簡易檢索 / 詳目顯示

研究生: 陳義勛
Chen, Yi-Syun
論文名稱: 施用稻殼生物炭及有益微生物對有機栽培紅豆及水稻生長及土壤性質之影響
Effects of applying rice husk biochar and beneficial microorganisms on the growth and soil properties of organically grown adzuki beans and rice
指導教授: 王鐘和
Wang, Chong-Ho
林永鴻
Lin, Yong-Hong
學位類別: 碩士
Master
系所名稱: 農學院 - 農園生產系所
Department of Plant Industry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 135
中文關鍵詞: 土壤肥力土壤改良劑有益微生物協同作用
外文關鍵詞: soil fertility, soil amendment, beneficial microorganisms, synergism
DOI URL: http://doi.org/10.6346/NPUST202200279
相關次數: 點閱:74下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 紅豆(Vigna angularis)及水稻(Oryza sativa)是台灣高屏地區普遍的輪作栽培之作物。台灣目前有機栽培紅豆及水稻面積與慣行栽培面積相比甚少,因此如何推廣並精進有機栽培技術,仍是重要的課題。生物炭是有機物質在低氧高溫條件下,熱裂解及炭化後的固態物質。生物炭透過熱裂解及炭化後的諸多特性,能改善土壤理化性質,並為土壤微生物提供碳源及棲息地,進而影響作物生長。本試驗目的為藉由稻殼生物炭對土壤性質之改良,搭配有益微生物(根瘤菌、叢枝菌根真菌、木黴菌、枯草桿菌)之複合接種,探討在有機栽培下對紅豆及水稻土壤理化性質、植株生育、產量及營養元素濃度之影響。此外,亦探討共同處理稻殼生物炭及有益微生物後,兩者是否具有相輔相成的協同作用。
    本試驗於西元2020年1月,於國立屏東科技大學永續農業研究農場中,相鄰的兩塊試驗田區分別種植紅豆及水稻。試驗處理為有無施用稻殼生物炭(0 %、2 % (w/w))、兩種有益微生物之複合接種(根瘤菌及叢枝菌根真菌、木黴菌及枯草桿菌)及無接種之對照組。試驗結果指出,對紅豆而言,施用2 % 稻殼生物炭顯著提高土壤入滲速率,並提高土壤pH值、有機質、Bray-1-P、交換性鉀、鈣和鎂含量,其中以土壤交換性鉀含量提高效果最明顯。共同處理稻殼生物炭和有益微生物,對提高土壤有效磷含量效果,較單獨處理有益微生物明顯。然而,無論單獨或共同處理2 % 稻殼生物炭和接種根瘤菌及叢枝菌根菌,均對紅豆菌根定殖率無顯著影響。施用2 % 稻殼生物炭能顯著提高紅豆株高、地上部及根部乾物質。然而共同處理稻殼生物炭和有益微生物,對紅豆株高、葉片長寬、葉片數、地上部及總乾物質之促進效果,與單獨處理稻殼生物炭相比,並無顯著差異。施用2 % 稻殼生物炭顯著降低紅豆缺株率,亦顯著增加紅豆籽粒產量。施用2 % 稻殼生物炭對提高紅豆植株磷和鉀濃度的效果,較共同處理稻殼生物炭和有益微生物明顯。對水稻而言,施用2 % 稻殼生物炭提高土壤pH值,並顯著提高土壤交換性鉀含量,然而對土壤總體密度及土壤入滲速率均無顯著影響。此外,共同處理稻殼生物炭和有益微生物與單獨處理稻殼生物炭相比,對水稻株高、分蘗數、有效分蘗數、地上部及根部乾物質、穀粒產量及產量構成因子及植株氮、磷、鉀和鎂濃度亦無顯著影響。綜合上述,有益微生物之兩種複合接種(根瘤菌及叢枝菌根真菌、木黴菌及枯草桿菌),無論有無與2 % 稻殼生物炭共同處理,均對改善紅豆及水稻土壤理化性質,及促進植株生長、產量和營養元素濃度之影響較不明顯,因此有待未來進一步研究及探討。故本試驗建議以單獨施用2 % 稻殼生物炭處理即可。

    Adzuki bean (Vigna angularis) and rice (Oryza sativa) are commonly cultivated crops in Kaohsiung and Pingtung city in Taiwan. For now, the area of organically cultivated adzuki bean and rice in Taiwan is relatively very small compared with the conventionally cultivated area. Therefore, how to promote and improve organic cultivation technology is still an important issue. Biochar is a solid substance obtained by thermally cracking and carbonizing organic substances under low oxygen and high-temperature conditions. Biochar can improve soil physicochemical properties and provide a carbon source and habitat for soil microorganisms, through its many characteristics after thermal cracking and carbonization, thereby affecting the growth of crops. The purpose of this experiment was to investigate the effects of organic cultivation on the soil physicochemical properties, plant growth, yield and nutrient element concentration of adzuki bean and rice through the improvement of soil properties with rice husk biochar and compound inoculation of beneficial microorganisms including Rhizobium, Arbuscular mycorrhizal fungi, Trichoderma and Bacillus subtilis. In addition, it also was to investigate whether the two have complementary synergistic effects after co-treatment rice husk biochar and beneficial microorganisms.
    In this experiment, adzuki bean and rice were planted in two adjacent experimental fields in the permaculture research farm of National Pingtung University of Science and Technology in January 2020. The experimental treatments were controlled with or without the application of rice husk biochar (0 %, 2 % (w/w)), two compound inoculation of beneficial microorganisms (Rhizobium and Arbuscular mycorrhizal fungi, Trichoderma and Bacillus subtilis) and a control group of no inoculation. The test results indicated that, for adzuki bean, the application of 2 % rice husk biochar significantly increased soil infiltration rate, and increased soil pH, organic matter, Bray-1-P, exchangeable potassium, calcium and magnesium content, among them, the improvement of soil exchangeable potassium content was the most obvious. The effect of co-treatment rice husk biochar and beneficial microorganisms on improving soil available phosphorus content was more obvious than that of treating beneficial microorganisms alone. However, regardless of whether the treatment of 2 % rice husk biochar or the inoculation of Rhizobium and Arbuscular mycorrhizal fungi alone or together, there was no significant effect on the mycorrhizal colonization rate of adzuki bean. The application of 2 % rice husk biochar could significantly increase the plant height, shoot and root dry matter of adzuki bean. However, the promoting effect of co-treatment of rice husk biochar and beneficial microorganisms on plant height, leaf length and width, number of leaves, shoots and total dry matter of adzuki bean was not significantly different from that of single treatment of rice husk biochar. The application of 2 % rice husk biochar significantly reduced the plant deficiency rate of adzuki bean, and also significantly increased the grain yield of adzuki bean. The effect of applying 2 % rice husk biochar on increasing the concentration of phosphorus and potassium in plants was more obvious than the co-treatment of rice husk biochar and beneficial microorganisms. For rice, application of 2 % rice husk biochar increased soil pH and significantly increased soil exchangeable potassium content, but had no significant effect on overall soil bulk density and soil infiltration rate. In addition, compared with the single treatment of rice husk biochar, the co-treatment of rice husk biochar and beneficial microorganisms also had no significant effect on rice plant height, tiller number, effective tiller number, shoot and root dry matter, grain yield, yield components and plant nitrogen, phosphorus, potassium and magnesium concentrations. In summary, two compound inoculations of beneficial microorganisms (Rhizobium and Arbuscular mycorrhizal fungi, Trichoderma and Bacillus subtilis), with or without co-treatment with 2 % rice husk biochar, the effects on improving the soil physicochemical properties of adzuki bean and rice, and promoting plant growth, yield and nutrient element concentration were less obvious. Therefore, further research and discussion are needed in the future. So, in this experiment, it is recommended to apply 2 % rice husk biochar alone.

    摘要 I
    Abstract III
    謝誌 VI
    目錄 VII
    圖目錄 XI
    表目錄 XII
    壹、前言 1
    貳、文獻回顧 3
    一、紅豆簡介 3
    二、水稻簡介 5
    三、有機農業生產概況 7
    四、生物炭介紹 9
    五、有益微生物介紹 11
    (一) 根瘤菌介紹 11
    (二) 菌根菌介紹 11
    (三) 木黴菌介紹 13
    (四) 枯草芽孢桿菌介紹 14
    (五) 微生物共同接種之相互作用 15
    六、生物炭與有益微生物之關係 17
    參、 材料與方法 19
    一、田間試驗設計 19
    (一) 試驗處理 19
    (二) 稻殼生物炭田間施用量 19
    (三) 紅豆接種有益微生物之方式 20
    1. 根瘤菌及菌根菌 20
    2. 木黴菌及枯草桿菌 20
    (四) 紅豆試驗種植與採樣分析 20
    (五) 水稻接種有益微生物之方式 22
    1. 根瘤菌及菌根菌 22
    2. 木黴菌及枯草桿菌 22
    (六) 水稻試驗種植與採樣分析 22
    (七) 稻殼生物炭及有益微生物來源 23
    (八) 田間有機質肥料施用量 23
    二、樣本分析項目及方法 30
    (一) 土壤分析 30
    1. 土壤質地 30
    2. 土壤總體密度 31
    3. 入滲速率 31
    4. 酸鹼值 (pH值) 31
    5. 電導度 (EC值) 31
    6. 土壤有機質 31
    7. 土壤無機態氮 32
    8. 土壤Bray-1 磷 32
    9. 土壤交換性鉀、鈣和鎂 32
    (二) 植體分析 33
    1. 植體全氮之測定 33
    2. 植體全磷、鉀、鈣、鎂之測定 33
    3. 植體根部菌根定殖率調查 34
    4. 水稻葉稻熱病罹病率調查 34
    (三) 有機質肥料分析 35
    1. 酸鹼值 (pH值) 35
    2. 電導度 (EC值) 35
    3. 有機質含量 35
    4. 全氮含量 35
    5. 全磷、鉀、鈣、鎂、鐵、錳、銅與鋅測定 36
    三、 統計分析 36
    肆、結果與討論 38
    一、稻殼生物炭及有益微生物對紅豆田土壤理化性質之影響 38
    (一) 不同處理對紅豆田土壤pH值之影響 38
    (二) 不同處理對紅豆田土壤EC值之影響 40
    (三) 不同處理對紅豆田土壤有機質含量之影響 42
    (四) 不同處理對紅豆田土壤無機態氮含量之影響 44
    1. 無機態氮 44
    2. 銨態氮 45
    3. 硝酸態氮 46
    (五) 不同處理對紅豆田土壤有效磷含量之影響 47
    (六) 不同處理對紅豆田土壤交換性鉀含量之影響 49
    (七) 不同處理對紅豆田土壤交換性鈣含量之影響 51
    (八) 不同處理對紅豆田土壤交換性鎂含量之影響 53
    (九) 稻殼生物炭對紅豆田土壤總體密度及入滲速率之影響 55
    二、稻殼生物炭及有益微生物對紅豆生長之影響 57
    (一) 接種菌根菌對紅豆根部菌根定殖率之影響 57
    (二) 不同處理對紅豆植株性狀之影響 59
    (三) 不同處理對紅豆植株乾物質之影響 64
    三、稻殼生物炭及有益微生物對紅豆產量及產量構成因子(含植株缺
    株率)之影響 67
    四、稻殼生物炭及有益微生物對紅豆植株營養元素之影響 70
    (一) 不同處理對紅豆植株氮濃度之影響 70
    (二) 不同處理對紅豆植株磷濃度之影響 72
    (三) 不同處理對紅豆植株鉀濃度之影響 74
    (四) 不同處理對紅豆植株鈣濃度之影響 76
    (五) 不同處理對紅豆植株鎂濃度之影響 78
    五、稻殼生物炭及有益微生物對水稻田土壤理化性質之影響 80
    (一) 不同處理對水稻田土壤pH值之影響 80
    (二) 不同處理對水稻田土壤EC值之影響 82
    (三) 不同處理對水稻田土壤有機質含量之影響 84
    (四) 不同處理對水稻田土壤無機態氮含量之影響 86
    1. 無機態氮 86
    2. 銨態氮 87
    3. 硝酸態氮 88
    (五) 不同處理對水稻田土壤有效磷含量之影響 90
    (六) 不同處理對水稻田土壤交換性鉀含量之影響 92
    (七) 不同處理對水稻田土壤交換性鈣含量之影響 94
    (八) 不同處理對水稻田土壤交換性鎂含量之影響 96
    (九) 稻殼生物炭對水稻田土壤總體密度及入滲速率之影響 98
    六、稻殼生物炭及有益微生物對水稻生長之影響 100
    (一) 不同處理對水稻植株性狀之影響 100
    (二) 不同處理對水稻抽穗期葉稻熱病罹病率之影響 105
    (三) 不同處理對水稻植株乾物質之影響 107
    七、稻殼生物炭及有益微生物對水稻產量及產量構成因子之影響 109
    八、稻殼生物炭及有益微生物對水稻植株營養元素之影響 111
    (一) 不同處理對水稻植株氮濃度之影響 111
    (二) 不同處理對水稻植株磷濃度之影響 113
    (三) 不同處理對水稻植株鉀濃度之影響 115
    (四) 不同處理對水稻植株鈣濃度之影響 117
    (五) 不同處理對水稻植株鎂濃度之影響 119
    伍、結論 121
    陸、參考文獻 122

    王均琍。2006。微生物肥料菌根菌之應用與發展。生物科技產學論壇 7: 15-20。
    王鐘和、林毓雯、丘麗蓉。2004。水稻健康管理體系下之營養與水田管理。水稻健康管理研討會專集。農業試驗所特刊 111: 41-56。
    王鐘和。2018。有機農業的內涵與生產技術。有機及友善耕作研討會論文輯。臺中區農業改良場特刊 135: 107-123。
    台灣農業統計年報。2020。行政院農業委員會農糧署。
    行政院標準檢驗局。2002。肥料檢驗技術及管理作業流程。
    行政院農業委員會。2020。肥料種類品目及規格。
    吳永培、廖大經、周思儀。2020a。優質水稻栽培技術管理(上)。農試所技術服務季刊 121: 1-3。
    吳永培、廖大經、周思儀。2020b。優質水稻栽培技術管理(下)。農試所技術服務季刊 122: 15-20。
    吳志文、張芯瑜、邱運全。2011。水稻新品種-高雄147(香鑽)之育成。高雄區農業改良場研究彙報 22(2): 1-16。
    李銘全、許秋玫、林順臺、洪阿田。1999。不同氮肥施用量對紅豆接種根瘤菌生長與產量之影響。高雄區農業改良場研究彙報 10(2): 22-31。
    李蘭帝。1996。大量植物樣本氮磷鉀之迅速測定法。農業研究15 (2): 1-5。
    林永鴻。2000。酸性土壤改良與敷蓋對作物的影響。高雄區農技報導 33: 1-4。
    林宗緯。2013。外切型幾丁質酶在哈氏木黴菌於超寄生角色之初步探討。國立宜蘭大學生物技術與動物科學系生物技術研究所碩士論文,宜蘭,台灣。
    林俊義、林木連、林怡君、陳常雅、王鐘和。2000。輔導有機農業經營作物有機栽培應用技術。中華永續農業編印。
    林家玉。2018。臺東縣內水稻主要栽培品種104年至106年稻熱病特性
    檢定結果。台東區農業改良場農業專訊 103: 5-7。
    林家棻。1966。怎樣採集土壤樣本。台灣省農業試驗所編印。
    林素禎。2021。叢枝菌根菌之應用研究。農業試驗所特刊 231: 64-73。
    林毓雯、王鐘和。2002。不同有機資材之分解與氮素礦化。行政院農業委員會農業試驗所-作物有機栽培102: 105-115。
    林駿奇、王誌偉。2017。水稻紋枯病之藥劑篩選及非農藥防治。臺東區農業改良場研究彙報27: 61-78。
    宣大平、林泰佑、陳任芳、潘昶儒、黃佳興、施清田。2012。有機水稻栽培體系之研發與建立。國際有機農業產業發展研討會專刊: 臺中區農業改良場特刊 113: 85-115。
    施雅惠、林旻頡、陳琦玲。2021。臺灣農業減碳作為與碳交易機制之探討。農業試驗所特刊 231: 74-84。
    胡智傑、張芳瑜、張芯瑜、吳志文。2020。稉稻新品種高雄148號。稉稻新品種-高雄148號。高雄區農技報導 151: 1-11。
    胡靄堂、周立祥。2002。植物營養學第二版。全國高等農業院校教材,中國。
    陳仁炫、鐘仁賜、黃裕銘、鄒裕民、陳鴻基、吳正宗。2008。土壤與肥料分析手冊 (一)土壤化學性質分析。中華土壤肥料學會。
    陳文華、張萃媖。2018。有機農業產銷策略研討會專輯。台灣有機產業促進協會編印。
    陳玉如。2005。春作紅豆栽培要領。高雄區農業專訊 54: 12-13。
    陳玉如、張耀聰。2011。紅豆栽培與合理化施肥手冊。高雄區農技報導 107: 3-15。
    陳任芳。2010。應用非農藥資材防治水稻稻熱病之研究。花蓮區農業改良場研究彙報28: 35-44。
    陳俊位。1999。生物農藥枯草桿菌在植物病害防治上之應用。台中區農業專訊26: 21-23。
    陳俊位、蔡宜峰、曾德賜。2001。枯草桿菌(Bacillus subtilis)對菜豆生長效益之研究。臺中區農業改良場特刊52: 1-2。
    陳琦玲、連深。2002。台灣與日本土壤有機質的分解聚積模擬與肥力維持。中華農業研究 51(2): 50-65。
    郭鴻裕、朱戩良、劉滄棽、江志峰、劉禎祺。2000。台灣地區土壤有機質含量與管理對策。中華永續農業協會: 有機質肥料合理化施用技術
    。第9-22頁。
    郭鴻裕、朱戩良、劉滄棽、劉禎祺、江志峰。1999。台灣省農業試驗所技術服務 37: 11-16。
    莊作權。2018。土壤肥料。三民書局股份有限公司。
    張素貞。2001。水稻有機栽培綜合管理。苗栗區農業改良場。第25-39頁。
    張淑賢。2000。本省現行植物測定方法。作物需肥診斷技術。行政院農業委員會農業試驗所。第53-54頁。
    張愛華。2000。本省現行土壤測定方法。作物需肥診斷技術。行政院農業委員會農業試驗所。第9-26頁。
    張耀聰。2018。生物炭於短期作物田間應用技術。高雄區農技報導 142: 1-19。
    黃炳文、林秀霙、林佩慧、謝宜婷、鄭暘諭。2018。有機稻作生產成本與收益之研究。農林學報 66(1): 11-23。
    黃振文、謝廷芳、謝奉家、羅朝村。2019。環境友善之植醫保健秘籍。五南圖書出版股份有限公司。
    黃啟鐘、羅權彧。2014。嘉義地區紅豆有機栽培病蟲害之綜合管理。宜蘭大學生物資源學刊 10: 61-75。
    楊秋忠。2016。土壤與肥料。農業世界叢書。台中,台灣。
    鄭智允、簡禎佑、楊志維、林孟輝。2021。水稻新品種桃園5號特性與栽培要點。桃園區農技報導 80: 1-4。
    蔡孟旅、張顥瀚、鄭安秀。2017。木黴菌對落花生白絹病防治效果之探討。臺南區農業改良場研究彙報69: 42-48。
    橫山和成。2019。圖解土壤微生物。五南圖書出版公司。
    羅文冠。2017。國產紅豆產業現況。高雄區農業專訊 102: 16-17。

    Abd-Alla, M.H., A.W.E. El-Enany, N.A. Nafady, D.M. Khalaf, and F.M. Morsy. 2014. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol. Res. 169(1): 49-58.
    Abujabhah, I.S., R. Doyle, S.A. Bound, and J.P. Bowman. 2016. The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils. J. Soils Sediments. 16: 2211-2222.
    Alam, M.Z., M.A. Hoque, G. J. Ahammed, and C.B. Lynne. 2020. Effects of arbuscular mycorrhizal fungi, biochar, selenium, silica gel, and sulfur on arsenic uptake and biomass growth in Pisum sativum L. Emerg. Contam. 6: 312-322.
    Azeem, M., D. Sun, D. Crowley, R. Hayat, Q. Hussain, A. Ali, M.I. Tahir, P.G.S.A. Jeyasundar, J. Rinklebe, and Z. Zhang. 2020. Crop types have stronger effects on soil microbial communities and functionalities than biochar or fertilizer during two cycles of legume-cereal rotations of dry land. Sci. Total Environ. 715: 136958.
    Bitzer, C. C. and J. T. Sims. 1988. Estimating the availability of nitrogen in poultry manure through laboratory and field studies. J. Environ. Qual. 17: 47-54.
    Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soil. Soil Sci. 59: 39-45.
    Chekanai, V., R. Chikowo, and B. Vanlauwe. 2018. Response of common bean (Phaseolus vulgaris L.) to nitrogen, phosphorus and rhizobia inoculation across variable soils in Zimbabwe. Agric. Ecosyst. Environ. 266: 167-173.
    Chou, C., N. Castilla, B. Hadi, T. Tanaka, S. Chiba, and I. Sato. 2020. Rice blast management in Cambodian rice fields using Trichoderma harzianum and a resistant variety. Crop Prot. 135: 104864.
    Cruz-Paredes, C., T. Diera, M. Davey, M.M. Rieckmann, P. Christensen, M.D. Cruz, K.H. Laursen, E.J. Joner, J.H. Christensen, O. Nybroe, and Iver Jakobsen. 2021. Disentangling the abiotic and biotic components of AMF suppressive soils. Soil Biol. Biochem. 159: 108305.
    Emmanuel, O.C., and O. O. Babalola. 2020. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol. Res. 239: 126569.
    Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. In A. Klute et al., (eds) Methods of Soil Analysis. Part I, 2nd edition Agronomy. 9:404-408. ASA, Madison, Wisconsin.
    Geng, N., X. Kang, X. Yan, N. Yin, H. Wang, H. Pan, Q. Yang, Y. Lou, and Y. Zhuge. 2022. Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature. Ecotox. Environ. Safe. 223: 113241.
    Ghodszad, L., A. Reyhanitabar, S. Oustan, and L. Alidokht. 2022. Phosphorus sorption and desorption characteristics of soils as affected by biochar. Soil Tillage Res. 216: 105251.
    Glab, T., A. Zabinski, U. Sadowska, K. Gondek, M. Kopec, M.M. Hersztek, and S. Tabor. 2018. Effects of co-composted maize, sewage sludge, and biochar mixtures onhydrological and physical qualities of sandy soil. Geoderma 315: 27-35.
    Gujre, N., A. Soni, L. Rangan, D.C.W. Tsang, and S. Mitra. 2021. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. Environ. Pollut. 268: 115549.
    Haider, F.U., J.A. Coulter, S.A. Cheema, M. Farooq, J. Wu, R. Zhang, G. Shuaijie, and C. Liqun. 2021. Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicol. Environ. Saf. 214: 112112.
    Haider, G., D. Steffens, G. Moser, C. Müller, and C.I. Kammann. 2017. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 237: 80-94.
    Halifu, S., X. Deng, X. Song, and R. Song. 2019. Effects of Two Trichoderma Strains on Plant Growth, Rhizosphere Soil Nutrients, and Fungal Community of Pinus sylvestris var. mongolica Annual Seedlings. Forests 10(9): 758-775.
    Han, S., J. Chen, Y. Zhao, H. Cai, and C. Guo. 2021. Bacillus subtilis HSY21 can reduce soybean root rot and inhibit the expression of genes related to the pathogenicity of Fusarium oxysporum. Pestic. Biochem. Physiol. 178: 104916.
    Heydari, L., H. Bayat, and A.S. Gregory. 2021. Investigating the effect of inoculation of chickpea with rhizobium and mycorrhizal fungi (Funneliformis mosseae) on soil mechanical and physical behavior. Geoderma 385: 114860.
    Hou, Q., T. Zuo, J. Wang, S. Huang, X. Wang, L. Yao, and W. Ni. 2021. Responses of nitrification and bacterial community in three size aggregates of paddy soil to both of initial fertility and biochar addition. Appl. Soil Ecol. 166: 104004.
    Islam, M.S., Y. Chen, L. Weng, J. Ma, Z.H. Khan, Z. Liao, A.S.I.A. Magid, and Y. Li. 2021. Watering techniques and zero-valent iron biochar pH effects on As and Cd concentrations in rice rhizosphere soils, tissues and yield. J Environ Sci. 100: 144-157.
    Jiang, S., G. Dai, J. Zhou, J. Zhong, J. Liu, and Y. Shu. 2022. An assessment of integrated amendments of biochar and soil replacement on the phytotoxicity of metal(loid)s in rotated radish-soya bean-amaranth in a mining acidy soil. Chemosphere 287(1): 132082.
    Jien, S.H., and C.S. Wang. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110: 225-233.
    Jílkova´, V., and G. Angst. 2022. Biochar and compost amendments to a coarse-textured temperate agricultural soil lead to nutrient leaching. Appl. Soil Ecol. 173: 104393.
    Jin, H., J.J. Germida, and F.L. Walley. 2013. Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (Pisum sativum L.). Mycorrhiza 23: 45-59.
    Kalu, S., A. Simojoki, K. Karhu, and P. Tammeorg. 2021. Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils. Agric. Ecosyst. Environ. 316: 107454.
    Karam, D.S., P. Nagabovanalli, K.S. Rajoo, C.F. Ishak, A. Abdu, Z. Rosli, F. M. Muharam, and D. Zulperi. 2022. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. J. Saudi Soc. Agric. Sci. 21(3): 149-159.
    Kim, P., A.M. Johnson, M.E. Essington, M. Radosevich, W.T. Kwon, S.H. Lee, T.G. Rials, and N. Labbé. 2013. Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis. Chemosphere 90(10): 2623-2630.
    Kimura, S.D., K. Schmidtke, R. Tajima, K. Yoshida, H. Nakashima, and R. Rauber. 2004. Seasonal N uptake and N2 fixation by common and adzuki bean at various spacings. Plant Soil. 258: 91-101.
    Knudsen, O., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. In A. L. Page et al. (ed.) Method of soil analysis. Part II, 2nd edition. Agronomy. P.225-246.
    Koske, R.E., and J.N. Gemma. 1989. A modified procedure staining roots to detect VA mycorrhizas. Mycol. Res. 92: 486-488.
    Laird, D.A., J.M. Novak, H.P. Collins, J.A. Ippolito, D.L. Karlen, R.D. Lentz, K.R. Sistani, K. Spokas, and R.S.V. Pelt. 2017. Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma 289: 46-53.
    Lelapalli, S., S. Baskar, S.M. Jacob, and S. Paranthaman. 2021. Characterization of phosphate solubilizing plant growth promoting rhizobacterium Lysinibacillus pakistanensis strain PCPSMR15 isolated from Oryza sativa. Current Res. Microbiol. 2: 100080.
    Li, C., W. Ahmed, D. Li, L. Yu, L. Xu, T. Xu, and Z. Zhao. 2022a. Biochar suppresses bacterial wilt disease of flue-cured tobacco by improving soil health and functional diversity of rhizosphere microorganisms. Appl. Soil Ecol. 171: 104314.
    Li, T., J. Tang, V. Karuppiah, Y. Li, N. Xu, and J. Chen. 2020. Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves he production of antifungal secondary metabolites. Biol. Control. 140: 104122.
    Li, Q., Q. Fu, T. Li , D. Liu, R. Hou, M. Li, and Y. Gao. 2022b. Biochar impacts on the soil environment of soybean root systems. Sci. Total Environ. 821: 153421.
    Liang, J.F., J. An, J.Q. Gao, X.Y. Zhang, M.H. Song, and F.H. Yu. 2019. Interactive effects of biochar and AMF on plant growth and greenhouse gas emissions from wetland microcosms. Geoderma 346: 11-17.
    Lusiba, S., J. Odhiambo, R. Adeleke, and S. Maseko. 2021. The potential of biochar to enhance concentration and utilization of selected macro and micro nutrients for chickpea (Cicer arietinum) grown in three contrasting soils. Rhizosphere 17: 100289.
    Martin, J. P. and D. D. Focht. 1977. Biological properties of soil. In Soils for management of organic. wastes. ed. by Elliott, L.F. et al. Madison, Wisconsin. USA. p.114-169.
    Mayo-Prieto, S., M.P. Campelo, A. Lorenzana, A. Rodríguez-González, B. Reinoso, S. Gutiérrez, and P. A. Casquero. 2020. Antifungal activity and bean growth promotion of Trichoderma strains isolated from seed vs soil. Eur. J. Plant Pathol. 158: 817-828.
    McLean, E.Q. 1982. Soil pH and lime requirement. In A.L. Page et al. (ed.) Method of soil analysis. Part 2. 2nd ed. ASA and SSSA Madison, W1. p. 119-224.
    Mei, P.P., L.G. Gui, P. Wang, J.C. Huang, H.Y. Long, P. Christie, and L. Li. 2012. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Res. 130: 19-27.
    Mia, S., J.W. Groenigen, T.F.J. Voorde, N.J. Oram,b, T.M. Bezemer, L. Mommer, and S. Jeffery. 2014. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric. Ecosyst. Environ. 191: 83-91.
    Munda, S., D. Bhaduri, S. Mohanty, D. Chatterjee, R. Tripathi, M. Shahid, U. Kumar, P. Bhattacharyya, A. Kumar, T. Adak, H.K. Jangde, and A.K. Nayak. 2018. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar. Biomass Bioenergy. 115: 1-9.
    Ndiate, N.I., C. L. Qun, and J.N. Nkoh. 2022. Importance of soil amendments with biochar and/or Arbuscular Mycorrhizal fungi to mitigate aluminum toxicity in tamarind (Tamarindus indica L.) on an acidic soil: A greenhouse study. Heliyon 8(2): e09009.
    Neogi, S., V. Sharma, N. Khan, D. Chaurasia, A. Ahmad, S. Chauhan, A. Singh, S. You, A. Pandey, and P.C. Bhargava. 2022. Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere 293: 133474.
    Nguyen, T.T.N., C.Y. Xu, I. Tahmasbian, R. Che, Z. Xu, X. Zhou, H.M. Wallace, and S.H. Bai. 2017. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 288: 79-96.
    Nieto-Jacobo, M.F., J.M. Steyaert, F.B. Salazar-Badillo, D.V. Nguyen, M. Rostás, M. Braithwaite, J.T.D. Souza, J.F. Jimenez-Bremont, M. Ohkura, A. Stewart, and A. Mendoza-Mendoza. 2017. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant Sci. 8: 102-120.
    Oladele, S.O. 2019. Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice – Maize cropping sequence. Geoderma 353: 359-371.
    Oladelea, S.O., A.J. Adeyemo, and M.A. Awodun. 2019. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 336: 1-11.
    Posada, L.F., J.C. Álvarez, M. Romero-Tabarez, L. de-Bashan, and V. Villegas-Escobar. 2018. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Microbiol. Res. 217: 69-80.
    Poveda, J. 2021. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol. Control. 159: 104634.
    Qayyum, M.F., G. Haider, M.A. Raza, A.K.S.H. Mohamed, M. Rizwan, M.A. El-Sheikh, M.N. Alyemeni, and S. Ali. 2020. Straw-based biochar mediated potassium availability and increased growth and yield of cotton (Gossypium hirsutum L.). J. Saudi Chem. Soc. 24(12): 963-973.
    Qi, Z., J. Yu, L. Shen, Z. Yu, M. Yu, Y. Du, R. Zhang, T. Song, X. Yin, Y. Zhou, H. Li, Q. Wei, and Y. Liu. 2017. Enhanced resistance to rice blast and sheath blight in rice (Oryza sativa L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis. Plant Sci. 265: 51-60.
    Qiao, Y., Y. Bai, W. She, L. Liu, C. Miao, G. Zhu, S. Qin, and Y. Zhang. 2022. Arbuscular mycorrhizal fungi outcompete fine roots in determining soil multifunctionality and microbial diversity in a desert ecosystem. Appl. Soil Ecol. 171: 104323.
    Rafique, M., M. Naveed, A. Mustafa, S. Akhtar, M. Munawar, S. Kaukab, H.M. Ali, M.H. Siddiqui, and M.Z.M. Salem. 2021. The Combined Effects of Gibberellic Acid and Rhizobium on Growth, Yield and Nutritional Status in Chickpea (Cicer arietinum L.). Agronomy 11(1): 105-121.
    Razakatiana, A.T.E., J. Trap, R.H. Baohanta, M. Raherimandimby, C. Roux, R. Duponnois, H. Ramanankierana, and T. Becquer. 2020. Benefits of dual inoculation with arbuscular mycorrhizal fungi and rhizobia on Phaseolus vulgaris planted in a low-fertility tropical soil. Pedobiologia J Soil Ecol. 83: 150685.
    Sakpirom, J., T. Nunkaew, E. Khan, and D. Kantachote. 2021. Optimization of carriers and packaging for effective biofertilizers to enhance Oryza sativa L. growth in paddy soil. Rhizosphere. 19: 100383.
    Sarfraz, R., A. Hussain, A. Sabir, I.B. Fekih, A. Ditta, and S. Xing. 2019. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration—a review. Environ. Monit. Assess. 191: 251.
    Saxena, J., G. Rana, and M. Pandey. 2013. Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Sci. Hortic. 162: 351-356.
    Selvakumar, G., R. Krishnamoorthy, K. Kim, and T.M. Sa. 2016. Genetic diversity and association characters of bacteria isolated from arbuscular mycorrhizal fungal spore walls. Plos one. 11(8):1-16.
    Sha, Y., Q. Wang, and Y. Li. 2016. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast. Springerplus 5:1238.
    Sharma, P., V. Abrol, V. Sharma, S. Chaddha, C.S. Rao, A.Q. Ganie, D.I. Hefft, M.A. El-Sheikh, and S. Mansoor. 2021. Effectiveness of biochar and compost on improving soil hydro-physical properties, crop yield and monetary returns in inceptisol subtropics. Saudi J. Biol. Sci. 28(12): 7539-7549.
    Sims, J. R. and V. A. Haby. 1971. Simplified Colorimetric Determination of Soil Organic Matter. Soil Sci. 112 (2): 137-141.
    Song, H., J.F. Gao, X.L. Gao, H.P. Dai, P.A. Zhang, P.K. Wang, Y. Chal, and B.L. Feng. 2012. Relations between photosynthetic parameters and seed yields of adzuki bean cultivars (Vigna angularis). J. Integr. Agric. 11(9): 1453-1461.
    Sun, B., L. Gu, L. Bao, S. Zhang, Y. Wei, Z. Bai, G. Zhuang, and X. Zhuang. 2020a. Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil Biol. Biochem. 148: 107911.
    Sun, B., Z. Bai, L. Bao, L. Xue, S. Zhang, Y. Wei, Z. Zhang, G. Zhuang, and X. Zhuang. 2020b. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environ. Int. 144: 105989.
    Swain, H., T. Adak, A.K. Mukherjee, P.K. Mukherjee, P. Bhattacharyya, S. Behera, T.B. Bagchi, R. Patro, Shasmita, A. Khandual, M.K. Bag, T.K. Dangar, S. Lenka, and M. Jena. 2018. Novel Trichoderma strains isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice. Microbiol. Res. 214: 83-90.
    Tang, Q., A. Cotton, Z. Wei, Y. Xia, T. Daniell, and X. Yan. 2022. How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production? Sci. Total Environ. 803: 149933.
    Ullah, S., Q. Zhao, K. Wu, I. Ali, H. Liang, A. Iqbal, S. Wei, F. Cheng, S. Ahmad, L. Jiang, S.W. Gillani, Amanullah, S. Anwar, and Z. Khan. 2021. Biochar application to rice with 15N-labelled fertilizers, enhanced leaf nitrogen concentration and assimilation by improving morpho-physiological traits and soil quality. Saudi J. Biol. Sci. 28(6): 3399-3413.
    Vinale, F., K. Sivasithamparam, E.L. Ghisalberti, R. Marra, S.L. Woo, and M. Lorito. 2008. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 40(1): 1-10.
    Wang, C., D. Chen, J. Shen, Q. Yuan, F. Fan, W. Wei, Y. Li, and J. Wu. 2021. Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agric. Ecosyst. Environ. 311: 107291.
    Wang, Y., W. Li, B. Du, and H. Li. 2021. Effect of biochar applied with plant growth-promoting rhizobacteria (PGPR) on soil microbial community composition and nitrogen utilization in tomato. Pedosphere 31(6): 872-881.
    Wijitkosum, S. 2022. Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. Int. Soil Water Conserv. Res. 10(2): 335-341.
    Woo, K.S., S.B. Song, J.Y. Ko, M.C. Seo, J.S. Lee, J.R. Kang, B.G. Oh, M.H. Nam, H.S. Jeong, and J. Lee. 2010. Antioxidant components and antioxidant activities of methanolic extract from adzuki beans (Vigna angularis var. nipponensis). Korean J. Food Sci. Technol. 42(6): 693-698.
    Wu, H., K. Yip, Z. Kong, C.Z. Li, D. Liu, Y. Yu, and X. Gao. 2011. Removal and recycling of inherent inorganic nutrient species in mallee biomass and derived biochars by water leaching. Ind. Eng. Chem. Res. 50: 12143-12151.
    Wu, X., D. Wang, M. Riaz, L. Zhang, and C. Jiang. 2019. Investigating the effect of biochar on the potential of increasing cotton yield, potassium efficiency and soil environment. Ecotoxicol. Environ. Saf. 182: 109451.
    Xavier, L.J.C., and J.J. Germida. 2002. Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol. Biochem. 34(2): 181-188
    Xia, H., M. Riaz, B. Liu, Y. Li, Z. El-Desouki, and C. Jiang. 2022. Over two years study: Peanut biochar promoted potassium availability by mediating the relationship between bacterial community and soil properties. Appl. Soil Ecol. 176: 104485.
    Xiang, Y., Q. Deng, H. Duan, and Y. Guo. 2017. Effects of biochar application on root traits: a meta-analysis. Glob. Change Biol. Bioenergy 9(10): 1563-1572.
    Yan, P., C. Shen, Z. Zou, J. Fu, X. Li, L. Zhang, L. Zhang, W. Han, and L. Fan. 2021a. Biochar stimulates tea growth by improving nutrients in acidic soil.
    Yan, T., J. Xue, Z. Zhou, and Y. Wu. 2021b. Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Sci. Total Environ. 794: 148757.
    Yin, Z.C., W.Y. Guo, J. Liang, H.Y. Xiao, X.Y. Hao, A.F. Hou, X.X. Zong, T.R. Leng, Y.J. Wang, Q.Y. Wang, and F.X. Yin. 2019. Efects of multiple N, P, and K fertilizer combinations on adzuki bean (Vigna angularis) yield in a semi-arid region of northeastern China. Sci. Rep-UK. 9:19408.
    Yu, Z., Z. Wang, Y. Zhang, Y. Wang, and Z. Liu. 2021. Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiol. Res. 242: 126596.
    Zhang, A., R. Biana, G, Pan, L. Cui, Q. Hussain, L. Li, J. Zheng, J. Zheng, X. Zhang, X. Han, and X. Yu. 2012. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 127: 153-160.
    Zhang, C., X. Zhang, and S. Shen. 2014. Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131. World J. Microbiol. Biotechnol. 30: 1763-1774.
    Zhang, Q., Y. Song, Z. Wu, X. Yan, A. Gunina, Y. Kuzyakov, and Z. Xiong. 2020. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J. Clean. Prod. 242: 118435.
    Zhang, Y., H. Zhao, W. Hu, Y. Wang, H. Zhang, X. Zhou, J. Fei, and G. Luo. 2022. Understanding how reed-biochar application mitigates nitrogen losses in paddy soil: Insight into microbially-driven nitrogen dynamics. Chemosphere 295: 133904.

    下載圖示
    QR CODE