簡易檢索 / 詳目顯示

研究生: 洪崇惟
Hong, Chong-Wei
論文名稱: 利用韃靼蕎麥開發膨發米點心之研究
Study on the development of puffed rice snack by Tatary buckwheat
指導教授: 林貞信
Lin, Jenshinn
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 膨發點心韃靼蕎麥芸香苷降解酶槲皮素擠壓
外文關鍵詞: puffed snack, Tatary buckwheat, rutin degrading enzymes (RDEs), quercetin, extrusion
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6346/NPUST202200315
相關次數: 點閱:51下載:61
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 韃靼蕎麥(Fagopyrum tataricum),又名苦蕎麥,屬於蓼科蕎麥屬,原產於中國西部山區。台灣栽種品種以台中2號為主,含有平衡的胺基酸、脂質、膳食纖維、礦物質、多酚及豐富類黃酮物質,特別是芸香苷(Rutin)。研究指出食用韃靼蕎麥對人體有多種益處如抗氧化和抗發炎等功效,獨特的營養和功能性成分具良好的市場潛力,然而未經處理韃靼蕎麥本身的強烈苦味,造成相關產品較少和消費者的接受度不高,苦味的主因已被研究證實,源自韃靼蕎麥本身的芸香苷降解酶(Rutin-Degrading Enzymes, RDEs)於加工過程中使芸香苷降解成槲皮素所致。擠壓加工為高溫短時(High-temperature Short-time, HTST)的加工程序,對於酵素滅活具顯著的作用,並包含許多優點如新產品開發、營養保留、大量生產、廢棄物和廢水量少等優點。因此本研究將糙米和韃靼蕎麥粉混合,經國產單軸擠壓機膨發製成米點心以開發具特殊風味和有益健康之膨發米點心。本實驗採4x3複因子膨發擠壓試驗,探討不同韃靼蕎麥粉比例(0%、15%、30%、45%)、螺軸轉速(320 rpm、350 rpm、380 rpm)及固定的套筒溫度110 ℃對於擠出物之理化性質變化,和芸香苷降解酶是否有抑制作用。研究結果顯示,在色澤部分,隨著韃靼蕎麥粉添加比例增加,擠出物L*值下降、b*值上升,韃靼蕎麥的添加使擠出物顏色較深;在物理性質部分,以45%韃靼蕎麥粉在螺軸轉速350 rpm下生產之擠出物具最高徑向膨發率(3.69)和硬度(3.03 kgf),韃靼蕎麥粉的增加使擠出物的吸水性指標上升、水溶性指標下降,表明添加韃靼蕎麥粉能改善糙米擠出物之物理特性;在芸香苷降解酶活性部分,所有添加韃靼蕎麥擠出物,經加水處理後,具低含量的槲皮素(0.10-0.39 mg QC/g d.m.),說明擠壓處理能抑制芸香苷轉化為槲皮素;而在抗氧化能力方面,隨著韃靼蕎麥粉比例增加,能改善擠出物之抗氧化能力,具顯著差異(p<0.05)。當添加45%韃靼蕎麥粉,以螺軸轉速320 rpm時,擠出物具最高的總酚類化合物含量(150.86 mg GAE/100 g d.m.)、總類黃酮化合物含量(284.08 mg RE/100 g d.m.)、DPPH自由基清除能力(88.46%)和亞鐵還原能力(Ferric Reducing Antioxidant Power, FRAP)(260.42μmol FeSO4/L)。感官品評試驗樣品,經最佳操作條件之選定與評估後,在0%、15%、30%和45%韃靼蕎麥添加,各挑選一組擠出物進行試驗。於感官品評上,0%添加的整體接受度最好,而添加韃靼蕎麥粉之組別中,以15%和30%韃靼蕎麥粉添加接受度相近。綜上所述,韃靼蕎麥粉的添加能改善糙米擠出物之物理性質和抗氧化能力,且證實擠壓處理為一種可行滅活韃靼蕎麥中內源性酵素芸香苷降解酶的方法,本研究中以30%韃靼蕎麥粉添加、螺軸轉速380 rpm為本實驗韃靼蕎麥擠出物之最佳操作條件。

    Tatary buckwheat (TB, Fagopyrum tataricum) is a member of the Polygonaceous family native to the western mountains of China. The commercial cultivar in Taiwan is Taichung no.2. Tatary buckwheat is high in amino acids, lipids, dietary fiber, minerals, and polyphenols, particularly the flavonoid rutin. Past research has reported the physiological effects of TB in particular its effect against oxidative stress and inflammation. Its unique functional components have great market potential, but consumer acceptance is mostly held back by its strong bitter taste. The bitter taste has been attributed to quercetin, the degradation product of Rutin-degrading enzymes (RDEs). Extrusion is a high-temperature short-time (HTST) process with significant effects on enzyme inactive. Using extrusion brings the opportunity for new product development, better nutrient retention, and lower waste from polluted water and biomass. This study aims to measure the effect of extrusion on the degradation of RDEs, levels of bioactive compounds, and the physical properties of TB-supplemented brown rice extrudates to come up with a puffed rice snack product with acceptable nutrition levels and flavor. The study has a 3x4 two-factors design with different proportion of Tatary buckwheat (0%, 15%, 30%, 45%) and screw speeds (320, 350, 380 rpm). Higher proportions of Tatary buckwheat were found to decrease the color lightness (L*) and increase the yellowness (b*) in brown rice extrudates. Extrudates produced with 45% Tatary buckwheat flour at 350 rpm had the highest radial expansion rate at 3.69 and a hardness of 3.03 kgf. Higher proportions of Tatary buckwheat flour increase the water absorption index and decreases the water solubility index of the extrudate, which are desirable in extrusion products. All the extrudates containing Tatary buckwheat had a low level of quercetin content of 0.10-0.39 mg per g d.m. after water treatment, indicating that extrusion treatment inhibited the enzymatic conversion of rutin into quercetin. Increased ratio of Tatary buckwheat flour improved the antioxidant capacity of extrudates significantly (P < 0.05). Extrudates made with 45% Tatary buckwheat flour and 320 rpm screw speed had the highest total phenolic content (150.86 mg GAE/ 100 g d.m.), total flavonoid content (284.08 mg RE / 100 g d.m.), DPPH free radical scavenging activity (88.46%) and ferric reducing antioxidant power (FRAP) (260.42 μmol FeSO4/L). Optimal operating conditions were implemented for the different Tatary buckwheat ratios and the sensory qualities of the resulting extrudate were evaluated. Extrudates with no addition of Tatary buckwheat flour had the highest overall acceptance, while extrudates with 15% and 30% Tatary buckwheat powder had similar acceptance. The addition of Tatary buckwheat flour was found to improve the physical and antioxidative properties of brown rice extrudate, and extrusion was able to inactivate the endogenous rutin degrading enzyme of Tatary buckwheat. The optimal condition was found to be producing extrudates with 30% Tatary buckwheat addition at a die temperature of 110 ℃ and screw speed of 380 rpm.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 IX
    表目錄 X
    第1章 前言 1
    第2章 文獻回顧 2
    2.1 類穀物 2
    2.1.1 類穀物簡介 2
    2.1.2 種植類穀物之優勢 2
    2.2 蕎麥 4
    2.2.1 蕎麥之簡介 4
    2.2.2 蕎麥之營養組成 7
    2.2.3 蕎麥台灣栽種現況 7
    2.3 韃靼蕎麥 7
    2.3.1 韃靼蕎麥簡介 7
    2.3.2 彰化縣大城鄉韃靼蕎麥栽種與產量 12
    2.3.3 韃靼蕎麥之健康益處 12
    2.3.4 韃靼蕎麥之芸香苷(Rutin) 16
    2.3.5 芸香苷降解酶(Rutin-degrading enzymes, RDEs) 19
    2.4 稻米 22
    2.4.1 稻米之簡介 22
    2.4.2 稻米之種類 24
    2.4.3 稻米之結構 24
    2.4.4 糙米之營養價值 26
    2.5 擠壓技術 28
    2.5.1 食品擠壓技術簡介 28
    2.5.2 擠壓技術歷史 30
    2.5.3 擠壓技術之優點 30
    2.5.4 食品擠壓機組成 31
    2.5.5 擠壓機的分類 33
    2.5.6 擠壓參數對擠出物的影響 36
    第3章 材料與方法 38
    3.1 實驗原料 38
    3.1.1 韃靼蕎麥 38
    3.1.2 糙米 38
    3.2 實驗設備 38
    3.3 實驗設計 40
    3.4 實驗流程 40
    3.5 測定項目及分析方法 43
    3.5.1 基本組成分分析 43
    3.5.2 擠出物理化性質分析 45
    3.5.3 確定芸香苷降解酶活性方法 47
    3.5.4 抗氧化能力分析 47
    3.5.5 芸香苷和槲皮素高效能液相層析(HPLC)分析 49
    3.6 感官品評 49
    3.7 實驗數據整理及統計分析 51
    第4章 結果與討論 53
    4.1 基本組成分分析 53
    4.2 理化性質分析 53
    4.2.1 色澤 53
    4.2.2 徑向膨發率 61
    4.2.3 吸水性指標 64
    4.2.4 水溶性指標 67
    4.2.5 硬度 70
    4.3 擠壓對芸香苷降解酶活性之影響 73
    4.4 抗氧化能力分析 79
    4.4.1 總酚類化合物含量 79
    4.4.2 總類黃酮化合物含量 82
    4.4.3 DPPH自由基清除能力 85
    4.4.4 亞鐵還原能力(FRAP) 88
    4.5 感官品評 91
    4.5.1 最佳操作條件之選定與評估 91
    4.5.2 感官品評之結果 91
    第5章 結論 98
    第6章 參考文獻 100

    王潮鴻。2016。以反應曲面法開發牛蒡擠壓休閒品最適操作條件之研究。國立中興大學生物產業機電工程學系碩士學位論文。
    田雲生。2000。擠壓機之介紹與應用。台中區農業改良場八十九年度試驗研究暨推廣學術研討會報告摘要,特刊第49號。
    孙倩。2012。黑苦荞。中国食品,(11),59。
    行政院農委會。2019。台灣2013年至2019年稻米出口價量表。2021年12月13日,取自https://www.agriharvest.tw/archives/11577。
    行政院農委會。2020。台灣歷年米和小麥消費量。2021年12月25日,取自https://www.newsmarket.com.tw/blog/159589/。
    宋國祥,彭錦樵,莊世昌。2000。添加綠茶粉於米食膨發休閒食品最,適操作條件之研究。農業機械學刊,9(2):27-38。
    林貞信,2017。生活中休閒食品-擠壓加工技術原理與應用。科學月刊。
    施俞安。蕎麥特性與技術大公開、高營養、生長快、少蟲害,臺灣蕎麥品種特性與栽植技術。豐年雜誌,70(2)。
    洪聖杰。2018。焙炒與擠壓加工對米糠品質之影響。國立屏東科技大學碩士學位論文。
    張明義。2011。模孔孔徑與蕎麥粉添加比例開發含蕎麥玉米擠壓食品最適條件之研究。農業機械學刊,10(2):43-57。
    張隆仁。2000。蕎麥的再利用。台中區農業專訊第二十八期。
    張學琨、侯福分。2006。稻米產銷對環境及健康之影響。生物技術與綠色農業研討會專刊,117-155。
    陳冠瑋,2019。真空油炸對即時米薯條理化性質的影響。國立屏東科技大學碩士學位論文。
    彭育新。1992。擠壓技術發展概況。食品工業24(8):49-56。
    彭孃慧。 2014。紫心苷藷擠壓休閒食品之開發及其抗氧化特性之研究。國立中興大學生物產業機電工程學系碩士學位論文。
    游鎮嘉。2019。利用蝶豆花開發機能性膨發米點心之研究。國立屏東科技大學食品科學系碩士學位論文。
    經濟部標準檢驗局。2017。中華民國國家標準總號13446。
    趙亮瑜。2018。添加不同膠對組織化大豆蛋白之理化性質的影響。國立屏東科技大學食品科學系碩士學位論文。
    趙錦珠。2011。低蛋白膨發米點心之開發。國立屏東科技大學食品科學系碩士學位論文。
    潘柏守。2015。糙米、玉米及大麥混和物膨發擠壓之研究。國立屏東科技大學食品科學系碩士學位論文。
    賴羿帆。2013。擠壓加工對發芽糙米γ-胺基丁酸含量及理化性質之影響。國立屏東科技大學食品科學系碩士學位論文。
    Adekola, K. A. (2016). Engineering review food extrusion technology and its applications. Journal of Food Science and Engineering, 6(3), 149-168.
    Afanas’eva, I. B., Ostrakhovitch, E. A., Mikhal’chik, E. V., Ibragimova, G. A., & Korkina, L. G. (2001). Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochemical Pharmacology, 61(6), 677-684.
    Alonso, R., Grant, G., Dewey, P., & Marzo, F. (2000). Nutritional assessment in vitro and in vivo of raw and extruded peas (Pisum sativum L.). Journal of Agricultural and Food Chemistry, 48(6), 2286-2290.
    Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21(2), 106-113.
    Anton, A. A., & Luciano, F. B. (2007). Instrumental texture evaluation of extruded snack foods. Ciencia y Tecnologia Alimentaria- -Journal of Food, 5(4), 245-251.
    Ardestani, A., & Yazdanparast, R. (2007). Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chemistry, 104(1), 21-29.
    Asare, E. K., Sefa-Dedeh, S., Sakyi-Dawson, E., & Afoakwa, E. O. (2004). Application of response surface methodology for studying the product characteristics of extruded rice-cowpea-groundnut blends. International Journal of Food Sciences and Nutrition, 55(5), 431-439.
    Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76.
    Bonafaccia, G., Marocchini, M., & Kreft, I. (2003). Composition and technological properties of the flour and bran from common and Tatary buckwheat. Food Chemistry, 80(1), 9-15.
    Brennan, C., Brennan, M., Derbyshire, E., & Tiwari, B. K. (2011). Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends in Food Science & Technology, 22(10), 570-575.
    Byars, J. A., & Singh, M. (2015). Properties of extruded chia-corn meal puffs. LWT - Food Science and Technology, 62(1, Part 2), 506-510.
    Cai, Y. Z., Corke, H., Wang, D., & Li, W. D. (2016). Buckwheat: Overview. In C. Wrigley, H. Corke, K. Seetharaman, & J. Faubion (Eds.), Encyclopedia of Food Grains (Second Edition) (pp. 307-315). Academic Press.
    Chen, H.-N., & Hsieh, C.-L. (2010). Effects of Sophora japonica flowers (Huaihua) on cerebral infarction. Chinese Medicine, 5(1), 1-4.
    Chen, Y., Ma, Y., Dong, L., Jia, X., Liu, L., Huang, F., Chi, J., Xiao, J., Zhang, M., & Zhang, R. (2019). Extrusion and fungal fermentation change the profile and antioxidant activity of free and bound phenolics in rice bran together with the phenolic bioaccessibility. LWT - Food Science and Technology, 115, 108461.
    Chhabra, R. P., & Richardson, J. F. (2008). Chapter 4-Flow of Multi-phase Mixtures in Pipes. In R. P. Chhabra & J. F. Richardson (Eds.), Non-Newtonian Flow and Applied Rheology (Second Edition) (pp. 206-248). Butterworth-Heinemann.
    Cho, D.-H., & Lim, S.-T. (2016). Germinated brown rice and its bio-functional compounds. Food Chemistry, 196, 259-271.
    Day, L. (2011). 10 - Wheat Gluten: Production, Properties and Application. In G. O. Phillips & P. A. Williams (Eds.), Handbook of Food Proteins (pp. 267-288). Woodhead Publishing.
    Deng, J., Cheng, W., & Yang, G. (2011). A novel antioxidant activity index for natural products using the DPPH assay. Food Chemistry, 125(4), 1430-1435.
    Dietrych-Szostak, D., & Oleszek, W. (1999). Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Möench) grain. Journal of Agricultural and Food Chemistry, 47(10), 4384-4387.
    Ding, Q.-B., Ainsworth, P., Plunkett, A., Tucker, G., & Marson, H. (2006). The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. Journal of Food Engineering, 73(2), 142-148.
    Doğan, H., & Karwe, M. V. (2003). Physicochemical properties of quinoa extrudates. Food Science and Technology International, 9(2), 101-114.
    Frame, N. D. (1994). Operational Characteristics of the Co-Rotating Twin-Screw Extruder. In N. D. Frame (Ed.), The Technology of Extrusion Cooking (pp. 1-51). Springer.
    Germ, M., Árvay, J., Vollmannová, A., Tóth, T., Golob, A., Luthar, Z., & Kreft, I. (2019). The temperature threshold for the transformation of rutin to quercetin in Tatary buckwheat dough. Food Chemistry, 283, 28-31.
    Gu, B.-J., Kowalski, R. J., and Ganjyal, G. (2017). Food Extrusion Processing: An Overview. Pullman, WA: Washington State University Extension. 1-8.
    Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., & Jiang, Y. (2003). Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23(12), 1719-1726.
    Harper, J. M., & Clark, J. P. (1979). Food extrusion. Critical Reviews in Food Science and Nutrition, 11(2), 155-215.
    Hoogenkamp, H., Kumagai, H., & Wanasundara, J. P. D. (2017). Chapter 3-Rice Protein and Rice Protein Products. In S. R. Nadathur, J. P. D. Wanasundara, & L. Scanlin (Eds.), Sustainable Protein Sources (pp. 47-65). Academic Press.
    Hsieh, F., Peng, I. C., & Huff, H. E. (1990). Effects of salt, sugar and screw speed on processing and product variables of corn meal extruded with a twin‐screw extruder. Journal of Food Science, 55(1), 224-227.
    Huang, X. (2003). Iron overload and its association with cancer risk in humans: Evidence for iron as a carcinogenic metal. Mutation Research, 533(1-2), 153-171.
    Igual, M., García-Segovia, P., & Martínez-Monzó, J. (2020). Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. Journal of Food Engineering, 282, 110032.
    Jin, H.-M., & Wei, P. (2011). Anti-fatigue properties of Tatary buckwheat extracts in mice. International Journal of Molecular Sciences, 12(8), 4770-4780.
    Jozinović, A., Šubarić, D., Ačkar, Đ., Babić, J., Klarić, I., Kopjar, M., & Valek Lendić, K. (2012). Influence of buckwheat and chestnut flour addition on properties of corn extrudates. Croatian Journal of Food Science and Technology, 4(1), 26-33.
    Juliano, B. O. (2016). Rice: Role in Diet. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 641-645). Academic Press.
    Karwe, M. V. (2009). Food Extrusion. In G. V. Barbosa-Canovas, Food engineering, 3, (pp.226-236). Abu Dhabi: UNESCO-EOLSS
    Kaisangsri, N., Kowalski, R. J., Wijesekara, I., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2016). Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT - Food Science and Technology, 68, 391-399.
    Kalinová, J. P., Vrchotová, N., & Tříska, J. (2018). Contribution to the study of rutin stability in the achenes of Tatary buckwheat (Fagopyrum tataricum). Food Chemistry, 258, 314-320.
    Kesre, C., & Masatcioglu, M. T. (2022). Physical characteristics of corn extrudates supplemented with red lentil bran. LWT - Food Science and Technology, 153, 112530.
    Kim, S.-J., Zaidul, I. S. M., Suzuki, T., Mukasa, Y., Hashimoto, N., Takigawa, S., Noda, T., Matsuura-Endo, C., & Yamauchi, H. (2008). Comparison of phenolic compositions between common and Tatary buckwheat (Fagopyrum) sprouts. Food Chemistry, 110(4), 814-820.
    Koksel, F., & Masatcioglu, M. T. (2018). Physical properties of puffed yellow pea snacks produced by nitrogen gas assisted extrusion cooking. LWT - Food Science and Technology, 93, 592-598.
    Köksel, H., Ryu, G. H., Basman, A., Demiralp, H., & Ng, P. K. (2004). Effects of extrusion variables on the properties of waxy hulless barley extrudates. Food/Nahrung, 48(1), 19-24.
    Kreft, I., Fabjan, N., & Yasumoto, K. (2006). Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry, 98(3), 508-512.
    Lee, C.-C., Shen, S.-R., Lai, Y.-J., & Wu, S.-C. (2013). Rutin and quercetin, bioactive compounds from Tatary buckwheat, prevent liver inflammatory injury. Food & Function, 4(5), 794-802.
    Lee, J. K., & Ryu, G. H. (2006). Effect of extrusion process variables on rutin content in buckwheat. Food Engineering Progress, 10(4):280-285
    Li, D., Li, X., Ding, X., & Park, K.-H. (2008). A process for preventing enzymatic degradation of rutin in Tatary buckwheat (Fagopyrum tataricum Garten) flour. Food Science and Biotechnology, 17(1), 118-122.
    Li, S., & Zhang, Q. H. (2001). Advances in the development of functional foods from buckwheat. Critical Reviews in Food Science and Nutrition, 41(6), 451-464.
    Li, Z., Li, Z., Huang, Y., Jiang, Y., Liu, Y., Wen, W., Li, H., Shao, J., Wang, C., & Zhu, X. (2020). Antioxidant capacity, metal contents, and their health risk assessment of Tatary buckwheat teas. American Chemical Society Omega, 5(17), 9724-9732.
    Lukšič, L., Bonafaccia, G., Timoracka, M., Vollmannova, A., Trček, J., Nyambe, T. K., Melini, V., Acquistucci, R., Germ, M., & Kreft, I. (2016). Rutin and quercetin transformation during preparation of buckwheat sourdough bread. Journal of Cereal Science, 69, 71-76.
    Luo, S., Chan, E., Masatcioglu, M. T., Erkinbaev, C., Paliwal, J., & Koksel, F. (2020). Effects of extrusion conditions and nitrogen injection on physical, mechanical, and microstructural properties of red lentil puffed snacks. Food and Bioproducts Processing, 121, 143-153.
    Luthar, Z., Golob, A., Germ, M., Vombergar, B., & Kreft, I. (2021). Tatary buckwheat in human nutrition. Plants, 10(4), 700.
    Manthey, F. A. (2016). Starch: Sources and Processing. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 160-164). Academic Press.
    Markesbery, W. R., & Lovell, M. A. (2006). DNA oxidation in Alzheimer’s disease. Antioxidants & Redox Signaling, 8(11-12), 2039-2045.
    Massawe, F., Mayes, S., & Cheng, A. (2016). Crop diversity: an unexploited treasure trove for food security. Trends in Plant Science, 21(5), 365-368.
    Merendino, N., Molinari, R., Costantini, L., Mazzucato, A., Pucci, A., Bonafaccia, F., Esti, M., Ceccantoni, B., Papeschi, C., & Bonafaccia, G. (2014). A new “functional” pasta containing Tatary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats. Food & Function, 5(5), 1017-1026.
    Mirończuk-Chodakowska, I., Witkowska, A. M., & Zujko, M. E. (2018). Endogenous non-enzymatic antioxidants in the human body. Advances in Medical Sciences, 63(1), 68-78.
    Mohd Esa, N. (2013). By-products of rice processing: an overview of health benefits and applications. Rice Research: Open Access, 01(01), 68-78.
    Moraru, C. i., & Kokini, J. l. (2003). Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety, 2(4), 147-165.
    Nenadis, N., Kyriakoudi, A., & Tsimidou, M. Z. (2013). Impact of alkaline or acid digestion to antioxidant activity, phenolic content and composition of rice hull extracts. LWT - Food Science and Technology, 54(1), 207-215.
    Nidhi, K., Mohan, S., & Priti, J. (2019). Types of extruders used for extrusion cooking-a review. International Journal of Current Microbiology and Applied Sciences, 8(04), 716-720.
    Ohtsubo, K., Suzuki, K., Yasui, Y., & Kasumi, T. (2005). Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of Food Composition and Analysis, 18(4), 303-316.
    Oikonomou, N. A., & Krokida, M. K. (2012). Water absorption index and water solubility index prediction for extruded food products. International Journal of Food Properties, 15(1), 157-168.
    Osman, M. G., Sahai, D., & Jackson, D. S. (2000). Oil absorption characteristics of a multigrain extrudate during frying: effect of extrusion temperature and screw speed. Cereal Chemistry, 77(2), 101-104.
    Panesar, P. S., & Kaur, S. (2016). Rice: Types and Composition. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 646-652). Academic Press.
    Patel, K., & Patel, D. K. (2019). Chapter 26 - The Beneficial Role of Rutin, A Naturally Occurring Flavonoid in Health Promotion and Disease Prevention: A Systematic Review and Update. In R. R. Watson & V. R. Preedy (Eds.), Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases (Second Edition) (pp. 457-479). Academic Press.
    Perron, N. R., & Brumaghim, J. L. (2009). A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochemistry and Biophysics, 53(2), 75-100.
    Pirzadah, T. B., & Malik, B. (2020). Pseudocereals as super foods of 21st century: Recent technological interventions. Journal of Agriculture and Food Research, 2, 100052.
    Pingali, P., Raney, T., & Wiebe, K. (2008). Biofuels and food security: missing the point. Review of Agricultural Economics, 30(3), 506-516.
    Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, 53, 1468-1485.
    Rafe, A., & Sadeghian, A. (2017). Stabilization of Tarom and Domesiah cultivars rice bran: physicochemical, functional, and nutritional properties. Journal of Cereal Science, 74, 64-71.
    Ramos Diaz, J. M., Kirjoranta, S., Tenitz, S., Penttilä, P. A., Serimaa, R., Lampi, A.-M., & Jouppila, K. (2013). Use of amaranth, quinoa and kañiwa in extruded corn-based snacks. Journal of Cereal Science, 58(1), 59-67.
    Riaz, M. N. (2000). Extruders in Food Applications (pp. 457-479). CRC Press.
    Riaz, M. N. (2013). Chapter 16-Food Extruders. In M. Kutz (Ed.), Handbook of Farm, Dairy and Food Machinery Engineering (Second Edition) (pp. 427-440). Academic Press.
    Rodis, P., Wen, L. F., & Wasserman, B. P. (1993). Assessment of extrusion-induced starch fragmentation by gel-permeation chromatography and methylation analysis. Cereal Chemistry, 70, 152-152.
    Rodríguez, J. P., Rahman, H., Thushar, S., & Singh, R. K. (2020). Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Frontiers in Genetics, 11, 49.
    Ruan, J., Zhou, Y., Yan, J., Zhou, M., Woo, S.-H., Weng, W., Cheng, J., & Zhang, K. (2020). Tatary buckwheat: an under-utilized edible and medicinal herb for food and nutritional security. Food Reviews International, 0(0), 1-15.
    Sedej, I., Sakač, M., Mandić, A., Mišan, A., Tumbas, V., & Čanadanović-Brunet, J. (2012). Buckwheat (Fagopyrum esculentum Moench) grain and attractions: antioxidant compounds and activities. Journal of Food Science, 77(9), C954-C959.
    Selani, M. M., Brazaca, S. G. C., dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food chemistry, 163, 23-30.
    Seth, D., Badwaik, L. S., & Ganapathy, V. (2015). Effect of feed composition, moisture content and extrusion temperature on extrudate characteristics of yam-corn-rice based snack food. Journal of Food Science and Technology, 52(3), 1830-1838.
    Shahidi, F., & Yeo, J.-D. (2016). Insoluble-bound phenolics in food. Molecules (Basel, Switzerland), 21(9), 1216.
    Singh, J. P., Kaur, A., Singh, B., Singh, N., & Singh, B. (2019). Physicochemical evaluation of corn extrudates containing varying buckwheat flour levels prepared at various extrusion temperatures. Journal of Food Science and Technology, 56(4), 2205-2212.
    Sozer, N., & Poutanen, K. (2013). 12-Fibre in Extruded Products. In J. A. Delcour & K. Poutanen (Eds.), Fibre-Rich and Wholegrain Foods (pp. 256-272). Woodhead Publishing.
    Suzuki, T., Honda, Y., Funatsuki, W., & Nakatsuka, K. (2002). Purification and characterization of flavonol 3-glucosidase, and its activity during ripening in Tatary buckwheat seeds. Plant Science, 163(3), 417-423.
    Suzuki, T., Morishita, T., Noda, T., & Ishiguro, K. (2015). Acute and subacute toxicity studies on rutin-rich Tatary buckwheat dough in experimental animals. Journal of Nutritional Science and Vitaminology, 61(2), 175-181.
    Taverna, L. G., Leonel, M., & Mischan, M. M. (2012). Changes in physical properties of extruded sour cassava starch and quinoa flour blend snacks. Food Science and Technology, 32(4), 826-834.
    Thakur, P., Kumar, K., & Dhaliwal, H. S. (2021). Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. Food Bioscience, 42, 101170.
    Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84.
    Vogrinčič, M., Timoracka, M., Melichacova, S., Vollmannova, A., & Kreft, I. (2010). Degradation of rutin and polyphenols during the preparation of Tatary buckwheat bread. Journal of Agricultural and Food Chemistry, 58(8), 4883-4887.
    Wanjala, W. N., Mary, O., & Symon, M. M. (2020). Influence of feed rate, moisture and mixture composition from composites containing rice (Oryza sativa), sorghum [Sorghum bicolor (L.) Moench] and bamboo (Yushania alpine) shoots on physical properties of extruded flour and mass transfer. Food and Nutrition Sciences, 11(8), 807-823.
    Wieslander, G., Fabjan, N., Vogrincic, M., Kreft, I., Janson, C., Spetz-Nyström, U., Vombergar, B., Tagesson, C., Leanderson, P., & Norbäck, D. (2011). Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase and cholesterol: a double-blind crossover study in day-care center staffs. The Tohoku Journal of Experimental Medicine, 225(2), 123-130.
    Wieslander, G., Fabjan, N., Vogrincic, M., Kreft, I., Vombergar, B., & Norbäck, D. (2012). Effects of common and Tatary buckwheat consumption on mucosal symptoms, headache and tiredness: A double-blind crossover intervention study. Journal of Food, Agriculture & Environment, 10(2), 107-110.
    Wójcicki, J., Barcew-Wiszniewska, B., Samochowiec, L., & Rózewicka, L. (1995). Extractum Fagopyri reduces atherosclerosis in high-fat diet fed rabbits. Die Pharmazie, 50(8), 560-562.
    Wojtowicz, A., Kolasa, A., & Moscicki, L. (2013). Influence of buckwheat addition on physical properties, texture and sensory characteristics of extruded corn snacks. Polish Journal of Food and Nutrition Sciences, 63(4), 239-244.
    Wójtowicz, A., & Moscicki, L. (2011). Effect of wheat bran addition and screw speed on microstructure and textural characteristics of common wheat precooked pasta-like products. Polish Journal of Food and Nutrition Sciences, 61(2).
    Wu, X., Fu, G., Li, R., Li, Y., Dong, B., & Liu, C. (2020). Effect of thermal processing for rutin preservation on the properties of phenolics & starch in Tatary buckwheat achenes. International Journal of Biological Macromolecules, 164, 1275-1283.
    Yang, J., Lee, J., & Sung, J. (2021). Influence of acid treatment on flavonoid content and biological activity in Tatary buckwheat grains and its application for noodles. LWT - Food Science and Technology, 145, 111488.
    Yasuda, T., & Nakagawa, H. (1994). Purification and characterization of the rutin-degrading enzymes in Tatary buckwheat seeds. Phytochemistry, 37(1), 133-136.
    Yoo, J., Kim, Y., Yoo, S.-H., Inglett, G. E., & Lee, S. (2012). Reduction of rutin loss in buckwheat noodles and their physicochemical characterisation. Food Chemistry, 132(4), 2107-2111.
    Zhang, R., Yao, Y., Wang, Y., & Ren, G. (2011). Antidiabetic activity of is quercetin in diabetic KK-Ay mice. Nutrition & Metabolism, 8(1), 1-6.
    Zhao, G., Hu, M., Lu, X., & Zhang, R. (2022). Soaking, heating, and high hydrostatic pressure treatment degrade the flavonoids in rice bran. LWT - Food Science and Technology, 154, 112732.
    Zhu, F. (2016). Chemical composition and health effects of Tatary buckwheat. Food Chemistry, 203, 231-245.

    下載圖示
    QR CODE