Aebischer, A., Müller, M., and Hofmann, M. A. (2013). Two newly developed Erns-based ELISAs allow the differentiation of Classical Swine Fever virus-infected from marker-vaccinated animals and the discrimination of pestivirus antibodies. Veterinary Microbiology, 161(3–4), 274–285. https://doi.org/10.1016/j.vetmic.2012.07.046
    Avalos-Ramirez, R., Orlich, M., Thiel, H. J., and Becher, P. (2001). Evidence for the presence of two novel Pestivirus species. Virology, 286(2), 456–465. https://doi.org/10.1006/viro.2001.1001
    Bautista, M. J., Ruiz-Villamor, E., Salguero, F. J., Sánchez-Cordón, P. J., Carrasco, L., and Gómez-Villamandos, J. C. (2002). Early Platelet Aggregation as a Cause of Thrombocytopenia in Classical Swine Fever. Veterinary Pathology, 39(1), 84–91. https://doi.org/10.1354/vp.39-1-84
    Becher, P., Orlich, M., Kosmidou, A., König, M., Baroth, M., and Thiel, H. J. (1999). Genetic diversity of pestiviruses: Identification of novel groups and implications for classification. Virology, 262(1), 64–71. https://doi.org/10.1006/viro.1999.9872
    Beer, M., Goller, K.V., Staubach, C., and Blome, S. (2015). Genetic variability and distribution of Classical swine fever virus. Animal Health Research Reviews, 16(1), 33–39. https://doi.org/10.1017/S1466252315000109
    Beer, M., Reimann, I., Hoffmann, B., and Depner, K. (2007). Novel marker vaccines against classical swine fever. Vaccine, 25(30 SPEC. ISS.), 5665–5670. https://doi.org/10.1016/j.vaccine.2006.12.036
    Belák, K., Koenen, F., Vanderhallen, H., Mittelholzer, C., Feliziani, F., DeMia, G. M., and Belák, S. (2008). Comparative studies on the pathogenicity and tissue distribution of three virulence variants of classical swine fever virus, two field isolates and one vaccine strain, with special regard to immunohistochemical investigations. Acta Veterinaria Scandinavica, 50(1), 1–13. https://doi.org/10.1186/1751-0147-50-34
    Biront, P., Leunen, J., and Vandeputte, J. (1987). Inhibition of virus replication in the tonsils of pigs previously vaccinated with a Chinese strain vaccine and challenged oronasally with a virulent strain of classical swine fever virus. Veterinary Microbiology, 14(2), 105–113. https://doi.org/10.1016/0378-1135(87)90002-2
    Blome, S., Wernike, K., Reimann, I., König, P., Moß, C., and Beer, M. (2017). A decade of research into classical swine fever marker vaccine CP7-E2alf (Suvaxyn® CSF Marker): A review of vaccine properties. Veterinary Research, 48(1), 1–10. https://doi.org/10.1186/s13567-017-0457-y
    Bouma, A., DeSmit, A. J., DeJong, M. C. M., DeKluijver, E. P., and Moormann, R. J. M. (2000). Determination of the onset of the herd-immunity induced by the E2 sub- unit vaccine against classical swine fever virus. Vaccine, 18(14), 1374–1381. https://doi.org/10.1016/S0264-410X(99)00398-9
    Chen, J. Y., Wu, C. M., Chen, Z. W., Liao, C. M., Deng, M. C., Chia, M. Y., Huang, C., and Chien, M. S. (2021). Evaluation of classical swine fever E2 (CSF-E2) subunit vaccine efficacy in the prevention of virus transmission and impact of maternal derived antibody interference in field farm applications. Porcine Health Management, 7(1), 1–14. https://doi.org/10.1186/s40813-020-00188-6
    Chen, J. Y., Wu, C. M., Liao, C. M., Chen, K. C., You, C. C., Wang, Y. W., Huang, C., and Chien, M. S. (2019). The impact of porcine circovirus associated diseases on live attenuated classical swine fever vaccine in field farm applications. Vaccine, 37(43), 6535–6542. https://doi.org/10.1016/j.vaccine.2019.08.039
    Choi, C., and Chae, C. (2003). Localization of classical swine fever virus from chronically infected pigs by in situ hybridization and immunohistochemistry. Veterinary Pathology, 40(1), 107–113. https://doi.org/10.1354/vp.40-1-107
    Coronado, L., Bohórquez, J. A., Muñoz-González, S., Perez, L. J., Rosell, R., Fonseca, O., Delgado, L., Perera, C. L., Frías, M. T., and Ganges, L. (2019). Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy. BMC Veterinary Research, 15(1), 1–13. https://doi.org/10.1186/s12917-019-1982-x
    Coronado, L., Perera, C. L., Rios, L., Frías, M. T., and Pérez, L. J. (2021). A critical review about different vaccines against classical swine fever virus and their repercussions in endemic regions. Vaccines, 9(2), 1–35. https://doi.org/10.3390/vaccines9020154
    DeSmit, A. J., Bouma, A., DeKluijver, E. P., Terpstra, C., and Moormann, R. J. M. (2001). Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination. Veterinary Microbiology, 78(4), 307–317. https://doi.org/10.1016/S0378-1135(00)00306-0
    Deng, M. C., Huang, C. C., Huang, T. S., Chang, C. Y., Lin, Y. J., Chien, M. S., and Jong, M. H. (2005). Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Veterinary Microbiology, 106(3–4), 187–193. https://doi.org/10.1016/j.vetmic.2004.12.014
    Dewulf, J., Laevens, H., Koenen, F., Mintiens, K., and DeKruif, A. (2001a). An E2 sub-unit marker vaccine does not prevent horizontal or vertical transmission of classical swine fever virus. Vaccine, 20(1–2), 86–91. https://doi.org/10.1016/S0264-410X(01)00320-6
    Dewulf, J., Laevens, H., Koenen, F., Mintiens, K., and DeKruif, A. (2001b). An experimental infection with classical swine fever virus in pregnant sows: Transmission of the virus, course of the disease, antibody response and effect on gestation. Journal of Veterinary Medicine, Series B, 48(8), 583–591. https://doi.org/10.1046/j.1439-0450.2001.00467.x
    Durand, B., Davila, S., Cariolet, R., Mesplède, A., and LePotier, M. F. (2009). Comparison of viraemia- and clinical-based estimates of within- and between-pen transmission of classical swine fever virus from three transmission experiments. Veterinary Microbiology, 135(3–4), 196–204. https://doi.org/10.1016/j.vetmic.2008.09.056
    Edwards, S., Fukusho, A., Lefèvre, P. C., Lipowski, A., Pejsak, Z., Roehe, P., and Westergaard, J. (2000). Classical swine fever: The global situation. Veterinary Microbiology, 73(2–3), 103–119. https://doi.org/10.1016/S0378-1135(00)00138-3
    Elbers, A. R. W., Stegeman, J. A., and DeJong, M. C. M. (2001). Factors associated with the introduction of classical swine fever virus into pig herds in the central area of the 1997/98 epidemic in the Netherlands. Veterinary Record, 149(13), 377–382. https://doi.org/10.1136/vr.149.13.377
    Finlaison, D. S., King, K. R., Frost, M. J., and Kirkland, P. D. (2009). Field and laboratory evidence that Bungowannah virus, a recently recognised pestivirus, is the causative agent of the porcine myocarditis syndrome (PMC). Veterinary Microbiology, 136(3–4), 259–265. https://doi.org/10.1016/j.vetmic.2008.11.026
    Floegel-Niesmann, G., Blome, S., Gerß-Dülmer, H., Bunzenthal, C., and Moennig, V. (2009). Virulence of Classical Swine Fever virus isolates from Europe and other areas during 1996 until 2007. Veterinary Microbiology, 139(1–2), 165–169. https://doi.org/10.1016/j.vetmic.2009.05.008
    Floegel-Niesmann, G., Bunzenthal, C., Fischer, S., and Moennig, V. (2003). Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. Journal of Veterinary Medicine, Series B, 50(5), 214–220. https://doi.org/10.1046/j.1439-0450.2003.00663.x
    Floegel, G., Wehrend, A., Depner, K. R., Fritzemeier, J., Waberski, D., and Moennig, V. (2000). Detection of Classical Swine Fever virus in semen of infected boars. Veterinary Microbiology, 77(1–2), 109–116. https://doi.org/10.1016/S0378-1135(00)00267-4
    Fritzemeier, J., Teuffert, J., Greiser-Wilke, I., Staubach, C., Schlüter, H., and Moennig, V. (2000). Epidemiology of classical swine fever in Germany in the 1990s. Veterinary Microbiology, 77(1–2), 29–41. https://doi.org/10.1016/S0378-1135(00)00254-6
    Gallei, A., Blome, S., Gilgenbach, S., Tautz, N., Moennig, V., and Becher, P. (2008). Cytopathogenicity of Classical Swine Fever Virus Correlates with Attenuation in the Natural Host. Journal of Virology, 82(19), 9717–9729. https://doi.org/10.1128/jvi.00782-08
    Ganges, L., Crooke, H. R., Bohórquez, J. A., Postel, A., Sakoda, Y., Becher, P., and Ruggli, N. (2020). Classical swine fever virus: the past, present and future. Virus Research, 289. https://doi.org/10.1016/j.virusres.2020.198151
    Garrido Haro, A. D., Barrera Valle, M., Acosta, A., and J. Flores, F. (2018). Phylodynamics of classical swine fever virus with emphasis on Ecuadorian strains. Transboundary and Emerging Diseases, 65(3), 782–790. https://doi.org/10.1111/tbed.12803
    Gómez-Villamandos, J. C., Ruiz-Villamor, E., Bautista, M. J., Quezada, M., Sánchez, C. P., Salguero, F. J., and Sierra, M. A. (2000). Pathogenesis of classical swine fever: Renal haemorrhages and erythrodiapedesis. Journal of Comparative Pathology, 123(1), 47–54. https://doi.org/10.1053/jcpa.2000.0385
    Gómez-Villamandos, J. C., Salguero, F. J., Ruiz-Villamor, E., Sánchez-Cordón, P. J., Bautista, M. J., and Sierra, M. A. (2003). Classical swine fever: Pathology of bone marrow. Veterinary Pathology, 40(2), 157–163. https://doi.org/10.1354/vp.40-2-157
    Graham, S. P., Everett, H. E., Haines, F. J., Johns, H. L., Sosan, O. A., Salguero, F. J., Clifford, D. J., Steinbach, F., Drew, T. W., and Crooke, H. R. (2012). Challenge of pigs with classical swine fever viruses after C-strain vaccination reveals remarkably rapid protection and insights into early immunity. PLoS ONE, 7(1), 1–9. https://doi.org/10.1371/journal.pone.0029310
    Graham, S. P., Haines, F. J., Johns, H. L., Sosan, O., LaRocca, S. A., Lamp, B., Rümenapf, T., Everett, H. E., and Crooke, H. R. (2012). Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with rapid protection against classical swine fever virus. Vaccine, 30(17), 2742–2748. https://doi.org/10.1016/j.vaccine.2012.02.029
    Greiser-Wilke, I., and Moennig, V. (2004). Vaccination against classical swine fever virus: limitations and new strategies. Animal Health Research Reviews, 5(2), 223–226. https://doi.org/10.1079/ahr200472
    Hause, B. M., Collin, E. A., Peddireddi, L., Yuan, F., Chen, Z., Hesse, R. A., Gauger, P. C., Clement, T., Fang, Y., and Anderson, G. (2015). Discovery of a novel putative atypical porcine pestivirus in pigs in the USA. Journal of General Virology, 96(10), 2994–2998. https://doi.org/10.1099/jgv.0.000251
    Hoffmann, B., Blome, S., Bonilauri, P., Fernández-Piñero, J., Greiser-Wilke, I., Haegeman, A., Isaksson, M., Koenen, F., LeBlanc, N., Leifer, I., LePotier, M. F., Loeffen, W., Rasmussen, T. B., Stadejek, T., Ståhl, K., Tignon, M., Uttenthal, Å., van derPoel, W., and Beer, M. (2011). Classical swine fever virus detection: Results of a real-time reverse transcription polymerase chain reaction ring trial conducted in the framework of the european network of excellence for epizootic disease diagnosis and control. Journal of Veterinary Diagnostic Investigation, 23(5), 999–1004. https://doi.org/10.1177/1040638711416849
    Huang, Y. L., Pang, V., Lin, C. M., Tsai, Y. C., Chia, M. Y., Deng, M. C., Chang, C. Y., and Jeng, C. R. (2011). Porcine circovirus type 2 (PCV2) infection decreases the efficacy of an attenuated classical swine fever virus (CSFV) vaccine. Veterinary Research, 42(1), 115. https://doi.org/10.1186/1297-9716-42-115
    Jenckel, M., Blome, S., Beer, M., and Höper, D. (2017). Quasispecies composition and diversity do not reveal any predictors for chronic classical swine fever virus infection. Archives of Virology, 162(3), 775–786. https://doi.org/10.1007/s00705-016-3161-8
    Kaden, V., Lange, E., Polster, U., Klopfleisch, R., and Teifke, J. P. (2004). Studies on the virulence of two field isolates of the classical swine fever virus genotype 2.3 Rostock in wild boars of different age groups. Journal of Veterinary Medicine Series B: Infectious Diseases and Veterinary Public Health, 51(5), 202–208. https://doi.org/10.1111/j.1439-0450.2004.00759.x
    Lai et al. (1980). Immune response of pigs with different levels of colostral antibody to inoculation with LPC-Chinese strain of hog cholera vaccine.
    Lamp, B., Riedel, C., Roman-Sosa, G., Heimann, M., Jacobi, S., Becher, P., Thiel, H.-J., and Rümenapf, T. (2011). Biosynthesis of Classical Swine Fever Virus Nonstructural Proteins. Journal of Virology, 85(7), 3607–3620. https://doi.org/10.1128/jvi.02206-10
    LeDimna, M., Vrancken, R., Koenen, F., Bougeard, S., Mesplède, A., Hutet, E., Kuntz-Simon, G., and LePotier, M. F. (2008). Validation of two commercial real-time RT-PCR kits for rapid and specific diagnosis of classical swine fever virus. Journal of Virological Methods, 147(1), 136–142. https://doi.org/10.1016/j.jviromet.2007.08.013
    Leifer, I., Depner, K., Blome, S., LePotier, M. F., LeDimna, M., Beer, M., and Hoffmann, B. (2009). Differentiation of C-strain “Riems” or CP7_E2alf vaccinated animals from animals infected by classical swine fever virus field strains using real-time RT-PCR. Journal of Virological Methods, 158(1–2), 114–122. https://doi.org/10.1016/j.jviromet.2009.02.002
    Li, Y. C., Chiou, M. T., and Lin, C. N. (2020). Serodynamic analysis of the piglets born from sows vaccinated with modified live vaccine or e2 subunit vaccine for classical swine fever. Pathogens, 9(6), 1–11. https://doi.org/10.3390/pathogens9060427
    Lin, C. N., Ke, N. J., and Chiou, M. T. (2020). Cross-sectional study on the sero-and viral dynamics of porcine circovirus type 2 in the field. Vaccines, 8(2), 1–13. https://doi.org/10.3390/vaccines8020339
    Lin, C. N., Lin, W. H., Hung, L. N., Wang, S. Y., and Chiou, M. T. (2013). Comparison of viremia of type II porcine reproductive and respiratory syndrome virus in naturally infected pigs by zip nucleic acid probe-based real-time PCR. BMC Veterinary Research, 9(1), 1. https://doi.org/10.1186/1746-6148-9-181
    Lipowski, A., Drexler, C., and Pejsak, Z. (2000). Safety and efficacy of a classical swine fever subunit vaccine in pregnant sows and their offspring. Veterinary Microbiology, 77(1–2), 99–108. https://doi.org/10.1016/S0378-1135(00)00266-2
    Liu, J., Fan, X. Z., Wang, Q., Xu, L., Zhao, Q. Z., Huang, W., Zhou, Y. C., Tang, B., Chen, L., Zou, X. Q., Sha, S., and Zhu, Y. Y. (2011). Dynamic distribution and tissue tropism of classical swine fever virus in experimentally infected pigs. Virology Journal, 8, 1–10. https://doi.org/10.1186/1743-422X-8-201
    Meuwissen, M. P. M., Horst, S. H., Huirne, R. B. M., and Dijkhuizen, A. A. (1999). 1-s2.0-S0167587799000793-main.pdf. 42.
    Meyer, D., Fritsche, S., Luo, Y., Engemann, C., Blome, S., Beyerbach, M., Chang, C. Y., Qiu, H. J., Becher, P., and Postel, A. (2017). The double-antigen ELISA concept for early detection of Erns-specific classical swine fever virus antibodies and application as an accompanying test for differentiation of infected from marker vaccinated animals. Transboundary and Emerging Diseases, 64(6), 2013–2022. https://doi.org/10.1111/tbed.12611
    Moennig, V. (2015). The control of classical swine fever in wild boar. Frontiers in Microbiology, 6(NOV), 1–10. https://doi.org/10.3389/fmicb.2015.01211
    Moennig, V., and Becher, P. (2015). Pestivirus control programs: How far have we come and where are we going? Animal Health Research Reviews, 16(1), 83–87. https://doi.org/10.1017/S1466252315000092
    Moennig, V., Floegel-Niesmann, G., and Greiser-Wilke, I. (2003). Clinical signs and epidemiology of classical swine fever: A review of new knowledge. Veterinary Journal, 165(1), 11–20. https://doi.org/10.1016/S1090-0233(02)00112-0
    O’Sullivan, T., Friendship, R., Carman, S., Pearl, D. L., McEwen, B., and Dewey, C. (2011). Seroprevalence of bovine viral diarrhea virus neutralizing antibodies in finisher hogs in Ontario swine herds and targeted diagnostic testing of 2 suspect herds. Canadian Veterinary Journal, 52(12), 1342–1344.
    Pan, C. H., Jong, M. H., Huang, T. S., Liu, H. F., Lin, S. Y., and Lai, S. S. (2005). Phylogenetic analysis of classical swine fever virus in Taiwan. Archives of Virology, 150(6), 1101–1119. https://doi.org/10.1007/s00705-004-0485-6
    Pan, Chu Hsiang, Jong, M. H., Huang, Y. L., Huang, T. S., Chao, P. H., and Lai, S. S. (2008). Rapid detection and differentiation of wild-type and three attenuated lapinized vaccine strains of Classical swine fever virus by reverse transcription polymerase chain reaction. Journal of Veterinary Diagnostic Investigation, 20(4), 448–456. https://doi.org/10.1177/104063870802000406
    Panyasing, Y., Kedkovid, R., Thanawongnuwech, R., Kittawornrat, A., Ji, J., Giménez-Lirola, L., and Zimmerman, J. (2018). Effective surveillance for early classical swine fever virus detection will utilize both virus and antibody detection capabilities. Veterinary Microbiology, 216(January), 72–78. https://doi.org/10.1016/j.vetmic.2018.01.020
    Paton, D. J., McGoldrick, A., Greiser-Wilke, I., Parchariyanon, S., Song, J. Y., Liou, P. P., Stadejek, T., Lowings, J. P., Björklund, H., and Belák, S. (2000). Genetic typing of classical swine fever virus. Veterinary Microbiology, 73(2–3), 137–157. https://doi.org/10.1016/S0378-1135(00)00141-3
    Petrov, A., Blohm, U., Beer, M., Pietschmann, J., and Blome, S. (2014). Comparative analyses of host responses upon infection with moderately virulent Classical swine fever virus in domestic pigs and wild boar. Virology Journal, 11(1), 1–6. https://doi.org/10.1186/1743-422X-11-134
    Pineda, P., Deluque, A., Peña, M., Diaz, O. L., Allepuz, A., and Casal, J. (2020). Descriptive epidemiology of classical swine fever outbreaks in the period 2013-2018 in Colombia. PLoS ONE, 15(6), 1–13. https://doi.org/10.1371/journal.pone.0234490
    Postel, A., Austermann-Busch, S., Petrov, A., Moennig, V., and Becher, P. (2018). Epidemiology, diagnosis and control of classical swine fever: Recent developments and future challenges. Transboundary and Emerging Diseases, 65(March 2017), 248–261. https://doi.org/10.1111/tbed.12676
    Qiu, H. ji, SHEN, R. xian, and TONG, G. zhi. (2006). The Lapinized Chinese Strain Vaccine Against Classical Swine Fever Virus: A Retrospective Review Spanning Half A Century. Agricultural Sciences in China, 5(1), 1–14. https://doi.org/10.1016/S1671-2927(06)60013-8
    Quezada, M., Cayo, L., Carrasco, L., Islas, A., Lecocq, C., Gómez-Villamandos, J. C., and Sierra, M. A. (2000). Characterization of lesions caused by a South American virulent isolate ('Quillota’) of the hog cholera virus. Journal of Veterinary Medicine, Series B, 47(6), 411–422. https://doi.org/10.1046/j.1439-0450.2000.00376.x
    Ribbens, S., Dewulf, J., Koenen, F., Laevens, H., and DeKruif, A. (2004). Transmission of classical swine fever. A review. Veterinary Quarterly, 26(4), 146–155. https://doi.org/10.1080/01652176.2004.9695177
    Rios, L., Núñez, J. I., Díaz de Arce, H., Ganges, L., and Pérez, L. J. (2018). Revisiting the genetic diversity of classical swine fever virus: A proposal for new genotyping and subgenotyping schemes of classification. Transboundary and Emerging Diseases, 65(4), 963–971. https://doi.org/10.1111/tbed.12909
    Sandvik, T., Crooke, H., Drew, T. W., Blome, S., Greiser-Wilke, I., Moennig, V., Gous, T. A., Gers, S., Kitching, J. A., Bührmann, G., and Brückner, G. K. (2005). Classical swine fever in South Africa after 87 years’ absence [1]. Veterinary Record, 157(9), 267. https://doi.org/10.1136/vr.157.9.267
    Sheu, Y., Chien, M., Wang, C., Lin, C., and Lee, W. (2006). The Use of ELISA in Classical Swine Fever Virus Antibody Monitoring in Taiwan. Taiwan Veterinary Journal, 32(4), 248–257. https://doi.org/10.7009/TVJ.200612.0248
    Shimizu, Y., Hayama, Y., Murato, Y., Sawai, K., Yamaguchi, E., and Yamamoto, T. (2020). Epidemiology of Classical Swine Fever in Japan—A Descriptive Analysis of the Outbreaks in 2018–2019. Frontiers in Veterinary Science, 7(September), 1–14. https://doi.org/10.3389/fvets.2020.573480
    Silva, M. N. F., Silva, D. M. F., Leite, A. S., Gomes, A. L. V., Freitas, A. C., Pinheiro-Junior, J. W., Castro, R. S., and Jesus, A. L. S. (2017). Identification and genetic characterization of classical swine fever virus isolates in Brazil: a new subgenotype. Archives of Virology, 162(3), 817–822. https://doi.org/10.1007/s00705-016-3145-8
    Smith, D. B., Meyers, G., Bukh, J., Gould, E. A., Monath, T., Muerhoff, A. S., Pletnev, A., Rico-Hesse, R., Stapleton, J. T., Simmonds, P., and Becher, P. (2017). Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. Journal of General Virology, 98(8), 2106–2112. https://doi.org/10.1099/jgv.0.000873
    Suradhat, S., Kesdangsakonwut, S., Sada, W., Buranapraditkun, S., Wongsawang, S., and Thanawongnuwech, R. (2006). Negative impact of porcine reproductive and respiratory syndrome virus infection on the efficacy of classical swine fever vaccine. Vaccine, 24(14), 2634–2642. https://doi.org/10.1016/j.vaccine.2005.12.010
    Suradhat, Sanipa, and Damrongwatanapokin, S. (2003). The influence of maternal immunity on the efficacy of a classical swine fever vaccine against classical swine fever virus, genogroup 2.2, infection. Veterinary Microbiology, 92(1–2), 187–194. https://doi.org/10.1016/S0378-1135(02)00357-7
    Susa, M., König, M., Saalmüller, A., Reddehase, M. J., and Thiel, H. J. (1992). Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. Journal of Virology, 66(2), 1171–1175. https://doi.org/10.1128/jvi.66.2.1171-1175.1992
    Szent-Ivanyi. (1977). Eradication of classical swine fever in Hungary. In Hog Cholera: sical Swine Fever and African Swine Fever (pp. 433–440). https://eurekamag.com/research/015/723/015723299.php
    Tarradas, J., dela Torre, M. E., Rosell, R., Perez, L. J., Pujols, J., Muñoz, M., Muñoz, I., Muñoz, S., Abad, X., Domingo, M., Fraile, L., and Ganges, L. (2014). The impact of CSFV on the immune response to control infection. Virus Research, 185, 82–91. https://doi.org/10.1016/j.virusres.2014.03.004
    Terpstra, C., and Wensvoort, G. (1987). Influence of the vaccination regime on the herd immune response for swine fever. Veterinary Microbiology, 13(2), 143–151. https://doi.org/10.1016/0378-1135(87)90039-3
    Terpstra, C., and Wensvoort, G. (1988). The protective value of vaccine-induced neutralising antibody titres in swine fever. Veterinary Microbiology, 16(2), 123–128. https://doi.org/10.1016/0378-1135(88)90036-3
    VanOirschot, J. T. (2003). Vaccinology of classical swine fever: From lab to field. Veterinary Microbiology, 96(4), 367–384. https://doi.org/10.1016/j.vetmic.2003.09.008
    VanOirschot, J. T., and Terpstra, C. (1977). A congenital persistent swine fever infection. I. Clinical and virological observations. Veterinary Microbiology, 2(2), 121–132. https://doi.org/10.1016/0378-1135(77)90003-7
    Vandeputte, J., Too, H. L., Ng, F. K., Chen, C., Chai, K. K., and Liao, G. A. (2001). Adsorption of colostral antibodies against classical swine fever, persistence of maternal antibodies, and effect on response to vaccination in baby pigs. American Journal of Veterinary Research, 62(11), 1805–1811. https://doi.org/10.2460/ajvr.2001.62.1805
    vonRosen, T., Lohse, L., Nielsen, J., and Uttenthal, Å. (2013). Classical swine fever virus infection modulates serum levels of INF-α, IL-8 and TNF-α in 6-month-old pigs. Research in Veterinary Science, 95(3), 1262–1267. https://doi.org/10.1016/j.rvsc.2013.09.011
    Wang, X., Mu, G., Dang, R., and Yang, Z. (2016). Up-regulation of IL-10 upon PRRSV vaccination impacts on the immune response against CSFV. Veterinary Microbiology, 197, 68–71. https://doi.org/10.1016/j.vetmic.2016.11.007
    Weesendorp, E., Backer, J., Stegeman, A., and Loeffen, W. (2011). Transmission of classical swine fever virus depends on the clinical course of infection which is associated with high and low levels of virus excretion. Veterinary Microbiology, 147(3–4), 262–273. https://doi.org/10.1016/j.vetmic.2010.06.032
    Weesendorp, E., Landman, W. J. M., Stegeman, A., and Loeffen, W. L. A. (2008). Detection and quantification of classical swine fever virus in air samples originating from infected pigs and experimentally produced aerosols. 127, 50–62. https://doi.org/10.1016/j.vetmic.2007.08.013
    Weesendorp, E., Stegeman, A., and Loeffen, W. (2009a). Dynamics of virus excretion via different routes in pigs experimentally infected with classical swine fever virus strains of high, moderate or low virulence. Veterinary Microbiology, 133(1–2), 9–22. https://doi.org/10.1016/j.vetmic.2008.06.008
    Weesendorp, E., Stegeman, A., and Loeffen, W. L. A. (2009b). Quantification of classical swine fever virus in aerosols originating from pigs infected with strains of high, moderate or low virulence. Veterinary Microbiology, 135(3–4), 222–230. https://doi.org/10.1016/j.vetmic.2008.09.073
    Widén, F., Everett, H., Blome, S., Fernandez Pinero, J., Uttenthal, A., Cortey, M., vonRosen, T., Tignon, M., and Liu, L. (2014). Comparison of two real-time RT-PCR assays for differentiation of C-strain vaccinated from classical swine fever infected pigs and wild boars. Research in Veterinary Science, 97(2), 455–457. https://doi.org/10.1016/j.rvsc.2014.06.010

    下載圖示
    QR CODE