簡易檢索 / 詳目顯示

研究生: 許芸禎
Xu, Yun-Zhen
論文名稱: 羥四環素對浮萍抗氧化能力之研究
Studies on the antioxidative capacity of duckweed (Lemna aequinoctialis) under oxytetracycline treatment
指導教授: 吳宗孟
Wu, Tsung-Meng
學位類別: 碩士
Master
系所名稱: 農學院 - 水產養殖系所
Department of Aquaculture
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 53
中文關鍵詞: 羥四環素抗氧化系統浮萍氧化逆境
外文關鍵詞: Oytetracycline, Antioxidant system, Lemna aequinoctialis, Oxidative stress
DOI URL: http://doi.org/10.6346/NPUST202200312
相關次數: 點閱:31下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 羥四環素 (OTC) 是自然水域中存在最普遍的抗生素之一,考量到OTC毒性對水域中生物的危害,需要設法減少OTC在水域中的濃度,對此可利用浮萍透過植生復育技術完成此目的,因此本試驗的目的即是確認浮萍對於OTC毒性的生理反應,希望可供未來關於浮萍清除OTC之研究基礎所用。試驗選擇6種濃度 (0, 0.05, 0.1, 0.5, 1以及2 ppm) 連續處理5天,另外使用生長半抑制濃度進行時間序列之處理 (0, 12, 24, 48, 72以及120小時),觀察浮萍 (Lemna aequinoctialis) 對於OTC慢性以及急性毒性的生理反應。在慢性毒性的試驗結果中,2 ppm的OTC明顯抑制浮萍的生長,葉綠素b以及總葉綠素的含量在所有試驗組中均顯著下降。活性氧物質 (Reactive oxygen species, ROS) 以及丙二醛 (Malondialdehyde, MDA) 含量在所有試驗組中均未產生顯著的變化。在抗氧化系統方面,除了抗壞血酸過氧化酶 (APX) 在0.1 ppm的試驗組中活性有顯著的上升以外,其餘三種抗氧化酵素的活性均沒有產生顯著的變化,而抗氧化物質抗壞血酸 (ASC) 在0.1 ppm的試驗組中有顯著的增加。在急毒性生理反應方面,浮萍的生長半抑制濃度為150 ppm,在處理48小時後,浮萍的MDA含量會明顯增加,72小時後H2O2含量顯著增加,96小時後葉綠素a以及總葉綠素含量顯著下降。抗氧化酵素方面,過氧化氫酶 (CAT) 活性在48小時升至最高,隨後開始下降,超氧化物歧化酶 (SOD) 以及穀胱甘肽還原酶 (GR) 有相似的表現,在處理前期活性都有下降的趨勢。抗氧化物質抗壞血酸 (ASC) 在72、96以及120小時具有最高的含量。試驗結果表明,OTC的毒性雖然會抑制浮萍的生長,但浮萍能夠靠著調節抗氧化系統,特別是ASC含量來減緩氧化損傷,以確保自身的存活。

    Oxytetracycline (OTC) is one of the most common antibiotics in natural waters. Considering the harm of OTC toxicity to organisms in the waters, it is necessary to reduce the concentration of OTC in the waters. This can be done by using duckweed through phytoremediation technology. Therefore, the purpose of this experiment is to confirm the physiological response of duckweed to OTC toxicity, hoping to be based for future research on duckweed removal of OTC. Experiment selected six concentrations (0, 0.05, 0.1, 0.5, 1 and 2 ppm) for continuous treatment for 5 days, and using the growth half-inhibitory concentration (IC50) treatment for 0, 12, 24, 48, 96 and 120 h, in order to observe the physiological response of duckweed (Lemna aequinoctialis) to OTC chronic and acute toxicity. In response to chronic toxicity, 2 ppm of OTC significantly inhibited the growth of duckweed, and the content of chlorophyll b and total chlorophyll decreased significantly in all experimental groups. The contents of ROS and MDA did not change significantly in all experimental groups. In antioxidant system, except for ascorbate peroxidase (APX), which showed a significant increase in the experimental group at 0.1 ppm, there were no significant changes in the activities of the other antioxidant enzymes, while the ascorbate (ASC) increased significantly in the experimental group at 0.1 ppm. In acute toxicity physiological response, the IC50 of 150 ppm for duckweed growth. After 48 hours of treatment the content of MDA was significantly increased, whereas H2O2 content was significantly increased at 72 hours, while the content of chlorophyll a and total chlorophyll decrease significantly at 96 hours. In antioxidant system, catalase (CAT) activity increased to the highest at 48 hours, and then to decrease, whereas superoxide dismutase (SOD) and glutathione reductase (GR) showed similar behaviors, which a activity decreasing trend in the early treatment, while ASC had the highest levels at 72, 96 and 120 hours. The experimental results show that the toxicity of OTC can inhibit the growth of duckweed, and duckweed can palliation oxidative damage by regulating the antioxidant system, especially the ASC content, to ensure own survival.

    摘要 I
    Abstract III
    謝誌 V
    壹、前言 1
    貳、文獻回顧 4
    一、浮萍之基本介紹 4
    二、羥四環素 (Oxytetracycline, OTC) 4
    (一) OTC之抑菌機制 5
    (二) OTC在水產養殖的應用 5
    (三) 自然水域中的OTC 6
    1. 廢水中的OTC濃度 7
    2. 地表水中的OTC濃度 8
    3. 沉積物的OTC濃度 8
    (四) OTC對生物體之毒性 9
    (五) 植物體對OTC的降解 9
    (六) OTC所誘導之氧化逆境 10
    三、植物體之抗氧化系統 11
    (一) 抗氧化酵素 11
    1. 超氧化物歧化酶 (Superoxide dismutase, SOD) 11
    2. 過氧化氫酶 (Catalase, CAT) 12
    3. 抗壞血酸過氧化酶 (Ascorbate peroxidase, APX) 12
    4. 穀胱苷肽還原酶 (Glutathione reductase, GR) 12
    (二) 非酵素型抗氧化劑 12
    1. 抗壞血酸 (Ascorbate, ASC) 12
    參、材料與方法 14
    一、試驗架構 14
    二、浮萍之培養與馴化 14
    三、OTC母液配置 15
    四、試驗流程 15
    五、化學成分分析 15
    (一) 葉綠素含量分析 15
    (二) 脂質過氧化作用測定 16
    (三) 過氧化氫含量分析 17
    (四) 超氧自由基含量分析 17
    (五) 蛋白質含量分析 18
    六、抗氧化酵素酵素活性分析 18
    (一) Catalase (CAT ; EC 1.11.1.6) 活性分析 18
    (二) Ascorbate peroxidase (APX; EC 1.11.1.11) 活性分析 18
    (三) Superoxide dismutase (SOD; EC 1.15.1.1) 活性分析 19
    (四) Glutathione reductase (GR; EC 1.6.4.2) 活性分析 19
    七、非酵素型抗氧化劑分析 20
    (一) 抗壞血酸 (Ascorbate, ASC) 含量分析 20
    1. 總ASC含量分析 20
    2. ASC含量分析 21
    3. DHA含量分析 21
    八、統計分析 21
    肆、結果 23
    一、慢性毒性試驗 23
    (一) OTC對浮萍生長之影響 23
    (二) OTC對浮萍外觀之影響 23
    (三) OTC對浮萍葉綠素含量之影響 25
    (四) OTC對浮萍ROS含量之影響 25
    (五) OTC對浮萍MDA含量之影響 27
    (六) OTC對浮萍抗氧化酵素活性之影響 28
    (七) OTC對浮萍抗氧化物質ASC含量之影響 29
    二、急性毒性試驗 30
    (一) 不同濃度之OTC對浮萍成長半抑制之分析 30
    (二) IC50 OTC對浮萍外觀之影響 30
    (三) IC50 OTC對浮萍葉綠素含量之影響 32
    (四) IC50 OTC對浮萍ROS含量之影響 33
    (五) IC50 OTC對浮萍MDA含量之影響 34
    (六) IC50 OTC對浮萍抗氧化酵素活性之影響 35
    (七) IC50 OTC對浮萍抗氧化物質ASC含量之影響 36
    伍、討論 37
    陸、結論 41
    柒、參考文獻 42
    附錄 52

    王志強。2009。犬貓臨床用藥手冊。上海科學技術出版社。58頁。
    陳俞君。2019。飼料中添加羥四環黴素及葡聚多醣體對白蝦非特異性免疫反應及抵抗溶藻弧菌能力之影響。碩士論文,國立臺灣海洋大學水產養殖學系。https://hdl.handle.net/11296/n74a67。
    黃世穎。2014。在低溫環境下土黴素在中華鱉之藥物動力學及殘留研究。碩士論文,國立中興大學獸醫學系暨研究所。https://hdl.handle.net/11296/u3adke。
    種雲霄、胡洪營、錢易。2003。大型水生植物在水污染治理中的應用研究進展。環境污染治理技術與設備。4(2):36-40。
    趙新勇、王友霜、王健康、丁成偉、胡婷婷、吳玉玲、李思夢、趙軼鵬。2020。浮萍植物的應用價值及綜合開發利用。熱帶生物學報。11(2):251-256。
    蔡本均。2018。台灣常用除草劑對青萍之毒性影響。碩士論文,國立中興大學生命科學院碩士在職專班。https://hdl.handle.net/11296/4rb8w9。
    蔣永正。2011。植物對環境逆境之調控與應用。農政與農情。231:78。
    Agarwal, S. 2007. Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biologia Plantarum. 51(1): 157-160.
    Agathokleous, E., Kitao, M., and Calabrese, E. J. 2018. Human and veterinary antibiotics induce hormesis in plants: Scientific and regulatory issues and an environmental perspective. Environment International. 120: 489-495.
    Almeida, A. R., Tacão, M., Machado, A. L., Golovko, O., Zlabek, V., Domingues, I., and Henriques, I. 2019. Long-term effects of oxytetracycline exposure in zebrafish: A multi-level perspective. Chemosphere. 222: 333-344.
    Ambili, T. R., Saravanan, M., Ramesh, M., Abhijith, D. B., and Poopal, R. K. 2013. Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Archives of Environmental Contamination and Toxicology. 64(3): 494-503.
    Ammar, M. B., Nouairi, I., Zarrouk, M., and Jemal, F. 2007. Cadmium stress induces changes in the lipid composition and biosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Plant Growth Regulation. 53: 75-85.
    Azanu, D., Styrishave, B., Darko, G., Weisser, J. J., and Abaidoo, R. C. 2018. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Science of the Total Environment. 622-623: 293-305.
    Beauchamp, C., and Fridovich, I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry. 44(1): 276-287.
    Berendsen, B. J. A., Wegh, R. S., Memelink, J., Zuidema, T., and Stolker, L. A. M. 2015. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta. 132: 258-268.
    Bielen, A., Šimatović, A., Kosić-Vukšić, J., Senta, I., Ahel, M., Babić, S., Jurina, T., Plaza, J. J. G., Milaković, M., and Udiković-Kolić, N. 2017. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Research. 126: 79-87.
    Blokhina, O., Virolainen, E., and Fagerstedt, K. V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany. 91: 179-194.
    Botelho, R. G., Christofoletti, C. A., Correia, J. E., Ansoar, Y., Olinda, R. A., and Tornisielo, V. L. 2015. Genotoxic responses of juvenile tilapia (Oreochromis niloticus) exposed to florfenicol and oxytetracycline. Chemosphere. 132: 206-212.
    Chopra, I., and Roberts, M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology And Molecular Biology Reviews. 65(2): 232-260
    Danner, M. C., Robertson, A., Behrends, V., and Reiss, J. 2019. Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of the Total Environment. 664: 793-804.
    Di Baccio, D., Pietrini, F., Bertolotto, P., Pérez, S., Barcelò, D., Zacchini, M., and Donati, E. 2017. Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen: Removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants. Science of the Total Environment. 584-585: 363-373.
    Elia, A. C., Ciccotelli, V., Pacini, N., Dorr, A. J., Gili, M., Natali, M., Gasco, L., Prearo, M., and Abete, M. C. 2014. Transferability of oxytetracycline (OTC) from feed to carp muscle and evaluation of the antibiotic effects on antioxidant systems in liver and kidney. Fish Physiology and Biochemistry. 40(4): 1055-1068.
    Feitosa-Felizzola, J., and Chiron, S. 2009. Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France). Journal of Hydrology. 364(1-2): 50-57.
    Gatidou, G., Oursouzidou, M., Stefanatou, A., and Stasinakis, S. A. 2017. Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems. Science of the Total Environment. 596-597: 12-17.
    Gill, S. S., and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48(12): 909-930.
    Gomes, M. P., Brito, J. C. M., Rocha, D. C., Navarro-Silva, M. A., and Juneau, P. 2020. Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Ecotoxicology and Environmental Safety. 203: 111025.
    Gomes, M. P., Gonc¸alves, C. A., de Brito, J. C. M., Souza, A. M., da Silva Cruz, F. V., Elisa Monteze Bicalho, Cleber Cunha Figueredo, and Garcia, Q. S. 2017. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability. Journal of Hazardous Materials. 328: 140-149.
    Gomes, M. P., Soares, A. M., and Garcia, Q. S. 2014. Phosphorous and sulfur nutrition modulate antioxidant defenses in Myracrodruom urundeuva plants exposed to arsenic. Journal of Hazardous Materials. 276: 97-104.
    Harrabi, M., Alexandrino, D. A. M., Aloulou, F., Elleuch, B., Liu, B., Jia, Z., Almeida, C. M. R., Mucha, A. P., and Carvalho, M. F. 2019. Biodegradation of oxytetracycline and enrofloxacin by autochthonous microbial communities from estuarine sediments. Science of the Total Environment. 648: 962-972.
    Heath, R. L., and Packer, L. 1968. Photooxidation in isolated chloroplast. I. kinetics and stoichmetry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125(1): 189-198.
    Hirsch, R., Ternes, T., Haberer, K., and Kratz, K. L. 1999. Occurrence of antibiotics in the aquatic environment. Science of the Total Environment. 225(1): 109-118.
    Hoagiand, D. R., and Snyder, W. C. 1933. Nutrition of strawberry plant under controlled conditions. (a) Effects of deficiencies of boron and certain other elements, (b) susceptibility to injury from sodium salts. Proceedings of the American Society for Horticultural Science. 30: 288-294.
    Hodges, D. M., Andrews, C. J., Johnson, D. A., and Hamilton, R. I. 1996. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiologia Plantarum. 98(4): 685-692.
    Hu, H., Zhou, Q., Li, X., Lou, W., Du, C., Teng, Q., Zhang, D., Liu, H., Zhong, Y., and Yang, C. 2019. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresource Technology. 291: 121853.
    Huang, F., An, Z., Moran, M. J., and Liu, F. 2020. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009-2019). Journal of Hazardous Materials. 399: 122813.
    Kato, M., and Shimizu, S. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidase degradation. Canadian Journal of Botany. 65: 729-735.
    Khan, M. A., Mustafa, J., and Musarrat, J. 2003. Mechanism of DNA strand breakage induced by photosensitized tetracycline-Cu(II) complex. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 525(1-2): 109-119.
    Khan, M. H., and Panda, S. K. 2008. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum. 30: 81-89.
    Kołodziejska, M., Maszkowska, J., Białk-Bieliñska, A., Steudte, S., Kumirska, J., Stepnowski, P., and Stolte, S. 2013. Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry. Chemosphere. 92(9): 1253-1259.
    Kong, W. D., Zhu, Y. G., Liang, Y. C., Zhang, J., Smith, F. A., and Yang, M. 2007. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environmental Pollution. 147: 187-193.
    Krupka, M., Piotrowicz-Cieślak, A. I., and Michalczyk, D. J. 2022. Effects of antibiotics on the photosynthetic apparatus of plants. Journal of Plant Interactions. 17(1): 96-104.
    Les, D. H., Crawford, D. J., Landolt, E., Gabel, J. D., and Kimball, R. T. 2002. Phylogeny and Systematics of Lemnaceae, the Duckweed Family. Systematic Botany. 27(2): 221-240.
    Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y., and Li, K. 2008. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environmental Toxicology and Chemistry. 27: 80-86.
    Li, J., Yang, L., and Wu, Z. 2021. Toxicity of chlortetracycline and oxytetracycline on Vallisneria natans (Lour.) Hare. Environmental Science and Pollution Research. 28: 62549-62561.
    Li, Z. J., Xir, X. Y., Zhang, S. Q., and Liang, Y. C. 2011. Negative effects of oxytetracycline on wheat (Triticum aestivum L.) growth, root activity, photosynthesis, and chlorophyll contents. Agricultural Sciences in China. 10(10): 1545-1553.
    Limbu, S. M., Zhou, L., Sun, S. X., Zhang, M. L., and Du, Z. Y. 2018. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International. 115: 205-219.
    Lindsey, M. E., Meyer, M., and Thurman, E. M. 2001. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry. 73: 4640-4646.
    Liu, Y., Xu, H., Yu, C., and Zhou, G. 2020. Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. GCB Bioenergy. 13(1): 70-82.
    Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., Dagot, C., and Fatta-Kassinos, D. 2013. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research. 47(3): 957-995.
    Mobin, M., and Khan, N. A. 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology. 164 601-610.
    Monteiro, S. H., Francisco, J. G., Andrade, G. C. R. M., Botelho, R. G., Figueiredo, L. A., and Tornisielo, V. L. 2016. Study of spatial and temporal distribution of antimicrobial in water and sediments from caging fish farms by on-line SPE-LC-MS/MS. Journal of Environmental Science and Health, Part B. 51(9): 634-643.
    Nunesa, B., Veigaa, V., Frankenbach, S., Serôdio, J., and Pinto, G. 2019. Evaluation of physiological changes induced by the fluoroquinolone antibiotic ciprofloxacin in the freshwater macrophyte species Lemna minor and Lemna gibba. Environmental Toxicology and Pharmacology. 72: 103242.
    Oliveira, R., McDonough, S., Ladewig, J. C. L., Soares, A. M. V. A., Nogueira, A. J. A., and Domingues, I. 2013. Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environmental Toxicology and Pharmacology. 36(3): 903-912.
    Pailler, J. Y., Krein, A., Pfister, L., Hoffmann, L., and Guignard, C. 2009. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg. Science of the Total Environment. 407(16): 4736-4743.
    Pari, L., and Gnanasoundari, M. 2006. Influence of naringenin on oxytetracycline mediated oxidative damage in rat liver. Basic & Clinical Pharmacology & Toxicology. 98: 456-461.
    Petrenko, I. U., Titov, V. I., and Vladimirov, I. A. 1995. Generation of active forms of oxygen by antibiotics of the tetracycline series during tetracycline catalysis of oxidation of ferrous iron. Antibiot Khimioter. 40(2): 3-8.
    Quinlan, G. J., and Gutteridge, J. M. C. 1988. Hydroxyl radical generation by the tetracycline antibiotics with free radical damage to dna, lipids and carbohydrate in the presence of iron and copper salts. Free Radical Biology & Medicine. 5: 341-348.
    Rodrigues, S., Antunes, S. C., Correia, A. T., and Nunes, B. 2017. Rainbow trout (Oncorhynchus mykiss) pro-oxidant and genotoxic responses following acute and chronic exposure to the antibiotic oxytetracycline. Ecotoxicology. 26(1): 104-117.
    Rodrigues, S., Antunes, S. C., Correia, A. T., and Nunes, B. 2018. Oxytetracycline effects in specific biochemical pathways of detoxification, neurotransmission and energy production in Oncorhynchus mykiss. Ecotoxicology and Environmental Safety. 164: 100-108.
    Rydzynski, D., Piotrowicz-Cieślak, A. I., Grajek, H., and Wasilewski, J. 2019. Investigation of chlorophyll degradation by tetracycline. Chemosphere. 229: 409-417.
    Schnappinger, D., and Hillen, W. 1996. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Archives of Microbiology. 165: 359-369.
    Serrano, P. H. 2005. Responsible use of antibiotics in aquaculture. FAO Fisheries Technical Paper. 469: 97.
    Sgherri, C. L. M., Loggini, B., Puliga, S., and Navari-Izzo, F. 1994. Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry. 35(3): 561-565.
    Shao, Z. J. 2001. Aquaculture pharmaceuticals and biologicals: current perspectives and future possibilities. Advanced Drug Delivery Reviews. 50: 229-243.
    Toyama, T., Sei, K., Yu, N., Kumada, H., Inoue, D., Hoang, H., Soda, S., Chang, Y. C., Kikuchi, S., Fujita, M., and Ike, M. 2009. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: A mechanism of accelerated biodegradation of phenol. Water Research. 43(15): 3765-3776.
    Tripathi, S., Singh, V. K., Srivastava, P., Singh, R., Devi, R. S., Kumar, A., and Bhadouria, R. 2020. Chapter 4-Phytoremediation of organic pollutants: current status and future directions. Abatement of Environmental Pollutants. 81-105.
    Wang, C. Q., and Song, H. 2009. Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Reports. 28(9): 1341-1349.
    Wang, H., Yao, H., Sun, P., Li, D., and Huang, C. H. 2016. Transformation of tetracycline antibiotics and Fe(II) and Fe(III) species induced by their complexation. Environmental Science & Technology. 50(1): 145-153.
    Watkinson, A. J., Murby, E. J., Kolpin, D. W., and Costanzo, S. D. 2009. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Science of the Total Environment. 407(8): 2711-2723.
    Xie, X., Zhou, Q., Lin, D., Guo, J., and Bao, Y. 2011. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.). Environmental Science and Pollution Research. 18(4): 566-575.
    Yang, C., Song, G., and Lim, W. 2020. A review of the toxicity in fish exposed to antibiotics. Comparative Biochemistry and Physiology, Part C. 237: 108840.
    Zaranyika, M. F., and Dzomba, P. 2022. Aquatic bioaccessibility of tetracycline antibiotics to higher fauna: Prediction based on the water-column/sediment partition coefficient. Scientific African. 15: e01113.
    Zhong, S. F., Yang, B., Lei, H. J., Xiong, Q., Zhang, Q. Q., Liu, F., and Ying, G. G. 2022. Transformation products of tetracyclines in three typical municipal wastewater treatment plants. Science of the Total Environment. 830: 154647.
    Zhou, L. J., Wu, Q. L., Zhang, B. B., Zhao, Y. G., and Zhao, B. Y. 2016. Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China. Environmental Science: Processes & Impacts. 18(4): 500-513.

    下載圖示
    QR CODE