簡易檢索 / 詳目顯示

研究生: 游庭懿
Yu, Ting-I
論文名稱: 利用Bacillus sp.發酵豆渣與醬油粕混合物之研究
Study on using Bacillus sp. to ferment the mixture of okara and soya pomace
指導教授: 邱秋霞
Chiu, Chiu-Hsia
劉俊宏
Liu, Chun-Hung
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 農業廢棄物Bacillus sp.蛋白酶纖維素分解能力總游離胺基酸
外文關鍵詞: Agricultural waste, Bacillus sp., Protease, Cellulose decomposition ability, Total free amino acids
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6346/NPUST202200358
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 近年來隨著人口上升導致經濟作物需求增加,農業廢棄物產量亦隨之大增,其多伴隨難消化蛋白質及高纖維,而Bacillus菌屬所產生之蛋白酶、纖維素酶及澱粉酶等胞外酵素,可於發酵過程中將其降解為易吸收之小分子,以提高利用率。
    本研究自實驗室挑選15株Bacillus sp.分別進行蛋白酶及纖維素酶定性測試,將菌株振盪培養 (35℃、150 rpm) 48小時後取200 μL菌液,分別加入於已打洞 (10 mm) 之牛奶培養基及纖維素培養基中,經24小時後觀察培養基是否可產生分解環。結果顯示,15株Bacillus sp.中有12株皆可產生蛋白酶及纖維素酶之分解透明環,因此後續再將菌株進行蛋白酶活性及纖維素分解能力試驗。結果指出,Bacillus velezensis S3及Bacillus subtilis subsp. N1有較佳之蛋白酶活性,其分別為2.69 U及2.58 U。另外亦將菌株培養於含羧甲基纖維素 (CMC) 之TSB培養液中,測試菌株分解纖維素能力。結果顯示,Bacillus subtilis E20及Bacillus megaterium BM有較佳之纖維素分解能力,其分解CMC後可產生較高之葡萄糖含量,分別為5.84 μg/mL及5.61μg/mL。其結果得知Bacillus velezensis S3具有較佳之蛋白酶活性,而B. subtilis E20則有較佳之纖維素分解能力。接著將B. velezensis S3與B. subtilis E20進行菌株特性探討,結果顯示兩株菌株皆可以於10%氯化鈉添加之TSB培養基,但是其無法於pH 4培養基生長。
    接者將S3與E20分別添加1%於不同比例 (2:1、3:1、4:1、5:1及6:1) 之豆渣與醬油粕混合物 (Mix of okara and soya pomace, MOS) 共發酵,測定其菌數與總胺基酸增加率。結果顯示,發酵72小時後菌數皆可以維持在8 Log CFU/g,而總胺基酸增加率則是以6:1比例混合之MOS最好,與發酵0小時相比增加142.05±12.44%。接續探討6:1比例混合之MOS最適化之發酵條件。以一次一因子法探討葡萄糖添加量、氯化鈣添加量及調整發酵溫度,結果顯示添加0.75%葡萄糖及1.5%氯化鈣至6:1 MOS中再於45℃下可以產生最高含量之總游離胺基酸,再利用Box-Behnken設計方法來探討這三個變因對於產生總游離胺基酸之間關係。結果顯示,添加0.76%葡萄糖與1.49%氯化鈣至6:1比例混合之MOS經B. velezensis S3與B. subtilis E20於45.25℃下共發酵可獲得最高含量之游離胺基酸,為93.47±4.57 mg/g。
    最後再分析最適條件發酵後纖維與異黃酮之變化,結果顯示,半纖維素與纖維素含量相比,發酵後可分別降低6.64%及0.3%,表示B. velezensis S3與B. subtilis E20共發酵可降解MOS中纖維。另外,經發酵MOS其苷元型異黃酮Daidzein、Genistein分別下降30.56 ppm及37.78 ppm。綜合上述結果可以得知,B. velezensis S3與B. subtilis E20共發酵以6:1比例混合之MOS可以增加總游離胺基酸含量及降解纖維,使MOS自身之應用限制降低進而增加未來再利用性。

    According to the increase in population, the demand for cash crops has increased, and the output of agricultural waste has also increased significantly. Most of agricultural waste are accompanied by indigestible protein and high fiber. While extracellular protease, cellulase, and amylase produced by Bacillus sp., and the enzymes can degrad them into small molecules that are easily absorbed during the fermentation process to improve utilization.
    In this study, 15 strains of Bacillus sp. were selected from the laboratory for qualitative tests of protease and cellulase, respectively. The strains were shaken cultured (35℃, 150 rpm) for 48 hours, and take 200 μL of bacterial liquid and add to the holes (10 mm) in the milk medium and cellulose medium, after 24 hours, observe whether the medium could produce a decomposition ring. The results showed that 12 of the 15 strains of Bacillus sp. could produce protease and cellulase-decomposing transparent rings, so the strains were then tested for protease activity and cellulose decomposition ability. The results indicated that Bacillus velezensis S3 and Bacillus subtilis subsp. N1 had better protease activities, which were 2.69 U and 2.58 U, respectively. In addition, the strain was cultured in a TSB medium containing carboxymethyl cellulose (CMC) to test the ability of the strain to decompose cellulose. The results showed that Bacillus subtilis E20 and Bacillus megaterium BM had the better cellulose decomposition ability, and could produce higher glucose content after decomposing CMC, which were 5.84 μg/mL and 5.61 μg/mL, respectively. The results show that B. velezensis S3 has better protease activity, and B. subtilis E20 has the better cellulolytic ability. Then, the characteristics of B. velezensis S3 and B. subtilis E20 were investigated. The results showed that both strains could grow in a TSB medium supplemented with 10% sodium chloride, but they could not grow in a pH 4 medium.
    The receiver added 1% of S3 and E20 respectively in different ratios (2:1, 3:1, 4:1, 5:1, and 6:1) of the mixture of okara and soya pomace (MOS) After co-fermentation, the bacterial count and the increase rate of total amino acids were determined. The results show that the bacterial count can be maintained at 8 Log CFU/g after 72 hours of fermentation, and the increase rate of total amino acids is the best MOS mixed with a ratio of 6:1, which increases by 142.05±12.44% compared with 0 hour of fermentation. Continue to discuss the optimal fermentation conditions of MOS mixed in a ratio of 6:1. The addition of glucose, calcium chloride, and adjustment of fermentation temperature were investigated by one-factor method at a time. The results showed that adding 0.75% glucose and 1.5% calcium chloride to 6:1 MOS at 45℃ could produce the highest content of total free amino acids and the Box-Behnken design method were used to explore the relationship between these three variables for the production of total free amino acids. The results showed that the highest content of free amino acids was obtained by co-fermentation of B. velezensis S3 and B. subtilis E20 at 45.25℃ with MOS added with 0.76% glucose and 1.49% calcium chloride to a ratio of 6:1, which was 93.47± 4.57 mg/g.
    Finally, the changes in fiber and isoflavones after fermentation under optimum conditions were analyzed. The results showed that the content of hemicellulose and cellulose could be reduced by 6.64% and 0.3% respectively after fermentation, indicating that B. velezensis S3 and B. subtilis E20 co-fermented degradable MOS fiber. In addition, the aglycone isoflavones Daidzein and Genistein decreased by 30.56 ppm and 37.78 ppm respectively after fermented MOS. Based on the above results, it can be known that the co-fermentation of B. velezensis S3 and B. subtilis E20 with MOS mixed at a ratio of 6:1 can increase the content of total free amino acids and degrade fibers, to reduce the application limitation of MOS itself and increase future reusability.

    中文摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 X
    表目錄 XII
    附圖目錄 XIII
    1. 前言 1
    2. 文獻回顧 2
    2.1豆渣 2
    2.1.1豆渣之簡介 2
    2.1.2豆渣之組成 2
    2.1.3豆渣產量分析 6
    2.1.4豆渣發展現況與限制 6
    2.2醬油粕 12
    2.2.1醬油粕之簡介 12
    2.3芽孢桿菌 16
    2.4固態發酵 17
    2.5反應曲面法 19
    2.5.1全因子設計 19
    2.5.2中央合成設計 22
    2.5.3 Box-Behnken設計 22
    2.5.4 Doehlert設計 22
    3. 材料與方法 24
    3.1實驗設計 24
    3.2實驗原料 26
    3.2.1豆渣 26
    3.2.2醬油粕 26
    3.3試藥與培養基 26
    3.3.1試藥 26
    3.3.2培養基 29
    3.4儀器設備 30
    3.5實驗菌株 32
    3.5.1芽孢桿菌菌株保存 32
    3.5.2芽孢桿菌菌株之活化 32
    3.5.3芽孢桿菌菌株篩選 32
    3.5.2.1蛋白酶定性 33
    3.5.2.2纖維素酶定性 33
    3.5.2.3蛋白酶活性測定 33
    3.5.2.4纖維素分解能力 33
    3.5.4菌株之生理特性探討 34
    3.5.4.1菌株之生長曲線 34
    3.5.4.2菌株菌體型態與大小 34
    3.5.5芽孢桿菌之耐受性試驗 36
    3.5.5.1耐鹽性試驗 36
    3.5.5.2耐酸鹼性試驗 36
    3.6豆渣及醬油粕之一般成分分析 36
    3.6.1水分測定 36
    3.6.2粗脂肪測定 37
    3.6.3粗蛋白測定 37
    3.6.4粗纖維測定 38
    3.6.5粗灰分測定 38
    3.7豆渣與醬油粕混合物 (MOS) 之發酵試驗 39
    3.7.1芽孢桿菌菌數之計數 39
    3.7.2總游離胺基酸之分析 40
    3.7.2.1樣品前處理 40
    3.7.2.2總游離胺基酸含量測定 40
    3.7.3 pH值測定 41
    3.7.4鹽度測定 41
    3.8以反應曲面法進行最適化培養條件之探討 41
    3.8.1一次一因子法挑選因子 42
    3.8.1.1最適葡萄糖添加量探討 42
    3.8.1.2最適氯化鈣添加量探討 42
    3.8.1.3最適發酵溫度探討 42
    3.8.2以Box-Behnken Design進行最適化發酵條件之探討 42
    3.9發酵物之分析 44
    3.9.1中性洗滌纖維 (Neutral Detergent Fiber, NDF) 44
    3.9.2酸性洗滌纖維 (Acid Detergent Fiber, ADF) 44
    3.9.3酸性洗滌木質素 (Acid Detergent Lignin, ADL) 46
    3.9.4半纖維素 (Hemicellulose) 46
    3.9.5纖維素 (Cellulose) 46
    3.9.6大豆異黃酮含量之測定 47
    3.10統計分析 47
    4. 結果與討論 48
    4.1 Bacillus菌株之篩選 48
    4.1.1蛋白酶與纖維素酶定性試驗 48
    4.1.2蛋白酶活性測定 50
    4.1.3纖維素分解能力測定 50
    4.2 Bacillus菌株之生長特性 53
    4.2.1 Bacillus菌株之生長曲線 53
    4.2.2 Bacillus菌株之大小型態特徵 53
    4.3 Bacillus菌株之耐受性 56
    4.3.1 Bacillus菌株耐鹽性試驗 56
    4.3.2 Bacillus菌株耐酸鹼性試驗 56
    4.4豆渣與醬油粕之成分分析 59
    4.4.1豆渣與醬油粕之一般成分分析 59
    4.4.2不同比例混合之MOS水分、pH值及鹽度 59
    4.5 B. velezensis S3與B. subtilis E20共發酵之不同比例MOS其菌數變化 62
    4.6 B. velezensis S3與B. subtilis E20共發酵不同比例MOS之總游離胺基酸變化62
    4.7以反應曲面法探討共發酵MOS之最適發酵條件 64
    4.7.1影響因子之探討 64
    4.7.1.1最適葡萄糖添加量探討 65
    4.7.1.2最適氯化鈣添加量探討 65
    4.7.1.3最適發酵溫度探討 68
    4.7.2探討B. velezensis S3與B. subtilis E20共發酵MOS產生總游離胺基酸之最適發酵條件 70
    4.8 B. velezensis S3與B. subtilis E20最適共發酵MOS產生總游離胺基酸條件之纖維與大豆異黃酮分析 78
    4.8.1中性洗滌纖維、酸性洗滌纖維、酸性洗滌木質素、半纖維素、纖維素 78
    4.8.2大豆異黃酮含量 80
    5. 結論 83
    6. 參考文獻 85
    7. 附錄 100

    中華民國國際標準CNS。1980。醃漬食品檢驗法,總號6246,類號N6126。經濟部標準檢驗局。
    中華民國國際標準CNS。1986。飼料檢驗法 (水分之測定),總號2770-3,類號N4024-3。經濟部標準檢驗局。
    中華民國國際標準CNS。1986。飼料檢驗法 (粗脂肪之測定),總號2770-4,類號N4024-4。經濟部標準檢驗局。
    中華民國國際標準CNS。1986。飼料檢驗法 (粗蛋白質之測定),總號2770-5,類號N4024-5。經濟部標準檢驗局。
    中華民國國際標準CNS。1986。飼料檢驗法 (粗纖維之測定),總號2770-8,類號N4024-8。經濟部標準檢驗局。
    中華民國國際標準CNS。1986。飼料檢驗法 (粗灰分之測定),總號2770-9,類號N4024-9。經濟部標準檢驗局。
    行政院農業委員會全球資訊網。2022年4月1日。取自:https://www.coa.gov.tw/theme_list.php?theme=dictionary&keyword=E&print=Y&page=608。
    行政院衛生福利部食品藥物管理署。2013。部授食字第1021950329號公告修正。食品微生物之檢驗方法-生菌數之檢驗 (MOHWM0014.01)。
    行政院衛生福利部食品藥物管理署。2018。膠囊錠狀食品中大豆異黃酮之檢驗方法 (TFDAA0024.01)。
    徐郁婷。2020。2020食品產業年鑑。第250頁。台灣。
    陳怡如。2021。使用面實踐節能減廢。工業技術與資訊月刊。第352期,30-31頁。台灣。
    陳嘉昇。2006。牧草的營養價值。科學發展。第407期,6-11頁。台灣。
    熊玟淇。2021。植物油工廠廢白土製作泌乳牛舔磚之研究。國立臺灣大學生物資源暨農學院動物科學技術學系碩士論文。
    賴元亮。2008。飼料營養雜誌。第10期,92-101頁。台灣。
    謝志誠。2007。纖維乙醇之技術與文獻探討。第12版,10-11頁。台灣。
    Abusham R. A, Basri M., Rahman R. N. Z. R., Salleh A. B. 2009. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microbial Cell Factories 8: 21-29.
    Aiello G., Arnoldi A., Bartolomei M., Bollati C., Lammi C., Li Y. C., Pugliese R., Robert J., Rueller L. 2021. Assessment of the physicochemical and conformational changes of ultrasound-driven proteins extracted from soybean okara byproduct. Foods 10: 562.
    Altiok E., Guler E., Kabay N., Kaya T. Y., Kinali O., Kitada S., Othman N. H. 2022. Investigations on the effects of operational parameters in reverse electrodialysis system for salinity gradient power generation using central composite design (CCD). Desalination 525: 115508.
    Amoah K., Chi S., Dong X., Liu H., Tan B., Yang Q., Yang Y., Zhang H., Zhang S. 2021. Effects of three probiotic strains (Bacillus coagulans, Bacillus licheniformis and Paenibacillus polymyxa) on growth, immune response, gut morphology and microbiota, and resistance against Vibrio harveyi of northern whitings, Sillago sihama Forsskal (1775). Animal Feed Science and Technology 21: 114958.
    AOAC. Official Method 971.16. 1971. Papain Proteolytic Activity Spectrophotometric Method.
    Arai Y., Nangano T., Nishinari K. 2021. Developing soybean protein gel-based foods from okara using the wet-type grinder method. Foods 10: 348.
    Aulitto M., Bartolucci S., Contursi P., Franzén C. J., Fusco S. 2017. Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. Biotechnology for Biofuels 10: 210.
    Bezerra M. A., Escaleira L. A., Oliveria E. P., Santelli R. E., Villar L. S. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76: 965-977.
    Cai Y. J., Chen B. F., Huang L. H., Meeren P. V., Su J. Q., Tao X., Zhao M. M., Zhao Q. Z. 2020. Adjustment of the structural and functional properties of okara protein by acid precipitation. Food Bioscience 37: 100677.
    Cai Y. J., Chen B. F., Huang L. H., Meeren P. V., Su J. Q., Zhao M. M., Zhao Q. Z., Zhao X. J. 2021. Effect of homogenization associated with alkaline treatment on the structural, physicochemical, and emulsifying properties of insoluble soybean fiber (ISF). Food Hydrocolloids 113: 106516.
    Chen X., Luo Y., Qi B., Wan Y. 2014. Simultaneous extraction of oil and soy isoflavones from soy sauce residue using ultrasonic-assisted two-phase solvent extraction technology. Separation and Purification Technology 128: 72-79.
    Chen Y., Cheng S., Dong F., Fu X., Mei X., Yang Z., Zeng L., Zhou Y. 2017. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. Journal of Proteomics 157: 10-17.
    Cotarlet M., Bahrim G. E., Stanciuc N. 2020. Yarrowia lipolytica and Lactobacillus paracasei solid state fermentation as a valuable biotechnological tool for the pork lard and okara's biotransformation. Microorganisms 8: 1098.
    Debi M., Liesegang A., Wichert B. A. 2022. Anaerobic fermentation of rice bran with rumen liquor for reducing their fiber components to use as chicken feed. Heliyon 8: e09275
    Durand F. C. and Durand H. 2010. Probiotics in animal nutrition and health. Beneficial Microbes 1: 3-9.
    Eliopoulos C., Arapoglou D., Chorianopolus N., Haroutounian S. A., Markou G. 2022. Transformation of mixtures of olive mill stone waste and oat bran or Lathyrus clymenum pericarps into high added value products using solid state fermentation. Waste Management 149: 168-176.
    Eze O. F., Chatzifragkou A., Charalampopoulos D. 2022. Properties of protein isolates extracted by ultrasonication from soybean residue (okara). Food Chemistry 368: 130837.
    Fan X. J., Chang H. D., Feng Z., Li S., Lin Y. N., Zhang A., Zhao X. M. 2021. Mechanism of change of the physicochemical characteristics, gelation process, water state, and microstructure of okara tofu analogues induced by high-intensity ultrasound treatment. Food Hydrocolloids 111: 106241.
    Farias T. C., Kawaguti H. Y., Koblitz M. G. B. 2021. Microbial amylolytic enzymes in foods: Technological importance of the Bacillus genus. Biocatalysis and Agricultural Biotechnology 35: 102054.
    Fayaz G., Calligaris S., Manzocco L., Nicoli M. C., Plazzotta S. 2019. Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT - Food Science and Technology1 13: 108324.
    Feng J. Y., Hu F., Ni Z. J., Thakur K., Wang R., Wei Z. J., Zhang J. G., Zhu Y. Y. 2021. Evolution of okara from waste to value added food ingredient: an account of its bio-valorization for improved nutritional and functional effects. Trends in Food Science and Technology 116: 669-680.
    Figueiredo V. R. G. D., Ida E. I., Kurozawa L. E., Vanzela A. L. L., Yamashita F. 2018. Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. Journal of Food Science and Technology 55: 1508.
    Gong G., Kim S., Lee S. M., Park T. H., Um Y., Woo H. M. 2017. Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes. Journal of Biotechnology 254: 59-62.
    Gupta S., Chen W. N., Lee J. J. L. 2018. Analysis of improved nutritional composition of potential functional food (okara) after probiotic solid-state fermentation. Journal of Agricultural and Food Chemistry 66: 5373-5381.
    Hakim A., Ahmed J., Azad A. K., Bhuiyan F. R., Emon T. H., Iqbal A. 2018. Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon 4: e00646.
    Hammami A., Abdelhedi O., Bayoudh A., Nasri M. 2018. Low-cost culture medium for the production of proteases by Bacillus mojavensis SA and their potential use for the preparation of antioxidant protein hydrolysate from meat sausage byproducts. Annals of Microbiology 68:473-484.
    Hlordzi V., Afriyie G., Anokyewwa M. A., Chi S., Delwin E., Kuebutornye F. K. A., Lu A. Y. 2020. The use of Bacillus species in maintenance of water quality in aquaculture: a review. Aquaculture Reports 18: 100503.
    Hu Y., Chen Y., Piao C., Wang D., Xu B., Yu H., Zhou Y. 2019. Soybean residue (okara) fermentation with the yeast Kluyveromyces marxianus. Food Bioscience 31: 100439.
    Huang Z., Cui C., Feng Y., Huang M., Lin L., Zhao M. 2021. A new sight on soy isoflavones during the whole soy sauce fermentation process by UPLC-MS/MS. LWT - Food Science and Technology 152: 112249.
    Islam F., Roy N. 2018. Screening, purification and characterization of cellulase from cellulose producing bacteria in molasses. BMC Research Notes 11: 445.
    Jackson C. J. C., Buzzell D., DeGrandis S., Dini J. P., Faulkner H., Lavandier C., Poysa V., Rupasinghe H. P. V. 2002. Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage. Process Biochemistry 37: 1117-1123.
    Jiang X., Liu X., Sun Y., Wang Y., Xu H., Zhang Y. 2021. Improvement of the nutritional, antioxidant and bioavailability properties of corn gluten-wheat bran mixture fermented with lactic acid bacteria and acid protease. LWT - Food Science and Technology 144:111161.
    Justus A., Ida E. I., Kurpzawa L E., Pereira D. G. 2019. Combined uses of an endo- and exopeptidase in okara improve the hydrolysates via formation of aglycone isoflavones and antioxidant capacity. LWT - Food Science and Technology 115: 108467.
    Karimifard S., Moghaddam M. R. A. 2018. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment 640: 772-797.
    Khalid A., Dai B., Huang S., Wei C., Yang R., Ye M., Wang Z. 2021. Production of β-glucanase and protease from Bacillus velezensis strain isolated from the manure of piglets. Preparative Biochemistry and Biotechnology 51: 497-510.
    Lee M.-K., Kim J. K., Lee S. Y. 2018. Effects of fermentation on SDS-PAGE patterns, total peptide, isoflavone contents and antioxidant activity of freeze-thawed tofu fermented with Bacillus subtilis. Food Chemistry 249: 60-65.
    Li B., Cui S. W., Goff H. D., Kang F., Nie Y., Yang W. 2019. Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids 94: 48-56.
    Li C., Liu X. W., Wang X., Xia T., Xu T. 2021. The expression of β-glucosidase during natto fermentation increased the active isoflavone content. Food Bioscience 43: 101286.
    Li S., Lei Z., Li K., Zhang Z., Zhu D. 2013. Soybean Curd Residue: Composition, Utilization, and Related Limiting Factors. ISRN Industrial Engineering 2013: 1-8.
    Lin D. R., Long X. M., Qin W., Wu J. J., Wu Z. J., Yang Y. M. 2020. The anti-lipidemic role of soluble dietary fiber extract from okara after fermentation and dynamic high-pressure microfluidization treatment to Kunming mice. Journal of Food Science and Technology 57: 4247-4256.
    Lin D., Chen H., Huang Y., Long X., Qin W., Tu Z., Wu D., Wu Z., Yang Y., Zhang Q. 2020. Effects of microbial fermentation and microwave treatment on the composition, structural characteristics, and functional properties of modified okara dietary fiber. LWT - Food Science and Technology 123: 109059.
    Liu C. H., Chiu C. S., Ho P. L., Wang S. W. 2009. Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. Journal of Applied Microbiology 107: 1031-1041.
    Liu Y., Dai J., Hossen M. A., Leng Y., Li S., Qin W., Sameen D. E., Ye T., Yi S. 2021. Effects of ultrasonic treatment and homogenization on physicochemical properties of okara dietary fibers for 3D printing cookies. Ultrasonics Sonochemistry 77: 105693.
    Lopez E. P., Aparicio I. M., Cela D., Costabile A., Ruperez P. 2016. In vitro fermentability and prebiotic potential of soyabean okara by human faecal microbiota. British Journal of Nutrition 116: 1116-1124.
    Ma L., Chen S., Li C., Jia W., Yang Z., Zhang D. 2013. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation. Journal of Biotechnology 166: 192-197.
    Mok W. K., Chen W. N., Kim J., Lee J., Tan Y. X. 2019. A metabolomic approach to understand the solid-state fermentation of okara using Bacillus subtilis WX-17 for enhanced nutritional profle. AMB Express 9: 60.
    Na H. E., Heo S., Jeong D. W., Kim T., Kim Y. S., Lee G., Lee J. H. 2022. The safety and technological properties of Bacillus velezensis DMB06 used as a starter candidate were evaluated by genome analysis. LWT - Food Science and Technology 161: 113398.
    Nagano T., Aoki T., Arai Y., Hirano R., Kurihara S., Nishinari K., Yano H. 2020. Improved physicochemical and functional properties of okara, a soybean residue, by nanocellulose technologies for food development – A review. Food Hydrocolloids 109: 105964.
    Nagano T., Hirano R., Kurihara S., Nishinari K. 2020. Improved effects of okara atomized by a water jet system on α-amylase inhibition and butyrate production by Roseburia intestinalis. Bioscience Biotechnology and Biochemistry 84: 1-8.
    Nascimento W. C. A., Martins M. L. L. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp.. Biotechnology 35: 1-2.
    Nguyen T., Nguyen C. H. 2020. Determination of factors affecting the protease content generated in fermented soybean by Bacillus subtilis 1423. Energy Reports 6: 831-836.
    Nkurunziza D., Chun B. S., Park J. S., Pendleton P., Sivagnanam S. P. 2019. Subcritical water enhances hydrolytic conversions of isoflavones and recovery of phenolic antioxidants from soybean byproducts (okara). Journal of Industrial and Engineering Chemistry 80: 696-703.
    Orts A., Castano A., Morgado B. R., Parrado J., Quintanilla A. G., Revilla E., Tejada M. 2019. Protease technology for obtaining a soy pulp extract enriched in bioactive compounds: isoflavones and peptides. Heliyon 5: e10958.
    Ossai I. C., Hamid F. S., Hassan A. 2022. Valorisation of keratinous wastes: A sustainable approach towards a circular economy. Waste Management 151: 81-104.
    Peng H. T., Fang T. J., Yang C. Y. 2018. Enhanced β-glucosidase activity of lactobacillus plantarum by a strategic ultrasound treatment for biotransformation of isoflavones in okara. Food Science and Technology Research 24: 777-784.
    Pereyra M. L. G., Cavaglieri L., Giacomo A. L. D., Lara A. L., Martinez M. P. 2020. Aflatoxin-degrading Bacillus sp. strains degrade zearalenone and produce proteases, amylases and cellulases of agro-industrial interest. Toxicon 180: 43-48.
    Pramanik S. K., Jabin T., Mahmud S., Naher K., Paul G. K., Saleh M. B., Uddin M. S., Zaman S. 2021. Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulose. Current Research in Microbial Sciences 2: 100013.
    Pratama H. B., Supijo M. C., Sutopo. 2020. Experimental design and response surface method in geothermal energy: A comprehensive study in probabilistic resource assessment. Geothermics 87: 101869.
    Privatti R. T., Capellini M. C., Favaro-Trindade C. S., Thomazini M., Rodrigues C. E. C. 2022. Profile and content of isoflavones on flaked and extruded soybeans and okara submitted to different drying methods. Food Chemistry 380: 132168.
    Rahardjo Y. S. P., Rinzema A., Tramper J. 2006. Modeling conversion and transport phenomena in solid-state fermentation: A review and perspectives. Biotechnology Advances 24: 161-179.
    Ramlucken U., Jansen van Rensburg C., Lalloo R., Moonsamy G., Roets Y., Thantsha M. S. 2020. Advantages of Bacillus-based probiotics in poultry production. Livestock Science 241: 104215.
    Raza A., Abdelgaffar H., Akhtar M., Anwar M. I., Awais M. M., Bashir S., Jurat-Fuentes J. L., Pothula R., Tabassum R. 2021. Expression and functional characterization in yeast of an endoglucanase from Bacillus sonorensis BD92 and its impact as feed additive in commercial broilers. International Journal of Biological Macromolecules 176: 364-375.
    Razzaq A., Ali A., Ali Q., Ashraf M., Malik A., Sajjad M., Shamsi S. 2019. Microbial proteases application. Frontiers in Bioengineering and Biotechnology 7: 1-20.
    Reis A., Scopel M., Zuanazzi J. A. S. 2018. Trifolium pratense: Friable calli, cell culture protocol and isoflavones content in wild plants, in vitro and cell cultures analyzed by UPLC. Revista Brasileira de Farmacognosia 28: 542-550.
    Reyes-Medez A. I., Davila-Ortiz G., Figueroa-Hernandez C., Hernandez-Sanchez H., Jimenez-Martinez C. Melgar-Lalanne G. 2015. Production of Calcium- and Iron-binding Peptides by Probiotic Strains of Bacillus subtilis, B. clausii and B. coagulans GBI-30. Revista Mexicana de Ingenieria Quimica 14: 1-9.
    Rungruangsaphakun J., Keawsompong S., Nakphaichit M. 2022. Nutritional improvement of copra meal for swine feed. Biocatalysis and Agricultural Biotechnology 39: 102273.
    Saadoun J. H., Bernini V., Calani L., Cirlini M., Galaverna G., Lazzi C., Neviani E., Rio D. D. 2021. Effect of fermentation with single and co-culture of lactic acid bacteria on okara: Evaluation of bioactive compounds and volatile profiles. Food and Function 12: 3033-3043.
    Santos V. A. Q., Cunha M. A. A., Dekker R. F. H., Mantovani D., Nascimento C. G., Schmidt C. A. P. 2018. Solid-state fermentation of soybean okara: Isoflavones biotransformation, antioxidant activity and enhancement of nutritional quality. LWT - Food Science and Technology 92: 509-515.
    Saqib A. A. N. and Whitney P. J. 2011. Differential behaviour of the dinitrosalicylic acid (DNS) reagenttowards mono- and di-saccharide sugars. Biomass and Bioenergy 35: 4748-4750.
    Selvam K., Govarthanan M., Rajiniganth R., Selvankumar T., Senthilkumar B., Srinivasan P., Sudhakar C. 2016. Enhanced production of amylase from Bacillus sp. using groundnut shell and cassava waste as a substrate under process optimization: Waste to wealth approach. Biocatalysis and Agricultural Biotechnology 7: 250-256.
    Shad F., Dubey S., Mishra S., Ranawat B. 2021. Optimization of fermentation conditions for higher cellulase production using marine Bacillus licheniformis KY962963: An epiphyte of Chlorococcum sp.. Biocatalysis and Agricultural Biotechnology 35: 102047.
    Shi C., Lu Z., Wang Y., Zhang Y. 2017. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. Journal of Animal Science and Biotechnology 8: 50.
    Shi H., Devahastin S., Wang W., Zhang M. 2020. Solid-state fermentation with probiotics and mixed yeast on properties of okara. Food Bioscience 36: 100610.
    Singh J., Banerjee R., Das M., Kundu D. 2019. Enzymatic processing of juice from fruits/vegetables: an emerging trend and cutting edge research in food biotechnology. Enzymes in Food Biotechnology 24: 419-432.
    Sitanggang A. B., Fernando F., Krusong W., Sinaga W. S. L., Wie F. 2020. Enhanced antioxidant activity of okara through solid state fermentation of GRAS Fungi. Food Science and Technology 40: 178-186.
    Su M., Cui Y., Dai W. C., Hu Y., Liu J. M., Piao C. H., Wang Y. H., Yu H. S. 2021. Production of β-glucosidase from okara fermentation using Kluyveromyces marxianus. Journal of Food Science and Technology 58: 366-376.
    Suprayogi W. P. S., Akhirini N., Hadi R. F., Irawan A., Ratriyanto A., Setyono W. 2022. Changes in nutritional and antinutritional aspects of soybean meals by mechanical and solid-state fermentation treatments with Bacillus subtilis and Aspergillus oryzae. Bioresource Technology Reports 17: 100925.
    Swallah M. S., Fan H., Piao C., Wang S., Yu H. 2021. Prebiotic impacts of soybean residue (Okara) on eubiosis/dysbiosis condition of the gut and the possible effects on liver and kidney functions. Molecules 26: 326.
    Tao X., Cai Y., Deng X., Huang L., Liu T., Long Z., Zhao M., Zhao Q. 2019. Effects of pretreatments on the structure and functional properties of okara protein. Food Hydrocolloids 90: 394-402.
    Taoufil N., Elmchaouri A., Gil A., Korili S. A., Mahmoudi S. E. 2021. Comparative analysis study by response surface methodology and artificial neural network on salicylic acid adsorption optimization using activated carbon. Environmental Nanotechnology, Monitoring and Management 15: 100448.
    Tian Z., Chen W., Cui Y., Deng D., Ma X., Yu M. 2020. Diet supplemented with fermented okara improved growth performance, meat quality, and amino acid profiles in growing pigs. Food Science and Nutrition 8: 5650-5659.
    Tuly J. A., Awasthi M. K., Azam S. R., Chen G., Hassan M. M., Janet Q., Ma H., Nizami A. S., Tsigbe N. D. K., Zabed H. M. 2022. Bioconversion of agro-food industrial wastes into value-added peptides by a Bacillus sp. Mutant through solid-state fermentation. Bioresource Technology 346: 126513.
    Ullah I., Din Z. U., Xiong S .B., Yin T., Zhang J., Zhang M. L.2017. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT - Food Science and Technology 82: 15-22.
    Van Soest P. J., Roberton J. B., Lewis B. A. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science 74: 3583-3597.
    Vong W. C. and Liu S. Q. 2016. Biovalorisation of okara (soybean residue) for food and nutrition. Trends in Food Science and Technology 52: 139-147.
    Xiang C., Chang J., Liu S. Y. 2019. A quick method for producing biodiesel from soy sauce residue under supercritical carbon dioxide. Renewable Energy 134: 739-744.
    Xie F., Chen G., Feng F., Liu D., Liu L., Quan S., Zhang X. 2022. Bacillus amyloliquefaciens 35 M can exclusively produce and secrete proteases when cultured in soybean-meal-based medium. Colloids and Surfaces B: Biointerfaces 209: 112188.
    Yang L. C., Fu T. J., Yang F. C. 2020. Biovalorization of soybean residue (okara) via fermentation with Ganoderma lucidum and Lentinus edodes to attain products with high anti-osteoporotic effects. Journal of Bioscience and Bioengineering 129: 514-518.
    Yang L., Qiao S., Zeng X. 2021. Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms. Animal Nutrition 7: 905-916.
    Yang T., Tang C. H., Yan H. L. 2021. Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara. Food Hydrocolloids 11: 106386.
    Yin H., Huang F. J. 2019. The variation of two extracellular enzymes and soybean meal bitterness during solid-state fermentation of Bacillus subtilis. Grain and Oil Science and Technology 2: 39-43.
    Yu T. W., Deng Z. Y., Fan Y. W., Fu Y. X., Li H. Y. 2020. Effects of soluble dietary fiber from soybean residue fermented by Neurospora crassa on the intestinal flora in rats. Food and Function 11: 7433-7445.
    Zhang M., Feng X., Geng M., He M., Huang Y., Liang Y., Teng F., Li Y. 2022. Effects of electron beam irradiation pretreatment on the structural and functional properties of okara protein. Innovative Food Science and Emerging Technologies 79: 103049.
    Zhou R. L., Deng Z. Y., Fan Y. W., Li J., Liu X. R., Ren Z. Q., Yang J. Y., Ye J. 2019. Fermented soybean dregs by Neurospora crassa: A traditional prebiotic food. Applied Biochemistry and Biotechnology 189: 608-698.
    日本国特許庁。平成24年5月25日 (2012.05.25)。醤油粕入り発酵飼料の製造方法。特許第4999357号 (P4999357)。
    田中秀夫。1999。平成10年度における醤油の研究業績。酿協。94: 442-470。

    無法下載圖示 校外公開
    2027/08/09
    QR CODE